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Abstract. Non-contact, long-term monitoring human heart rate is of
great importance to home health care. Recent studies show that Photo-
plethysmography (PPG) can provide a means of heart rate measurement
by detecting blood volume pulse (BVP) in human face. However, most of
existing methods use linear analysis method to uncover the underlying
BVP, which may be not quite adequate for physiological signals. They
also lack rigorous mathematical and physiological models for the subse-
quent heart rate calculation. In this paper, we present a novel webcam-
based heart rate measurement method using Laplacian Eigenmap (LE).
Usually, the webcam captures the PPG signal mixed with other sources
of fluctuations in light. Thus exactly separating the PPG signal from
the collected data is crucial for heart rate measurement. In our method,
more accurate BVP can be extracted by applying LE to efficiently dis-
cover the embedding ties of PPG with the nonlinear mixed data. We also
operate effective data filtering on BVP and get heart rate based on the
calculation of interbeat intervals (IBIs). Experimental results show that
LE obtains higher degrees of agreement with measurements using finger
blood oximetry than Independent Component Analysis (ICA), Principal
Component Analysis (PCA) and other five alternative methods. More-
over, filtering and processing on IBIs are proved to increase the measuring
accuracy in experiments.

1 Introduction

Usually, medical instruments supporting contact measurements (e.g. electrocar-
diogram, arm blood pressure monitor and auscultoscope) bring much discomfort
to patients in constant monitoring. One possible approach to overcome the con-
tact with skin is to use webcam to collect the PPG signal for measurements.
PPG is a photoelectric technology of detecting the blood volume changing in
living tissues. It provides the information of BVP that propagates throughout
the body, which can be used for heart rate extraction. Based on this idea, Ming-
Zher Poh et al. tried to apply ICA on video images of human face to extract
underlying BVP for cardiac pulse rate measurement [1]. Similarly, Magdalena
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Lewandowska obtained heart rate directly from webcam with PCA [2]. Accord-
ing to the Beer-Lambert law, reflected light intensity traveled through facial
tissue varies nonlinearly with distance. Neither ICA nor PCA could extract the
pure BVP from collected data, as both of them are based on linear hypothesis.

This paper proposes a novel webcam-based method to measure human heart
rate using LE [3]. In our approach, the red, green, and blue (RGB) color sensors
of webcam collect the changing signal of reflected light intensity on human face.
The source signal is a mixture of BVP along with other sources of fluctuations
in light. As LE is a manifold learning method using for uncovering the inner
structure of data, we apply LE to extract BVP from the collected signal. Then
we do some simple but effective data processing with the extracted BVP, and
get heart rate based on the calculation of IBIs. The step of extracting BVP from
signal source counts much, which is also a process of dimensionality reduction
for raw data. PCA [4], Linear Discriminant Analysis (LDA) [5] and ICA [6] are
classic linear dimensionality reduction methods. In addition, manifold learning
methods proposed in recent years, such as Isomap [7], Locally Linear Embedding
(LLE) [8], LE, Local Tangent Space Alignment (LTSA) [9], Maximum Variance
Unfolding (MVU) [10], and Linearity Preserving Projection (LPP) [11] can also
be used for dimensionality reduction. All of these methods could also be applied
for the BVP extraction in our application. Through the comparison of nine
dimensionality reduction methods: Isomap, LLE, LE, LTSA, MVU, LPP, PCA,
LDA and ICA, it reaches a conclusion that LE generates the best results.

Our contributions are as follows:
1. We use LE to extract BVP from video images of human faces.
2. We propose a robust heart rate calculation method based on IBIs calcula-

tion from the desired BVP.
3. We do extensive experiments on other eight alternative methods: Isomap,

LLE, LTSA, MVU, LPP, PCA, ICA and LDA, and give the conclusion that LE
is a reasonable choice for this application.

The rest of the paper is organized as follows: Section 2 puts forward some
related work. Section 3 introduces the heart rate extraction model based on
LE. Section 4 shows the results of experiments compared with other alternative
methods. Section 5 presents the conclusion.

