
AN ADAPTATIVE BITRATE ALGORITHM FOR DASH

Yunlong Lil, Yue Wangl, Shanshe Wangl, Siwei Mal,2
I Institute of Digital Media & Cooperative Medianet Innovation Center, Peking University, Beijing,

China
2Peking University Shenzhen Graduate School, Shenzhen, China

{yl_li, cyberrush, sswang, swma}@pku.edu.cn

ABSTRACT

Dynamic adaptive streaming over HTTP (DASH) has been
widely used on the Internet. However, DASH does not
impose any algorithm to choose video quality. In this paper,
an adaptive bitrate switch algorithm for DASH player is
proposed. Firstly, the proposed algorithm takes video
playback quality, video rate switching frequency and buffer
status into account in order to meet the available bandwidth.
Secondly, several measures are designed specially to
improve user visual quality. Besides, the proposed player
takes a sub-optimal algorithm to avoid video playback
interruptions. Experimental results demonstrate that the
proposed player can provide better performance compared
with Bitdash player in several aspects, such as video quality
switch frequency, bandwidth utilization and subjective
visual experience.

Index Terms-Dynamic Adaptive Streaming over

HTTP (DASH), Rate Adaption, Video Quality Switch

1. INTRODUCTION

Dynamic adaptive streaming over HTTP (DASH) has been
recently widely adopted for providing uninterrupted video
streaming services to users under dynamic network
conditions and heterogeneous devices [1][2]. It separates the
video into many fragments by the time. The most important
feature is that the server can provide video with different
bitrate for each fragment, thus the client can request suitable
fragments to adapt the video bitrate to a varying network
bandwidth. However, DASH does not impose any logic for
selecting the quality of video fragments.

Generally, a good implementation of DASH needs to
take video playback quality, video rate switching frequency,
buffer overflow/underflow, buffer occupancy and visual
quality into account [3]. Based on the proposed algorithm in
[3], we proposed one complete solution for DASH client
with all metrics above taken into consideration.

This work was supported in part by the National Science

Foundation of China(61322106, 61571017), National Basic

Research Program of China(973 Program, 2015CB351800),and

Shenzhen Peacock Plan, which are gratefully acknowledged.

The remainder of the paper is organized as follows:
Section 2 describes the proposed algorithm. Section 3
presents our innovations. Experimental results are provided
in Section 4. Section 5 is the summary.

2. PROPOSED ALGORITHM

A mDASH player proposed in [3] defined a state vector
describing the current system situation, including the buffer
occupancy and its changing rate, the video bitrates requested
for previously downloaded fragments, the bitrate consistency
function, and the bandwidth conditions. Based on [3], we
provided an algorithm from the following aspects.

2.1. Adaptation algorithm

A good algorithm can request suitable fragment according to
current network conditions to provide best visual experience.

Several factors must be taken into consideration to
realize a good adaptation algorithm as we introduced in the
beginning of this chapter. Our rate decision is made at k for
fragment k+ 1. The buffered video time and its changing rate
play important roles in rate switching decision [4]. We
separate the buffered video time into three parts with

thresholds qmax and qmin . It is hard to find the optimal

values of the two thresholds due to the complex network
environment [3]. We improved thresholds recommended in
[3] with numerous experiments.

2.1.1. Buffer overflow algorithm

Buffer overflow means the player is requesting lower video
bitrate than the available bandwidth, so the downloaded
fragments accumulate. The player can bring better visual
experience with higher video bitrate. Our adaptation
algorithm monitors the buffer state and takes several
methods to avoid buffer overflow.

If the buffer video time is larger than qmax ' it means the

available bandwidth is better than the requested fragment
quality. Buffer overflow needs to be avoided by increasing
the requested fragment bitrate. Note, if the bandwidth is too

high, a sleep mechanism is used to delay the fragment
request to avoid buffer overflow [4].

2.1.2. Buffer underflow algorithm

Buffer underflow means the player is requesting higher
video bitrate than the available bandwidth. When the
buffered video time is at low level, the video rate decision is
mainly account for avoiding playback freeze.

Our adaptation algorithm decreases the requested

fragment quality to avoid buffer underflow, when the buffer

video time is less than q min . The fragment quality requested

next is decided by the estimated bandwidth.

2.1.3. Smooth rate algorithm

When the buffer video time is between qmin and qmax ' our

algorithm does nothing to avoid frequent video quality
switches. It is shown in Section 4 this works very well to
decrease the video bitrate switching.

Short-term bandwidth variations are common in practice,
a good rate adaptation algorithm should be able to well
compensate for such spikes. Our smooth rate algorithm
utilizes the buffered video to compensate such short-term
variations and avoids video quality fluctuations in such
situation.

3. INNOV A TIONS

Based on the mDASH proposed in [3], our proposed player
improves performance in two aspects, including shorter
start-up time and a better video rate switch performance.

3.1. Start-up algorithm

Start-up is an important aspect for improving player
performance. Long start-up time means long time waiting for
the video, which is quite annoying. Our proposed player
decreases the start-up time with a novel Start-up algorithm.

It is obvious that high start-up bitrate will lead to long
start-up time. This is not what we want. So our start-up
algorithm starts with a low bitrate fragment, and then tries to
adapt to the available bandwidth. It was shown that users
generally prefer gradual quality change to an abrupt
switching [5]. Accordingly, our start-up algorithm gradually

improves the fragment bitrate. Also, significant quality

step-up may cause buffer underflow.
For there are fragments with different segment duration,

our start-up algorithm decides the start time by the
downloaded video time rather than by the downloaded bits.
While the downloaded video time exceeds the threshold
value, our player will start to render the video.

3.2. A better smooth video rate

In general, a better performance can be achieved with larger
buffer size if the buffer delay is allowed. This is because
with a large buffer size, the bandwidth variations can be
compensated with the buffered video and a smooth video
rate is guaranteed [3]. Our proposed player allowed a longer
buffer delay than mDASH introduced in [3] and achieved a
much better performance in video rate smoothing.

The maximal buffer size of our proposed player is 90s

compared with 30s in the mDASH player. The experiments
in the next section reflect that video rate switch times
decrease compared with the bitdash palyer.

4. PERFORMANCE EVALUATION.

In this section, we evaluate our player in lab environment on
a network test-bed. The proposed player and the bitdash
player are compared in terms of several quality metrics,
including the start-up time, the average video bitrate,
bandwidth utilization and stability.

4.1. Experiment setup

The proposed player is based on the open source library
(Libdash [8]). Libdash provided a perfect framework for
dash player implementation, with which we add our
adaptation algorithm quickly. Our development environment
is Visual Studio 2010 and Qt5.5.1 (32). The test-bed
consists of three nodes: one web server used for media
delivery, one router, and the proposed player. The proposed
player and web server both runs on Win 10. The server is
installed with the Apache HTTP server of version 2.4.12.
Network Emulator is used in the server to control upload
bandwidth, therefore the bottleneck is the bandwidth
between the server and the router.

For comparison, we implemented bitdash player in our
web server. The requested fragment bitrate is got from the
web server log. So we can compare the fragments bitrate
sequence between the proposed and the bitdash player.

We define the duration between the start button pressed
and the video rendered as the start-up time. As the exact
bitdash start-up time could not be obtained, we can only
compare it SUbjectively.

The Host organization provides dataset with segment
duration of 1,2,4,6, 10, 15 seconds. It takes more time to
download long duration segments, this drops start-up
performance and quality switches. So we focus our effort on
the dataset with segment duration 1, 2, 4. Our player also
supports other types, but they are not well-tested.

4.2 Constant bandwidth

Here we present the results in the case that the available
bandwidth is constant, the bandwidth is 3Mbps for Fig.1 and

2Mbps for Fig.2 respectively.

3.5

3.0

�2.5

0.5 :

.. Bitdash _ Proposed
'. '. '. '.

O .qj 100 200 300 400 500 600
Segment Index

Fig. 1. The performance between proposed player and bitdash

player on constant network on dataset BigBuckBunny Is.

Table 1. Performance comparison under constant bandwidth

variations

Column One Bitdash Proposed

Strat-up delay(ms) - 82

Bitrate switch 266 8

Average bitrate(Mbps) 1.95 2.33

Bandwidth utilization(%) 65 77.67

4.5 ,-----------------r==;=.;=_;�

4.0

3.5

Ui"3.0
c.

�2.5

2"2.0 :ll
to : �� � 1.5 � :;:::

1.0:

0.5 ;

0·qj-�1= 00�� 2=00�-= 30�0�-4�0�0��5�0=0-�6=0=0-�70 0

Segment Index
Fig. 2. The performance between proposed player and

player on constant network on dataset ElephantDream Is.
bitdash

Table 2. Performance comparison under constant bandwidth

variations

Column One Bitdash Proposed

Strat-up delay(ms) - 78

Bitrate switch 364 8

Average bitrate(Mbps) 1.61 1.51

Bandwidth utilization(%) 80.5 75.5

It can be seen from the figures above that the bitdash
player switches quickly in a larger scale when the available
bandwidth is constant. Thus the bitdash player has a much
worse subjective visual experience. The proposed player has

much less switches than the libdash due to the proposed
smooth rate control mechanism. When the bufferred video
time is between thresholds, the proposed adaptation
algorithm keeps the video quality stable. It can be seen that
after 600s the bitdash player requests much higher video
quality than the available bandwidth, and then quickly drops.
This abrupt video quality swithc is very annoying. While the
proposed player performs well.

As it should be, there are no video playback
interruptions in this constant network condition.

4.3. Impact of short-Term bandwidth variations

Here we present the results in the case that the available
bandwidth goes through some positive or negative spikes
that last for 3�6s. The available bandwidth state is shown in
Fig.3 and the performance is shown in Fig.4.