2 Related work

PPG is a non-invasive photoelectric means of detecting the changes in blood
volume of living tissue [12]. The basic clinical application of PPG technology is
blood saturation measurements [13]. In 1996, Nakajima et al. successfully used
the PPG collected at the earlobe to extract heart rate [14]. Johansson designed a
heart rate and respiratory rate detection system based on PPG in 1999. They also
used it to monitor new-borns for up to eight hours [15]. Aoyagi and Miyasaka in
2002 extracted the oxygen saturation (SpO2) and heart rate information through
PPG [16]. Making use of the pulse transit time in human body, PPG technology
could also be used for blood pressure measurements [17].
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Pavlidis and colleagues proposed the idea of continuous monitoring human
physiological conditions based on human face information in 2003 [18]. They
made attempts to the non-contact measurements of human facial blood flow,
heart pulse rate and respiratory rate using thermal camera [19–21]. They pro-
posed the concept of ”desktop health monitoring” and established a human-
computer interaction system in 2007. The system was composed of computer and
thermal camera, and provided the support of monitoring a full range of physi-
ological signs [22]. Jia Zheng et al. set up a remote PPG synchronous imaging
system using a camera, and put forward a proposal of 3D blood microcirculation
model for physiological conditions assessment based on it [23].

2010, Ming-Zher Poh et al. adopt ICA for separating the ordinary face video
data collected by webcam and successfully recovered cardiac pulse [1]. ICA is
a technique of blind source separation for uncovering the independent source
signals from a set of data which is composed of linear mixtures of the underlying
sources. It was once applied to reduce motion artifacts in PPG measurements
[24]. In further research, Ming-Zher Poh used a webcam to restore the human
heart rate variability (HRV), discharge cycle, respiratory rate and other phys-
iological indicators [24]. It proved that ICA tolerated motion artifacts well for
measurements. 2011, Magdalena Lewandowska et al. tried to use PCA to extract
the changeable component of data collected by webcam to measure heart rate
[2]. By comparing the cardiac pulse signal obtained by PCA and ICA, they gave
a conclusion that those two methods had similar accuracy and PCA was a better
choice for less computationally complex. They also tested the effects of setting
small rectangular regions of interest (ROI) of the face image and only two color
channels. However, both ICA and PCA are linear data analysis methods. To
the best of our knowledge, no studies so far have attempted to use nonlinearity
methods, to say nothing of manifold learning methods, for heart rate extraction.

3 The proposed method

Image sequences of human face contain the information of BVP for heart rate
extraction. With this idea, we apply LE for BVP extraction and set up the heart
rate measurement system. The system contains the modules of face detection,
continuous measurements, results displaying and timer (Fig. 1). Face detector
detects faces in video images collected from webcam (or media files). Averages
of each RGB channels are saved continuously in background. After a period of
collection, the three-dimensional RGB data is put into LE and the algorithm
outputs the mapping data in one-dimensional space, which is the desired BVP
signal. After some data processing procedures, system gets heart rate.

3.1 Laplacian Eigenmap

LE, which is based on spectral graph theory, makes use of the Laplacian-Beltrami
operator in manifold to get the mapping of high-dimensional onto low-dimensional
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Fig. 1. System architecture.

space. It aims at discovering the embedded low-dimensional data set in low-
dimensional space while maintaining the distance relation of any two points [3,
25]. In this paper, we apply LE in heart rate measurements to extract the un-
derlying BVP signal from images of human face.

We utilize a free Open Computer Vision (OpenCV) library (Version 2.3.1)
to get the region of the face in the video images. The face detector in OpenCV
known as ”Haar detector” is first proposed by Paul Viola and Miachael Jones
[26] and extended with Haar-like characteristics by Rainer Lienhart and Jochen
Maydt [27]. The ROI rectangle is defined as the central 60% of the width and full
height of the rectangle containing the face region. As the experiment is for single
person, we always take the face with the largest area when detector detects more
than one face; if the detector fails to find a face, we copy the detection results
of the last frame.

All pixels in RGB channels of the ROI are averaged separately for each frame.
For the ith frame image, we save the vector:

Xi(j) = (x1(j), x2(j), ..., xn(j)) j = 1, 2, 3

where xi(1), xi(2) and xi(3) separately represents the averages of the pixels
in RGB channel in ith frame. We consider Xi as a point in three dimensional
space. The aim of LE is to find the mapping onto one-dimensional space Y =
(y1, y2, ..., yn) of X = (x1, x2, ..., xn)3.
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Firstly, it calculates the Euclidean distance of the input matrix X to get the
square matrix G.Edges of the graph stand for the adjacent relationship between
nodes. Nodes i and j on G are adjacent if i is among k nearest neighbors of j or
j is among k nearest neighbors of i [3]. The key of LE is to solve the following
optimization problem:

min

n∑
ij=1

‖yi − yj‖2 Wij . (1)

here weight Wij is the proximate measure of two near points xi and xj . Under
normal conditions, the closer xi and xj gets, the larger the value of Wij is. As
a result, when they are mapped onto low-dimensional space, yi and yj would
also be close. By computing the generalized eigenvectors of the Figure Laplace
matrix, it gets the embedded low-dimensional of the data.

The algorithmic steps of LE are as follow in Fig. 2 :

Fig. 2. The algorithmic steps of LE.

The extracted BVP with LE in one experiment is shown in Fig. 3.

3.2 Heart rate extraction

Data processing is performed to reduce the measurements errors. The first pre-
processing operation is to remove the singular points. Here we define ”singular
points” as the points which are greater than (or less than) 10 times of the average.
After the removal, we use the average of two adjacent points to interpolate the
vacant position. In addition, as there may be a larger error at the very start
of measurement caused by shaking or initialization of face detector, we directly
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Fig. 3. Raw trace data and extracted BVP.

remove the data collected within first second. Then moving average filter is
used to smooth the curve, suppressing the sharp noise. For the BVP signal
Y = [y1, y2, ...yn], the average filter is described as:

y′i =
1

M

k+(M−1)/2∫
k=i−(M+1)/2

y(k) . (2)

i is from (M +1)/2+1 to N− (M−1)/2+1, M is the moving point and M = 5.
Band-pass filter is needed to process the glitches in high-frequency and noise

in low-frequency. We use 15-point Hamming window, 0.7 - 4 Hz cut-off frequen-
cy, band-pass filter to smooth the data. Two common methods can be used for
heart rate extraction: One uses power spectral density function; and the other
is to make use of the periodic interval time T between two adjacent BVP wave-
forms, which is IBIs. In order to speed up the calculation, as well as make it
easy for continuous measurement, we use the second method based on IBIs to
get heart rate. We choose the first-order differential point in each cycle of BVP
as characteristic point to demarcate the interval. The number of first-order dif-
ferential points in a period of wave fluctuates narrowly than the number of usual
maximum points in the presence of measuring errors. Cubic spline interpolation
is applied to the data for ensuring the existence of continuous first-order differ-
ential and second-order differential. Then average interval time is calculated as
follow:

T =

n∑
k=2

tk − tk−1

k − 1
. (3)
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m is the number of feature points in the sampling interval. We consider the
interval between [0.25, 2] (corresponding to heart rate is 30 - 240bmp) as effective
interval. If tk − tk−1 is larger than 2, we consider it as two time intervals; If
tk − tk−1 is less than 0.25s, we merge it with the next time interval (discard it
if it’s the last interval). In the end, we get the heart rate value:

fHR = 60/T . (4)

Fig. 4 shows the results after each step of data processing, as well as the final
first-order differential characteristic points for IBIs calculation.

Fig. 4. Data processing results and the characteristic points.

4 Experiments and results

4.1 Experimental setup

The experimental setup was made up of a basic webcam (Logitech C170) exter-
nally connected to a desktop computer (Dell Optiplex 790) and a finger pulse
oximetry (Contec CMS50D-Plus, 30 250bmp range) (Fig. 5). The video images of
participants faces were recorded while they sit in front of the computer. In each
experiment, 30 seconds long video sequences in colour (24-bit RGB with 3 chan-
nels 8 bits/channel) were recorded and saved as AVI format (compressed with
MJPG codec type) on the computer. The resolution of the videos was 640x480
pixels and the frame rate was 30 frames per second (fps). While recording, the
finger pulse oximetry measured the heart rate synchronously at a sampling rate
of 1Hz. The experiments were conducted indoors. 20 participants (11 males and
9 females) aging from 20 to 80 took the experiments.
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Fig. 5. Experimental setup.

Participants were asked to be sitting naturally in our experiments and slight
movement is tolerated. Paper [1] did experiments to prove ICA tolerates motion
artifacts. While in practice the illumination variations have a larger influence
on the performance than motion artifacts. So we did two sets of experiments
with different illumination variations. Each participant recorded two videos of
30 seconds long per each. For the first video, we used sunlight as the only source
of illumination. Then spot light (SamvoL 6W High Power Spotlights 01b) was
used as light source for the second set of videos.

4.2 Heart rate measurements using different methods

We took data collected in 10 seconds as the initial processing unit. Subsequent
measurements were performed using a 10s moving window with one second in-
crement (90% overlap). Measurements of the finger blood oximetry in every 10
seconds were averaged as contrast. Each experiment continued for 30 seconds,
yielding 21 results.

We performed the measurements with other eight dimensionality reduction
methods. Five manifold learning method: Isomap, LLE, LTSA, MVU, LPP, and
three linear dimensionality reduction method: PCA, LDA and ICA. After doing
40 sets of experiments (20 sets use sunlight and 20 sets use spotlight ) with each
algorithm, we exhibited the Bland-Altman plots of each with the results of finger
blood oximetry to demonstrate the methods’ effect in continuous measurements
(see Table 1 and Fig. 6). It was obvious that LE, whose mean error was -0.1 b/min
with 95% limits of agreement +0.6 to -1.9 b/min when usd spotlight, obtained
higher degrees of agreement with measurements using finger blood oximetry.

As shown in the table, Isomap turns out to be the last choice. Other manifold
learning methods, such as LLE, LE, LTSA, LPP seems to be more reliable than
the linear methods. But the better results are at the expense of much execution
time. In some experiments, MVU fails to output results as neighborhood graph
strutted by collected data may be not connected, causing a maximization of a
function without upper bound.
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Table 1. Measurements of 20 participants with different illumination.

Experiment using sunlight Experiment using spot light Average
Algorithm Mean +1.96SD -1.96SD Mean +1.96SD -1.96SD Time(s)

Isomap -10.8 27.7 -49.4 -23.6 2.9 -50.1 1.7073
LLE -2.0 6.7 -10.6 -1.9 4.8 -8.5 0.2308
LE -0.3 1.2 -2.6 -0.1 0.6 -1.9 0.1393
LTSA -1.8 6.3 -9.8 -1.9 5.4 -9.2 0.3199
MVU 8.79 10.37 7.20 8.59 10.07 7.10 1.2065
LPP -1.8 6.3 -9.8 -1.9 5.4 -9.2 0.0996
PCA 3.5 12.9 -6.0 -0.4 8.0 -1.96 0.0321
LDA -3.3 5.2 -11.8 -5.7 2.8 -14.1 0.0029
ICA -2.9 -1.3 -4.5 -2.2 0.9 -5.3 0.5065

Results of LLE and LPP are shown in strip-like patterns. This is because
the step of reconstructing data point in LLE makes the data lose its time tag.
The final results of LLE fall into a small range after filtration.(In contrast, other
methods may get quite different results for each person.) As a person’s heart
rate changed little in 30s, measurements of each person are divided in regions.
Data fluctuating in time shaft seems like an oblique line in B-A plot. LPP is the
linear version of LLE. They get similar results as the data set is simple.

PCA is effectual sometimes, but its results have great volatility depending on
the lighting conditions of the experiment. LDA aims at making the output data
have good separability after dimensionality reduction. So it gets poor agreement
with ground truth when the collected data has great error, especially movement
artifact. ICA separates data into three independent components, and the choice
of the independent components affects results. In addition, it gets the separating
results by stopping iteration when it fails to get optimal solution, which spends
a lot of time. All in all, LE is the advisable choice for the proposed application.

4.3 Heart rate measurements without data processing

Still utilizing LE for BVP extraction, we did experiments using maximum points
for IBIs calculation. Moreover, we abandoned the data processing of singular
points removal, average filtering, band-pass filtering and process for interval.

Data in one experiment was shown in Fig. 7. The number of characteristic
points increased a lot as the narrow fluctuations caused by error were considered
to be interval, which would have a negative effect on results.

Two Bland-Altman plots demonstrating the agreement between measure-
ments obtained from the tested method and from finger blood oximetry were
shown in Fig. 8. With the proposed method, mean error was -0.2 b/min with
95% limits of agreement +1.4 to -1.9 b/min. Without data processing of singular
points removal, average filtering, band-pass filtering, the points were distributed
distant from zero, and mean error was +149.1 with 95% limits of agreement
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Fig. 6. Bland-Altman plots for each dimensionality reduction method with the mea-
surements of finger blood oximetry.

Fig. 7. Measurements using proposed method and without data processing.
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+170.3 to +127.9 b/min. It proved that data filtering and processing on IBIs
did increase the measuring accuracy a lot.

Fig. 8. Bland-Altman plots of measurements using the proposed method and measure-
ments without data processing.

5 Conclusion

In this paper, we present a novel method for webcam-based continuous non-
contact heart rate measurement using Laplacian Eigenmap. The results of 20
participants demonstrate the advantage of our approach compared with other
eight dimensionality reduction methods. The following data processing is also
proved to be necessary. The presented technology is reliable, easy to use, and
promising for extending and improving daily monitoring of home health care.
Further studies may be performed on other human physiological signs, such as
respiratory rate and blood pressure through many other channels, such as remote
medical care or mobile terminals.

Acknowledgement. This work was supported in part by grants from Inter-
national Science & Technology Cooperation Program of China under Contract
2010DFA31520, and in part by the Chinese National Natural Science Foundation
under Contract No. 60973055, No. 61035001, and No. 61072095.

References

1. M.Z.Poh, D., R.W.Picard: Non-contact, automated cardiac pulse measurements
using video imaging and blind source separation. Opt Express (2010) 10762–10774

2. Magdalena Lewandowska, Jacek Rumiski, T.K.: Measuring pulse rate with a we-
bcam - a non-contact method for evaluating cardiac activity. Computer Science
and Information Systems (FedCSIS) (2011) 18–21

3. Belkin M, N.P.: Laplacian eigenmaps for dimensionality reduction and data rep-
resentation. Neural Computation 15 (2003) 1373–1396

4. Shlens, J.: A tutorial on principal component analysis. Institute for Nonlinear
Science, UCSD (2005)



12 L Wei, Y Tian, Y Wang, T Ebrahimi, T Huang

5. S. Mika, G. Ratsch, J.W.B.S., K.R.Mullers: Fisher discriminant analysis with
kernels. (Neural Networks for Signal Processing IX) 41–48

6. Comon, P.: Independent component analysis: a new concept? Signal Processing
36 (1994) 287–314

7. J. Tenenbaum, V.S., Langofrd, J.: A global geomertic framework for nonlinear
dimension reduction. Science (2000) 2319–2323

8. Roweis S T, S.L.K.: Nonlinear dimensionality reduction by locally linear embed-
ding. Science 5500 (2000) 2323–2326

9. Zhang Z, Z.H.: Principal mainfolds and nonlinear dimensionality reduction by local
tangent space alignment. SIAM Journal Scientific Computing (2004) 313–338

10. Weinberger K, S.L.: Unsupervised learning of image manifolds by semidefinite
programming. Int J Comp Vision (2006) 11–90

11. He, X., Niyogi, P.: Locality preserving projections. Proc. Conf. Advances in Neural
Information Processing Systems (2003)

12. AVJ, C.: Photoelectric plethysmography for estimating cutaneous blood flow non-
invasive physiological measurements. Academic Press 125 (1979)

13. G, W.J.: Design of pulse oximeters. Bristol: Institute of Physics Publishing (1997)
14. Nakajima K, T.T., H, M.: Monitoring of heart and respiratory rates by photo-

plethysmography using a digital filtering technique. Med. Eng. Phys (1996) 365–72
15. A, J., PA, O.: Estimation of respiratory volumes from the photoplethysmographic

signal. Med. Biol. Eng. Comput (1999) 42–7
16. T, A., K., M.: Pulse oximetry: its invention, contribution to medicine, and future

tasks. Anesth. Analg (2002) 51–3
17. et, N.J.: Pulse transit time by r-wave-gated infrared photoplethysmography: review

of the literature and personal experience. Clin. Monit. Comput (2004) 333–42
18. M. Garbey, A. Merla, I.P.: Estimation of blood flow speed and vessel location

from thermal video. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (2004) 356–363

19. N. Sun, M. Garbey, A.M.I.P.: Imaging the cardiovascular pulse. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (2005)

20. I. Pavlidis, J. Dowdall, N.S.C.P.J.F., Garbey, M.: Interacting with human physi-
ology. Comput, Vis, Image Underst (108)

21. Fei, Pavlidis, I.: Thermistor at a distance: unobtrusive measurement of breathing.
IEEE Trans. Biomed. Eng 57 (2010) 988–998

22. J Zheng, S Hu, V.A.P.A.E.: Remote simultaneous dual wavelength imaging pho-
toplethysmography: a further step towards 3-d mapping of skin blood microcircu-
lation. Proc, SPIE 206 (2008) 159–178

23. Poh, M.Z., M.D., R.W, P.: Advancements in noncontact, multi-parameter physio-
logical measurements using a webcam. IEEE Trans. Biomed. Eng (2011)

24. Jianchu, Y., Warren, S.: A short study to assess the potential of independent
component analysis for motion artifact separation in wearable pulse oximeter sig-
nals. IEEE Conference of the Engineering in Medicine and Biology Society (2005)
3585C3588

25. M. Belkin., P.N.: Laplacian eigenmaps and spectral techniques for embedding and
clustering. MA: MIT Press (2001) 585–591

26. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In Proceedings of the International Conference on Computer Vision and
Pattern Recognition 1 (2001) 1063–6919

27. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object
detection. In Proceedings of the IEEE Conference on Image Processing (2002)
900–903