5

'--- '---

� 100 200 300 400 500 600 700
Time(sec)

Fig.3. The available bandwidth of the short-Term variations

3.0

2.5

0·��-�5� 0��1�OvO.--.1�5�0-�20�0��2� 5� 0.-�300

Segment Index
Fig. 4. The performance between proposed player and

player on spike network on dataset BigBuckBunny 2s.
bitdash

Table 3. Performance comparison under short-Term bandwidth

variations

Column One Bitdash Proposed

Strat-up delay(ms) - 94

Bitrate switch 298 3

Average bitrate(Mbps) 1.16 1.85

Bandwidth utilization(%) 46.4 74

It can be easily seen from Fig.4 that the bitdash player
changes the video rate immediately when the spikes come,
while the proposed player can smooth the bandwidth spikes.
The proposed player avoids bringing abrupt video quality
changes to a great extent. And it can be concluded from
Table.3 that the proposed player acquires much better
bandwidth utilization than the bitdash player from Table.3.

4.4. Impact of long-Term bandwidth variations

Here we present the results in the case that the available
bandwidth is square wave. The available bandwidth state is
shown in Fig.6 and the performance is shown in Fig.7.

� 2 r � 1. 5 r------,
..0
�
� .!C 1.0
.�
"0
c
�0.5

o.q) 100 200 300 400 500 -wo 700
Time(sec)

Fig.5. The available bandwidth of the long-Term variations

3.0----
2.5

I ·· Bitdash
1 _ Proposed

1�: Jii . . . J ..
� 1.0 r/[���i::')@.g�i:<TI ·.h.'� ;,.::: .;:�"g{·:.,.0. i .. � ... H:�: �))�: : .� 0.5" 1 ,MIl !'il��!--'�:""�s :"""A""'? :....;l:,; d ll(

O . qj 50 100 150 200 250 300
Segment Index

Fig. 6. The performance between proposed player and bitdash

player on square ware network on dataset BigBuckBunny 2s.

Table 4. Performance comparison under long-Term bandwidth

variations

Column One Bitdash Proposed

Strat-up delay(ms) - 96

Bitrate switch 182 9

Average bitrate(Mbps) 0.98 1

Bandwidth utilization(%) 40.8 41.6

It can be seen in Fig.6 that the bitdash player drops the
video quality to the lowest level when the available
bandwidth drops. The bitdash player applies these changes
to avoid video playback interruptions. Actually, for small
bandwidth drops, the player should not decrease the video

quality that much. It is shown in Fig.6 that the proposed
player can well adapt to the available bandwidth and
decrease the video quality to a suitable level. At the same
time, the proposed player has much less video quality
switches. This is due to our buffer smooth rate algorithm.
Less video quality switches brings less interruptions and thus
achieves better visual experience.

5. SUMMARY

The proposed player with our adaptation algorithm works
well in both constant and fluctuated network conditions and
thus gets higher subjective score than the bitdash. We
implement a sub-optimal algorithm to smooth the video
playback. As a sacrifice, the proposed player does not have
very high bandwidth utilization rate. In this way, our
algorithm has a low complexity and can easily implemented
in real-time video streaming. At the same time, the proposed
player performs much better than the libdash player.

ACKNOWLEDGEMENTS

Thanks the previous work in [3] of Dr. Chao Zhou
(zhouchaoyf@gmail.com) and his guide during our
implementation of the proposed player. [3] is the best paper
of VCIP 2015 and its extension has been published in TMM
[6].

7. REFERENCES

[1] A. Begen, T. Akgul, and M. Baugher, "Watching video
over the web: Part 1: Streaming protocols," IEEE

Internet Comput., vol. 15, no. 2, pp. 54-63, Mar. 2011.
[2] T. Stockhammer, "Dynamic adaptive streaming over

HTTP: Standards and design principles," in Proc. ACM

Multimedia Syst., Feb. 2011, pp. 133-144.
[3] Zhou, Chao, C. W. Lin, and Z. Guo. "mDASH: A

Markov Decision based Rate Adaptation Approach for
Dynamic HTTP Streaming." IEEE Transactions on

Multimedia (2016): 1-1.
[4] Zhou, Chao, et al. "A Control-Theoretic Approach to

Rate Adaption for DASH Over MUltiple Content
Distribution Servers." IEEE Transactions on Circuits &
Systems for Video Technology 24.4(2014):681-694.

[5] Mok, Ricky K. P., et al. "QDASH: a QoE-aware DASH
system. "Multimedia Systems Conference ACM,
2012:11-22.

[6] Zhou, Chao, et al. " mDASH: A Markov Decision
Based Rate Adaptation Approach for Dynamic HTTP
Streaming." IEEE Transactions on Multimedia,

J 8.4(20J 6):738-751.
[7] Bitmovion, "bitdash.min.js," available

http://bitmovion. com

[8] Bitmovion, "libdash," available

https:!lgithub.comlbitmovinllibdash

online:

online:

