
In recent years, mobile devices, such as smart cam-
era phones and tablet PCs, have shown great
potential for visual search, thanks to the integrat-

ed functionality of high-resolution embedded cam-
eras, powerful CPUs, 3G/WI-FI wireless connections,
color displays, and natural user interfaces. Emerging
applications of mobile visual search and augmented
reality include landmark search, product search, CD
or book cover search, location recognition, and scene
retrieval. As a popular application scenario, search-
ing landmarks is one of the challenging tasks and has
attracted great interest in both academic research
and industrial practices. Existing mobile landmark
search systems are deployed in the client-server
architecture. The server end maintains a scalable,
nearly duplicate visual search system, which is typi-
cally based on approximate visual matching tech-
niques such as bag of words or hashing (Nistér and
Stewénius 2006; Irschara et al. 2009; Schindler,
Brown, and Szeliski 2007). To speed up similarity
search, landmark photos in reference databases are in
the form of an inverted index. In online search, a
snapped landmark image is sent through a wireless
link to the server, where a nearly duplicate visual
search is conducted to identify the best-matched
landmark in databases. Geographical location as well
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� Along with the ever-growing computational power of
mobile devices, mobile visual search has undergone an evo-
lution in techniques and applications. A significant trend is
low bit rate visual search, where compact visual descriptors
are extracted directly over a mobile and delivered as queries
rather than raw images to reduce the query transmission
latency. In this article, we introduce our work on low bit rate
mobile landmark search, in which a compact yet discrimi-
native landmark image descriptor is extracted by using a
location context such as GPS, crowd-sourced hotspot
WLAN, and cell tower locations. The compactness origi-
nates from the bag-of-words image representation, with
offline learning from geotagged photos from online photo-
sharing websites including Flickr and Panoramio. The
learning process involves segmenting the landmark photo
collection by discrete geographical regions using a Gaussian
mixture model and then boosting a ranking-sensitive vocab-
ulary within each region, with “entropy”-based feedback on
the compactness of the descriptor to refine both phases iter-
atively. In online search, when entering a geographical
region, the code book in a mobile device is downstream
adapted to generate extremely compact descriptors with
promising discriminative ability. We have deployed land-
mark search apps to both HTC and iPhone mobile phones,
accessing a database of a million scale images in typical
areas like Beijing, New York, and Barcelona, and others. Our
descriptor outperforms alternative compact descriptors
(Chen et al. 2009; Chen et al., 2010; Chandrasekhar et al.
2009a; Chandrasekhar et al. 2009b) by significant mar-
gins. Beyond landmark search, this article will summarize
the MPEG standarization progress of compact descriptor for
visual search (CDVS) (Yuri et al. 2010; Yuri et al. 2011)
toward application interoperability.



as tourist or other recommended information is
subsequently returned to the mobile user.

The upstream transmission of query photos is
subject to the bandwidth constraints of the wire-
less link. Undoubtedly, lengthy delivery latency
may degenerate the user experience significantly.
However, with the fast-increasing processing pow-
er in mobile devices, sending an entire image is
unnecessary, as feature extraction and compres-
sion can be executed on mobile devices. To reduce
the query transmission latency, the visual descrip-
tor is supposed to be compact and discriminative.
This technical trend has received dedicated efforts
in MPEG standardization (that is, compact descrip-
tor for visual search [CDVS] in MPEG [Yuri et al.
2010]). With evidence from research on low bit
rate landmark visual search, our discussion will be
extended to the ongoing MPEG CDVS standardi-
zation as well.

Indeed, extracting compact descriptors has a
long history in the computer vision community;
for instance the attempts to reduce the dimensions
of local or global features (Ke and Sukthankar

2004; Jegou et al. 2010). However, as detailed later,
in reference to low bit rate mobile landmark
search, the previous local descriptors such as SIFT
(Lowe 2004), SURF (Bay, Tuytelaars, and Van Gool
2006), or PCA-SIFT (Ke and Sukthankar 2004) can-
not work well to meet the requirements in both
descriptor compactness and extraction efficiency.
Instead, recent attempts propose to extract much
more compact visual descriptors (Chen et al. 2009;
Chen et al. 2010; Chandrasekhar et al. 2009a;
Chandrasekhar et al. 2009b), say tens of bits per
local descriptor, to reduce the query delivery laten-
cy. However, existing works are solely based upon
visual contents to compress descriptors, regardless
of rich mobile context such as GPS, crowd-sourced
WLAN hotspots, or cell tower locations. In this
work, we achieve descriptor compactness through
contextual learning, with additional concerns
regarding the mobile end extraction complexity.

Coming up with a solution of this contextual
learning for mobile landmark search, we explore
the combination of mobile context and visual sta-
tistics in each geographical region to learn a com-
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Figure 1. The Developed Mobile Landmark Search System (Client App).

This system embeds the extraction of compact visual descriptors in the HTC Desire G7 mobile phone.



pact descriptor from geotagged reference photo
collections.1 First, we propose a geographical seg-
mentation of geotagged photos based on the
Gaussian mixture model (Stauffer and Grimson
2000); second, we introduce a vocabulary-boosting
scheme to learn a compact descriptor in each
region, which simulates a set of landmark queries
from this region and learns a compact code book
to maintain the search precision from an original
visual vocabulary (Sivic and Zisserman 2003; Nistér
and Stewénius 2006). With this code book, a com-
pact bag-of-words-based descriptor is generated for
a given query. However, due to imprecise segmen-
tation, learning compact descriptors separately in
each individual region cannot guarantee a global
optimum. To address this issue, we propose to iter-
ate the twin stages of content-aware geographical
segmentation and the vocabulary boosting to rein-
force each other. Figure 2 shows the mobile visual
landmark search system with contextual-learning-
based compact visual descriptors embedded in the
mobile end. Although geoinformation is used, the
context-based partition as well as the partition-
based compact code books is generic in a sense.

In practice, once a mobile user enters a region,
the server transmits a downstream supervision
(that is, a compact code-word boosting vector) to
teach the mobile device by linearly projecting the
original high-dimensional vocabulary into a com-
pact code book through this boosting vector. Giv-
en a query, instead of a high-dimensional code-
word histogram, an extremely compact histogram
is redirected to transmit.

Related Work and Challenges
Undoubtedly, geolocation applications such as
mobile landmark and location search have
received a wide range of attention from both acad-
eme and industry. For instance, mobile location
recognition (Irschara et al. 2009; Philbin et al.
2007; Crandall et al. 2009; Zhang and Kosecka
2006; Shao et al. 2003), mobile landmark identifi-
cation, online photograph recommendation (Hays
and Efros 2003; Li et al. 2008; Zheng et al. 2009),
and content-based advertising (Liu et al. 2009). In
particular, Google Project Glass attempts to devel-
op an augmented reality head-mounted display
(resembling a pair of eyeglasses), allowing the inte-
gration of phones, GPS, and cameras to display
augmented information on the screen.

Most existing geolocation search systems follow
a client-server architecture. Take landmark search
as an example. The remote server maintains a land-
mark database. In online search, mobile users take
a query photo, which is transmitted to remote
servers to identify its corresponding landmark
through visual matching. Based on a reference
database, the server returns search results includ-
ing the mobile user’s geographical location, pho-
tograph viewpoints, recommendations for
tourism, or other value-added information.

Generally speaking, in most existing mobile
visual search systems (such as Google Goggles,
Nokia Point and Find, and others), query photos
are delivered over a bandwidth-constrained wire-
less link. User experience heavily depends on how
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search, which embeds descriptor extraction into the mobile end.



much data is transmitted. It is easy to imagine that
sending the entire photo is time consuming and is
not necessary indeed. The ever-growing computa-
tional power motivates the research efforts to
extract visual descriptors directly on a mobile
device (Chen et al. 2009; Chandrasekhar et al.
2009a; Makar et al. 2009). To the best of our knowl-
edge, sending a compressed bag of features requires
2–4 KB descriptors per query in the state of the art
(Chen et al. 2009; Chen et al. 2010).

Compared to previous work on compact local
descriptors, for example, SURF (Bay, Tuytelaars,
and Van Gool 2006), GLOH (Mikolajczyk and
Schmid 2005), PCA-SIFT (Ke and Sukthankar
2004), and MSR descriptors (Hua, Brown, and
Winder 2007), recent works by Chen et al. (2009),
Chandrasekhar et al. (2009a), and Makar et al.
(2009) have attempted to address much lower bit
rate visual descriptors, especially targeting mobile
visual search.

A review on compact descriptors can be found
in Girod et al. (2011). The first typical category
works on the quantization of local descriptors to
reduce the size of each local descriptor. For
instance, Chandrasekhar et al. (2009a) proposed a
compressed histogram of gradient (CHoG) for
compact visual descriptors, which adopts both
Huffman tree and Gagie tree to compress each
local feature into approximately 60 bits. Chan-
drasekhar et al. (2009b) also proposed to compress
the SIFT descriptor with Karhunen-Loeve trans-
form, yielding approximate 2 bits per SIFT dimen-
sion. Tsai et al. (2009) further proposed to code the
spatial layout of interest points for the subsequent
image matching to improve search precision by
reranking. Rather than sending a query photo,
sending compact local descriptors (Chandrasekhar
et al. 2009a; Chandrasekhar et al. 2009b; Tsai et al.
2009) is much more effective in reducing bit budg-
et and transmission latency. For instance, with a
normal local feature detector setting (Mikolajczyk
and Schmid 2005), about 1000 interest points will
be detected per image; the overall amount of fea-
ture data is about 8 KB, much less than the size of
the query image (typically more than 100 KB with
JPEG compression).

Different from directly compressing local
descriptors, the second category is to further com-
press the (vector) quantized bag-of-words signature
(Chen et al. 2009; Chen et al. 2010; Ji et al. 2011).
For instance, Chen et al. (2009) proposed a tree his-
togram coding (THC) scheme to compress the
sparse bag-of-words signature, which encodes the
position difference of nonzero bins for high com-
pression rates. THC yielded an approximate 2 kilo-
bytes of code per image for a vocabulary with one
million words, much less than directly sending
CHoG descriptors (Chandrasekhar et al. 2009a)
(more than 6 KB). To maintain a scalable visual

code-book-based retrieval system, Chen et al.
(2010) further compressed the inverted indices of
the vocabulary tree model (Nistér and Stewénius
2006) with arithmetic coding for memory reduc-
tion at the server. Recently, Ji et al. (2011a) pro-
posed learning a compact descriptor adaptively
within different geographical regions for mobile
landmark search, which enables a region-specific
landmark descriptor. 

The aforementioned two categories may be uni-
fied from the production-quantization (Gray and
Neuhoff 1998) point of view. In product quantiza-
tion, an input vector is divided into k segments,
and those k segments are independently quantized
using k subquantizers. Each compressed descriptor
is thus represented by k indexes comprising the
nearest code words of k segments. When k = 1, the
first category degenerates to the second category.
Usually, quantization tables in the first category
are smaller.

Beyond diverse quantization methods (Gray and
Neuhoff, 1998), maintaining sufficient discrim-
inability as well as desirable descriptor compact-
ness is essentially a sort of trade-off; that is, an ele-
gant descriptor design comes from the
optimization of both factors. In the following para-
graphs, we summarize key challenges in the state
of the art, which thereby motivates the proposed
contextual learning of landmark descriptors.

Location Insensitive Compression
Existing compact descriptors rely on visual statis-
tics solely. But the rich and cheaply available loca-
tion cues are left unexploited. Such location con-
texts have been widely available from either
mobile devices or landmark photo collections.
That is, the landmark descriptor should be location
sensitive, taking into account where the query
happens.

Unscalable Landmark Description
Existing compact descriptors are less scalable in
length with respect to regions, each of which
would be supposed to maintain its own discrim-
inability. The scalability may depend on the visual
complexity of landmark images at a given location.
For instance, the descriptors in a location contain-
ing multiple landmarks with diverse appearances
could be less compact.

One-Way Coding Transmission Mode
Existing compact descriptors, directly extracting
features for upstream query delivery, do not
employ the two-way communication mode of
mobile devices. However, given a batch of queries,
there is never a constraint that only upstream
query transmission is allowed before a server per-
forms retrieval and returns downstream results. For
instance, by leveraging the location of a mobile
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user, the remote server may predeliver a compact
downstream supervision facility to “teach” the
mobile how to extract compact and discriminative
descriptors.

To address these challenges, we attempt to learn
the compact descriptor based on the mobile con-
text.2 In the landmark search scenario, we empha-
size exploiting the location context, coming up
with a novel extremely compact descriptor that is
location sensitive, scalable, and of two-way coding
mode.

Visual Search Preliminary
Searching for a specific object in a large collection
of images has been a long-standing research prob-
lem, with a wide range of applications in location
recognition and product search. Much research has
been done on different modules such as image rep-
resentation, matching, indexing, retrieval, and
geometric reranking. Figure 3 gives a baseline flow-
chart for visual search. Local features are extracted
from database images at servers. The server search-
es for relevant images based on the visual similari-
ty between a query and database images, and
inverted indexing is often employed to speed up

the search process. Local features are proven to be
particularly important in visual search.

Using a brute force method to match query fea-
tures with database features is infeasible for large-
scale databases, and a feature index (for example,
inverted indexing) based on visual vocabulary is
needed to improve search efficiency (see figure 3b).
Other alternative solutions include approximate
nearest-neighbor search, such as k-D tree or locali-
ty-sensitive hashing. In addition, feature-space
quantization schemes, such as k-means and scala-
ble vocabulary tree, have been widely used for scal-
able image search, in which two features are con-
sidered the same word when they fall into the
same cluster.

In online search, local features in a query image
are extracted and used to search for the local fea-
tures’ nearest neighbors based on the feature data-
base from reference images. Database images con-
taining the nearest neighbors are efficiently
collected based on index files and are accordingly
ranked by the similarity score (figure 3c). Finally,
the top returned images are reranked through geo-
metric consistency checking in which the location
of local descriptors is considered as well (figure 3d).

In particular, as a typical approach to scalable
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Visual search applications work in a client-server architecture, that is, a large reference image database is set up in a remote server and a
client sends queries to the server for visual search. Feature extraction (a) and indexing (b) over database images are performed at an offline
stage. At online stage, the client end extracts features and sends them to the server. Query features are subsequently matched against data-
base features in the server end (c). The retrieval results are then verified with a geometric reranking (d). Finally, either top-ranked images or
their relevant information is delivered to the client end.



indexing, learning visual vocabulary usually
resorts to unsupervised vector quantization such as
K-means (Sivic and Zisserman 2003), which parti-
tions local feature space into code-word regions.
An image is then represented by a bag-of-words
histogram, where each bin counts local features
being quantized into the corresponding code
word. Many vector-quantization-based vocabular-
ies, such as vocabulary tree (Nistér and Stewénius
2006), approximate k-means (Philbin et al. 2007),
Hamming embedding (Jegou, Douze, and Schmid
2008; Jurie and Triggs 2005; Jiang, Ngo, and Yang
2007; Philbin et al. 2007; Jegou et al. 2010; Ji et al.
2009; Ji et al. 2010) has been reported. Hashing-
based approaches, such as locality sensitive hash-
ing and its kernelized version, are another alterna-
tive (Kulis and Grauman 2009). In addition, the
work of Jiang, Ngo, and Yang (2007), Jegou, Douze,
and Schmid (2008), Philbin et al. (2007), and
Gemert et al. (2009) attempts to deal with code-
word uncertainty and ambiguity, for example,
Hamming embedding (Jegou, Douze, and Schmid
2008), soft assignments (Philbin et al. 2007), and
kernelized code book (Gemert et al. 2009). Recent
work has employed semantics or category labels to
supervise the vocabulary construction (Moos-
mann, Triggs, and Jurie 2006; Mairal et al. 2008;
Lazebnik and Raginsky 2009).

The Working Pipeline
The system (figure 2) developed in this article
works in a bidirectional manner in terms of infor-
mation exchange. To search the landmark loca-
tion, a raw bag-of-words signature is extracted in
the mobile end while the context tags such as GPS
or cell tower locations are obtained as well. Subse-
quently, the following operations are performed
step by step.

Phase 1 is a region selection operation in the
mobile end. Its input can be side information of
mobiles like GPS or cell tower tags that are avail-
able at the mobile end directly and that are used to
locate the current query, namely, the geographical
region in a given city.

Phase 2 extracts local features, quantizes them
into visual words, and forms a bag-of-words-based
“topical” descriptor, which is binarized into an
occurrence (hit/nonhit) histogram followed by
Huffman coding.

Phase 3 transmits the encoded signature togeth-
er with side information to a remote server.

Phase 4 decodes the topical descriptor at the
server to recover the original bag of words, which
is then combined with the region-specific compact
vocabulary f to search for duplicate or near-dupli-
cate images.

Toward compact visual descriptors, this working
pipeline essentially employs a contextual learning

to optimize the vocabularies (in terms of scale and
retrieval performance of test queries) with respect
to different locations. In the following subsection,
we will clarify the input and output of the contex-
tual learning, as well as the setup of contextual
learning goals.

Input and Output of the 
Contextual Learning
The inputs are twofold, first, the original high-
dimensional visual vocabulary V trained from a
very large image collection, and second, the con-
textual (side) information (namely GPS in this arti-
cle) G for each geotagged image.

The outputs are twofold as well. First, segment-
ing the geographical map of geotagged reference
images into discrete regions; and second, learning
a compact vocabulary within each geographical
region to generate online extremely compact land-
mark descriptors for low bit rate visual search.

Learning Goal
Given database images I = {Ii}

n
i=1, we extract offline

n bag-of-words histograms (Nistér and Stewénius
2006; Sivic and Zisserman 2003) V = {Vi}

n
i=1, which

are high-dimensional, say 0.1–1 million in state-of-
the-art settlings (Nistér and Stewénius 2006).3 Note
that all database images are tagged with GPS coor-
dinates as G = {Lati, Longi}

n
i=1.

We aim first to learn a geographical segmenta-
tion S = {Sj}

m
i=1 to partition I = {Ii}

n
i=1 into m regions,

which attempts to employ the local context to
achieve descriptor compactness to an extreme; and
second, learn a code book Uj � Rk for compact
descriptor extraction in each Sj from V � Rn such
that k ≪ n, which is updated online in the mobile
device once the mobile user enters Sj.

Indeed, the above coupled goals are a chicken
and egg problem: On one hand, we expect the
code book Uj is as compact as possible in each Sj.
On the other hand, the compactness depends on
how properly the image collection in I is segment-
ed into Sj. However, such segmentation is often
imprecise, especially in the context of learning
compact visual descriptors. While we may learn an
optimal descriptor in each region, the overall com-
pactness of all regions may not be guaranteed. In
other words, the optimization of descriptor com-
pactness is local in each region, rather than global
among all the regions of the entire image database.
Ideally, we aim jointly to learn both the optimal
region segmentation and the compact description
to minimize:

(1)

where |Ui| denotes the descriptor length of the ith
sampled query image (in total n�) falling into
region Sj; the constraint denotes the retrieval pre-

Cost = |
i=1

�n

�
j=1

m

� U i | s.t. �j �m Loss(PSj )�T
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cision loss (Loss(PSj)) in each region, which will be
revisited later in this article. However, we cannot
perform both geographical segmentation S = {Sj}

m
j=1

and descriptor learning Uj � Rk in each Sj simulta-
neously. Hence, we expect an iterative learning to
optimize equation 1 over the entire image data set
of a city.

Compact Descriptor Learning
In this section, we introduce the learning of com-
pact descriptors including the segmentation of the
geographical map and vocabulary boosting, as well
as the iterative optimization of two separate stages.

Geographical Map Segmentation
To reduce the impact of visual diversity on descrip-
tor compactness, we first perform geographical
map segmentation. The assumption is that the
retrieval task in smaller regions may alleviate the
requirements of larger descriptors. We employ the
Gaussian mixture model (GMM) (Stauffer and
Grimson 2000) to segment I into S. We assume the
geographical distribution of photos is drawn from
m landmark regions, and denote the ith compo-
nent as wi, with mean vector μi. We regard those
photos belonging to the ith component as gener-
ated from the ith Gaussian with mean μi and
covariance matrix �i, following a normalized dis-
tribution N(μi, �i), with the probability of each ith
component Pi.

Therefore, assigning each photo x into the ith
region is to infer its Bayesian posterior probability:

(2)

where p(x|y = i) is the probability of photo x based
on the condition that photo x comes from the ith
component, following a normalized distribution:

(3)

We adopt an expectation maximization (EM) to
perform segmentation. We will revisit Pi in the iter-
ative co-optimization section to learn geographical
segmentation and compact descriptors in a joint
optimization manner.

Descriptor Learning Through 
Vocabulary Boosting
Toward efficient visual search in a million scale
database, the scalable vocabulary tree (SVT) (Nistér
and Stewénius 2006) is well exploited in previous
works (Chen et al. 2009; Chen et al. 2010; Irschara
et al. 2009; Schindler, Brown, and Szeliski 2007).

p(y = i | x)=
p(x | y = i)P(y = i)

p(x)

p(x | y = i)=
1

(2�)
m
2 ||�i ||

1
2

exp �
1
2
(x�μi )

T�i
�1(x�μi )

�

�
�
�

�

	





SVT uses hierarchical K-means to partition local
descriptors into quantized code words. An H-depth
SVT with B-branch produces M = BH code words,
and a typical setting is H = 5 and B = 10 (Nistér and
Stewénius 2006). Given a query photo Iq with J
local descriptors L(q) = [L1 (q), ..., LJ(q)], SVT quan-
tizes L(q) by traversing the vocabulary hierarchy to
find out the nearest code word, which converts
L(q) to a bag-of-words histogram V(q) = [V1(q), ...,
VM(q)].

Given a query image, visual search may be for-
mulated as the problem of minimizing a loss func-
tion with respect to the ranking position R(x)) of
retrieved images Ix (bag-of-words feature V(x)) as
follows:

(4)

where tf-idf (term frequency–inverse document
frequency, that is, IF-IDF) weight Wx, together with
the cosine distance,4 is applied to measure the rel-
evance between query and retrieval images in a
similar way as the document retrieval method
(Salton and Buckley 1988). Intuitively, by mini-
mizing LossRank, more relevant images would be
assigned to a higher rank. For example, when the
cosine distance is zero, the returned image is irrel-
evant, which means that R(x) may be assigned a
bigger value and vice versa.

By dealing with each image as a document, the
TF-IDF weight is computed as follows:

(5)

where nx denotes the number of local descriptors
in Ix; nVi(x) the number of local descriptors in Ix
being quantized into Vi; n

x
i / nx, the term frequen-

cy of Vi in Ix, and log(n / nvi), the inverted docu-
ment frequency of Vi.

Simulating User Queries to Learn Vocabulary
Given a region containing n� landmark photos [I1,
I2, ..., In�], we sample a subset of geotagged photos
[I�1, I�2, ..., I�nsample�] to simulate user queries.
Through reducing the loss function from these
pseudoqueries, we attempt to optimize the com-
pact set of code words. Currently, query photos are
randomly sampled from the region; however, the
sampling strategy may be customized in different
scenarios (say using a user query log). For clear
explanation, we denote the collection of retrieval
ranking lists of simulation user queries as follows:

(6)

where Aj
i is the ith returning of the jth query.

Ideally, a compact descriptor is supposed to

LossRank = R
x=1

n

� (x)Wx ||V(q),V(x) ||Cosine

Wx = [
n1
x

nx �log(
n
nV1

),...,
nM
x

nx �log(
n
nVM

)]

Query( �I1)= [A1
1,...,AR

1 ]

…

Query( �Insample
)= [A1

nsample ,...,AR
nsample ]
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maintain the original ranking list [Aj
1, A

j
2, ..., A

j
R]

as much as possible for the jth query based on the
(uncompressed) raw descriptors. In the subsequent
learning process, the joint set of pseudoqueries and
their retrieval results are considered as the ground
truth to minimize the total ranking loss through
training. In other words, the learner is to general-
ize from the training query instances in order to
produce compact and effective descriptors in new
queries.

Location-Aware Vocabulary Boosting
Compact descriptor learning may be formulated as
an AdaBoost-based code word selection. Each sin-
gle code word acts as a weak learner, and the learn-
ing target is to minimize the ranking discrim-
inability loss with a minimum coding length.

We first define [w1, ..., wnsample] as an error
weighting vector to nsample query images in region
Sj, which estimates the loss of ranking consistency
in the current word selection. We then define the
encoded vocabulary as Uj � Rk for region Sj, which
is obtained from raw bag-of-words feature V � Rm
through Uj = MTV, where MM ��K is a bag-of-words
feature dimension reduction transform from Rm to
Rk.

Concretely speaking, we resort to a learning
process to spot effective code words incrementally.
In a greedy strategy, at each stage the boosting iter-
atively selects the top influential words in terms of
the retrieval ranking loss over pseudoqueries. This
strategy does not need to find a best solution but
terminates in a reasonable number of steps. In a
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Figure 4. The Geographical Visualization of the Descriptor Compactness in Beijing City.

Shown through iterative co-optimization (T = 1 to 20). We normalize the descriptor length by a min versus max ratio, where the ratio is
represented by the saturation of the color red. Green dots indicate the distribution of geotagged photos. Less saturation on the map means
more optimal descriptors.



formal way, the bag-of-words dimension reduction
transform may be represented by a diagonal matrix
MMT, in which nonzero diagonal positions denote
the selection of code words.

Assuming that at the tth iteration, we have
determined (t – 1) nonzero diagonal elements in
MMT, corresponding to the selection of (t – 1) code
words. At the next, to determine the tth discrimi-
native code word, we estimate the ranking loss at
the current code words setting of MMT:

(7)

where i � [1, nsample]; R(Ai
r) denotes the renewed

rank of the original rth retrieved image for query I�i
when performing retrieval with selected code
words; wi

t–1 denotes the error weight of sample i at
the (t–1)th stage. By summing up the ranking loss
of nsample queries, we have the rank loss:

(8)

At the (t–1)th stage, one new code word Ut is select-
ed by minimizing the summed up ranking loss:

(9)

The boosting process terminates when 

Iterative Co-Optimization
In this subsection, we further investigate the prob-
lem of optimizing compact vocabularies across the
set of regions. It is well known that mobile Internet
systems have an inherent asymmetric communi-
cation channel between “servers” (powerful cloud
search engine) and clients (weak mobiles), with
faster communication from server to client than
from client to server. Generally speaking, broad-
band connections have a download and upload
bandwidth ratio typically between a factor of 5 and
15. To accomplish effective mobile visual search,
the client and the server must exchange enough
information. In particular, besides the objective of
reducing the number of bits sent by the client, we
also need to minimize the number of rounds of
communication.

In the context of low bit rate mobile landmark
search, we attempt to figure out the trade-off
between the downstream vocabulary adaptation
and the upstream descriptor delivery. It is easy to
imagine that, in subdividing geographical regions,
finer partition (smaller regions) would probably
yield more compact code books whereas more fre-
quent downstream adaptation could occur. Ideally,
we aim to yield more compact descriptors; howev-
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er, we have to consider how to merge nearby
regions to reduce the rounds of downstream adap-
tation at a slight loss of descriptor compactness.

Hence, we propose the co-optimization process,
involving the iterative phases of geographical seg-
mentation as well as compact descriptor learning.
Through the iterative co-optimization, we aim to
minimize three important aspects: the number of
bits sent by the mobile (compact descriptors), the
number of bits sent by the server (vocabulary), and
the number of rounds of communication (region-
wise adaptation for a mobile user).

We introduce an uncertainty measurement (like
entropy) to determine the necessity of longer or
shorter descriptor length of a region, which is feed-
back to the segmentation stage to adjust the values
of a priori probability Pi in the Gaussian mixture
model, thereby refining the geographical segmen-
tation at the Tth iteration. By using the size of
vocabularies, the probability Pi is iteratively updat-
ed as:

(10)

A larger vocabulary size |Ui| leads to a lower a
priori probability value, indicating that this “com-
plex” region (a Gaussian mode) tends to be split; a
smaller vocabulary size |Ui| leads to a higher a pri-
ori probability value, which means that its sur-
rounding regions tend to be merged into this “sim-
ple” region to form a bit more complex region.

Figure 4 visualizes the process of city-scale itera-
tive optimization of descriptor length involving the
results of distinct phases of segmentation and
learning (T = 1 to 20). The illustration of colors in
regions intuitively tells that the descriptors’ lengths
in different geographical regions are being gradual-
ly minimized overall. In real-world scenarios, when
a mobile user travels in a city and visits multiple
landmarks, or multiple travelers visit different land-
mark regions, the overall bandwidth cost from
downstream descriptor adaption and upstream
query transmission would probably be minimized.

Quantitative Results
We collected more than 1 million geographical
tagged photos from both Flickr and Panoramio
photo-sharing webs, which cover typical areas
including Beijing, New York City, and Barcelona.
Based on the geographical map of each city, we
chose 30 dense regions and 30 random regions.5 As
manually identifying all (near)-duplicated photos
of a landmark is intensive, we invite volunteers to
identify one or more dominant views of each land-
mark. All near-duplicated landmark photos to a
given view are labeled according to its belonging
and nearby regions. We sample 5 images from each
region as queries, which finally forms in total 300
queries in each city.

Pi =�log |Ui | / |Umax |( )
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Parameters and Evaluations
We employ SIFT (Lowe 2004) as local descriptors. A
scalable vocabulary tree (Nistér and Stewénius
2006) is built to form the initial vocabulary V,
which generates a bag-of-words signature V(i) for
each database image Ii. We apply the identical
vocabulary generated in Beijing to other cities. For
each region, the boosting is conducted to learn M
offline. We denote the hierarchical level as H and
the branching factor as B. We have H = 5 and B =
10, producing approximately 0.1 million words.
The mean average precision (mAP) is used to eval-
uate retrieval performance, which reveals its posi-
tion-sensitive ranking precision in the top 10 posi-
tions.

Baselines
(1) Original bag of words: Transmitting the entire
bag-of-words histogram has the lowest compres-
sion rate. However, it provides the performance
upper bound in terms of mean average precision.

(2) IDF thresholding: As a straightforward scheme,
we transmit the IDs of code words with the high-
est IDF values (figure 5 tests 20 percent to 100 per-
cent of code words) as an alternative vocabulary
compression. (3) Aggregating local descriptors (Jegou
et al. 2010): Jegou et al. (2010) adopted aggregated
quantization to obtain a compact signature. Its
output is a global compact representation by learn-
ing a model of local descriptors. (4) Tree histogram
coding: Chen et al. (2009) used residual coding to
compress the bag-of-words histogram, which is the
closely related work. (5) Without co-optimization: To
quantize our iterative co-optimization, we degen-
erate our approach by dismissing iterations
between geographical segmentation and descriptor
learning.

Rate Distortion Analysis
We compare the rate distortion with state-of-the-
art works (Nistér and Stewénius 2006; Chen et al.
2009; Chandrasekhar et al. 2009a; Jegou et al.
2010) in figure 5. We achieve the highest compres-
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sion rate with a given performance distortion (hor-
izontal view), while maintaining the best mean
average precision at a given compression rate (ver-
tical view).

The Mean Average Precision 
with Respect to Different Regions
Figure 6 further indicates the mean average preci-
sion variances in different regions, in which the
mean average precision in those regions contain-
ing many photos can be incrementally optimized.
We can see that the mean average precision is
higher in the regions with a descriptor length of
100–200 bits, where indeed the majority of regions
fall into this category of 100–200 bits. Our exten-
sive study has demonstrated that the optimal per-
formance for landmark search is normally with the
descriptor setting of 100–200 bits.

Energy Consumption Analysis
Energy conserving is critical for mobile applica-
tions. One interesting study is to compare the aver-
age mobile energy consumption in (1) extracting
and sending compact descriptors, and (2) sending
the original query image. In the 3G environment,
we empirically test the maximum number of
queries that the mobile can send before the battery
is flat. A typical phone battery (HTC Desire G7) has
a voltage of 4.0 V and a capacity of 1400 mAh (or
20.2 kilojoules). Hence, for 3G connections, the
maximum capability of sending images (VGA size)
is 20.2 kilojoules/52.4 joules = 385 total queries.
However, for extracting and sending compact
descriptors, up to 20.2 kilojoules/8.1 joules = 2494
queries are allowed.

Insights into Compact Descriptors
Descriptor Robustness and Matching Locations: We
collect quite a few real-world challenging queries
at night, as well as queries at different scales (close
or distant views). We also select worse queries
involving occlusions (objects or persons), and par-
tial landmark views. Figure 7 shows that the com-
pact descriptor from our vocabulary boosting can
better preserve the ranking precision, compared to
the baselines (1)(2)(4). Figure 7 illustrates how our
compact descriptor matches the query photo to
the reference database images, where circles indi-
cate the code words of each query and the first row
of images displays the matched words.

Descriptor Sensitiveness to Landmark Scale: To
study the effects of landmark scale on the compact
descriptor, we empirically categorize landmark
scale by measuring the geographical distribution of
reference images. Based on the maximum distance
of the minimum containing region, we come up
with three scales, small, medium, and large, as
illustrated in figure 8. The typical distance for small
scale is 0–12 meters, the medium scale is 12–30
meters, and the large scale is more than 30 meters.
It is found that the performance of searching large-
scale landmarks is much better than the medium
and small scales, due to less background clutter
and more distinguishing feature points. However,
in some cases, the location-context-assisted search
performance of small scale is better than large
scale, as the GPS signal may be distorted around a
large-scale landmark, while location context plays
a relatively important role; therefore, small-scale
landmarks may yield better results by context-
assisted visual search.
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More quantitative study on the effects of land-
mark scale, shot size, and other photograph fac-
tors is beyond the scope of this article. Readers are
referred to Peking University Landmarks bench-
mark (PKUBench) (Ji et al. 2011c), which involves
198 landmarks in the Peking University campus
with sufficient coverage of mobile photographing
variances.

What Learned Compact 
Code Words Are Transmitted
The learned code book is supposed to represent the
most discriminative patches of the photos within
each region. Figure 9 indicates which code words
are transmitted actually to represent queries. Refer-
ring to the visualized word centroid in figure 9, dif-
ferent queries generate different code words, where

the most discriminative words are selected based on
the compact code book determined for each region.

As compact code books rely on the boosting
process of pseudoqueries over a reference database,
the selected code words for new landmarks (that
the system has not encountered) may be (much)
less optimal. In practice, GPS context can alleviate
such negative effects. How to properly identify and
represent new landmarks based on boosting-based
code books will be included in our future work.

Beyond Landmark Search
In addition to a landmark data set, we have con-
ducted extensive experiments on various data sets
(PKUBench, UKBench [Nistér and Stewénius
2006]), to demonstrate that the context-assisted
MCVD descriptor described by Ji et al. (2011d),
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Figure 7. Exemplar Queries to Demonstrate the Descriptor Robustness Against 
Illumination Changes, Scale Changes, Blurriness, Occlusions, and Partial Queries.

In each photo the query is on the left, and each line corresponds to the retrieval results of an approach. Top: Vocabulary boosting; Middle:
Original bag-of-words or tree histogram coding. Bottom: IDF thresholding (top 20 percent code words). The code-word matching between
each query (left photo) and the retrieved images (the top row) are illustrated by circles (different colors denote different code words).



with adaptive and error-resistant channel selec-
tion, can largely boost the performance of visual
search. The proposed MCVD descriptor further
exploits rich contextual cues available at the
mobile end (such as GPS, two-dimensional bar-
codes, or RFID tags), as well as the visual feature
statistics of the reference image database, to learn
compact descriptors for mobile visual search rather
than just landmark search. Undoubtedly, the read-
ily available mobile context can significantly
improve the visual search performance, which has
been evidenced in papers by Ji et al. (2011c) and Ji
et al. (2012).

Discussions Under the 
Umbrella of Standardization

Academe and industry have made progress on key
technical components for visual search (figure 3);
however, a few practical issues remain. It is
unclear, for example, how to make visual search
applications compatible across a broad range of
devices and platforms. In this section, we extend
our landmark search to visual descriptor standard-
ization. Comparisons between landmark search
and generic visual search will be discussed as well.
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Figure 8. Exemplar Images of Different Scales in PKUBench, from Top to Bottom. 

(a) Small; (b) Medium; (c) Large.

Figure 9. The Learned Compact Code Book and the Extracted Descriptors for Exemplar Queries in Barcelona.

Left: the compact code books in the query region. Middle: The query image, where color circles highlight the detected descriptors. Right:
The actually transmitted words. We just transmit their occurrence index in practice.



Background of MPEG CDVS
To ensure interoperability, the MPEG compact
descriptor for visual search standardization aims to
define the format of compact visual descriptors.
Readers are referred to table 1 for MPEG CDVS
standardizations timeline and milestones.6

In terms of CDVS requirements (Yuri et al.
2011), visual descriptors shall be robust, compact,
and easy to compute on a wide range of platforms.
High matching accuracy shall be achieved at least
for images of rigid, textured objects, landmarks,
and documents. Matching should be accurate
despite partial occlusions and changes in vantage
point, camera parameters, and lighting. To reduce
query transmission latency, the descriptor length

shall be minimized. Adaptation of descriptor
length is enabled so that the performance level can
be satisfied at expected budgets. Extracting descrip-
tors cannot be too complex in terms of memory
and time.

Evidences from Low Bit 
Rate Landmark Search
To determine the lowest operating point for prom-
ising visual search,7 geotag (a kind of side infor-
mation) has been used to produce very compact
descriptors for visual search of landmarks (Ji et al.
2012). One important budget evidence is what this
article reported on low bit rate landmark search,
namely, location-discriminative vocabulary coding
(LDVC). With hundreds of bits per query image,8

LDVC encodes descriptors over quantized SIFT fea-
tures (Lowe 2004).

As mentioned previously, beyond landmark
search, visual statistics and mobile context have
been jointly exploited over generic image databas-
es to come up with multiple coding channels (Ji et
al. 2011d). A compression function is learned for
each channel. Each query is initially represented
by a high-dimensional visual signature, which is
then mapped to one or more channels for further
compression. Likewise, with just hundreds of bits,
a compact descriptor has achieved comparable
promising search to raw SIFT features.

Based on the evidence of hundreds of bits in
yielding a compact descriptor, the MPEG CDVS ad
hoc group has finally determined the lowest oper-
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Meeting Time Milestone 

97th Jul-2011 Call for proposal issued 

98th Dec-2011 Proposal evaluated, Test model 

99th Feb-2012  Six core experiments set up 

100th Apr-2012 Evaluation of proposals 

101st Jul-2012 First working draft 

103rd Jan-2013 Committee draft 

105th Jul-2013 Draft International Standard 

107th Feb-2014 Final Draft International Standard 

Table 1. Timeline of MPEG CDVS Standarization.
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Figure 10. The CDVS Test Model Under Consideration. 

Two beginning blocks extract raw local descriptors including a multiscale key-point detector based on difference of Gaussian (DoG) and a
SIFT descriptor based on gradient-orientation histograms. Key-point selection filters in a subset of important key points to fulfill the com-
pactness and scalability, subject to bandwidth budgets. Product quantization compresses each SIFT descriptor in a data-driven manner, and
coordinate coding is applied to compress key-point locations. The test model under consideration represents the latest compact descriptor
in the ongoing MPEG standardization.



ating point of 512 bytes (including the coordinates
of local descriptors).

Compact Landmark Descriptors Versus
the Test Model Under Consideration
Based on the responses to the CDVS call for papers
issued at the Torino meeting,9 a test model under
consideration based on product quantization
(Gray and Neuhoff, 1998) was selected at the 98th
MPEG Geneva meeting (Francini et al. 2011). We
now discuss the link between compact landmark
descriptors and the test model under considera-
tion.

Figure 10 shows the flowchart of the test model
under consideration. In this model, with vector
quantization (VQ), descriptor size can be reduced
significantly; for example, in the test model
(Francini et al. 2011), more than 85 percent of bits
are saved. In addition, feature locations are com-
pressed by quantization and context arithmetic
coding.

To reduce the encoding complexity (normally
increasing dramatically with the vector dimen-
sion), the test model under consideration employs
product quantization to divide an input vector

into k segments and quantize those segments inde-
pendently using k subquantizers. It is easy to imag-
ine, when k = 1, the test model under considera-
tion’s visual descriptor has degenerated to the basic
pipeline of compact landmark descriptor (Ji et al.
2011b).

Moreover, reducing the quantization complexi-
ty is meaningful for mobile applications. Alterna-
tively, our proposed boosting-based code-book
learning in compact landmark descriptors can
shrink the code-word scale of tree-structured vec-
tor quantizer (TSVQ) (that is, the SVT model) in
Chen et al. (2012), where memory cost is reduced
from over 60 MB to below 10 MB.10 In the test
model under consideration, the product quantiza-
tion table’s memory cost can be reduced to 128 KB
(Chen et al. 2012).

Landmark Search Versus Visual Search
Figure 11 lists exemplar images of different cate-
gories in MPEG CDVS evaluation framework (Yuri
et al. 2011). Compared to planar objects (CD/DVD
covers, book covers, paintings, and others), search-
ing three-dimensional landmarks is the most chal-
lenging. The lowest mean average precision in fig-
ure 12 provides quantitative evidences (Li et al.
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(a) Mixed (CD/DVD covers, book covers, documents), (b) paintings, (c) video frames, (d) landmarks, (e) common objects.



2012) on the challenges of landmark search, com-
pared with other planar objects.

Undoubtedly, landmarks represent a typical
kind of nonplanar object, often incurring ill-posed
two-dimensional photographic configurations and
variances in occlusion, viewpoint, scale, illumina-
tion, and background. Concrete challenges include
clutter (for example, vehicles, pedestrians, season-
al vegetation), shadows cast on buildings, reflec-
tions and glare on windows, and severe perspec-
tives with extreme angles. Large photometric and
geometric distortions separate query images from
their closest matches in the reference databases. So
context-assisted descriptors are practically useful.

These aforementioned challenges justify why
our visual search research focuses on landmark
objects. Beyond the challenges of landmark search,
we believe that the insights of contextual learning
as well as ranking of sensitive vocabulary boosting
to achieve low bit rate descriptors can also be
extended to generic visual search.

Conclusions
In this article, we have proposed to learn a com-
pact visual descriptor by combining both visual
content and geographical context; this technique
has been deployed in real-world mobile landmark

search applications. To fulfill extreme compactness
for low bit rate query transmission, our proposed
contextual learning came up with an iterative opti-
mization scheme by combining geographical seg-
mentation and descriptor learning. The compact
descriptor has been deployed in both HTC Desire
G7 (Android) and iPhone4 (iOS) platforms and sig-
nificantly outperforms state-of-the-art works
(Nistér and Stewénius 2006; Chen et al. 2009;
Chandrasekhar et al. 2009a; Jegou et al. 2010) over
a large data set of 1 million landmark images. In
addition to desirable search accuracy and reduced
query delivery latency, the mobile user experiences
relates to factors such as the user interface, value-
added information, and others. Comprehensive
user study will be included in our future work.

With the progress of MPEG standardization, we
envision the use of compact visual descriptors in a
wide range of visual search applications including
mobile augmented reality. More importantly, the
ongoing standardization has attracted the interest
of hardware manufacturers such as Aptina, Nvidia,
STMicroelectronics, and others. The proposed con-
text-assisted compact descriptor as well as the zero-
latency visual search provided strong research evi-
dence in determining operating points and
choosing vector quantization to compress local
descriptors. As landmark search is the most chal-
lenging, the compact landmark descriptor may be
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Figure 12. Retrieval Results at Two Operating Points of 2 K and 16 K on the CDVS Evaluation Data Sets.

(For example, the descriptor length per query image). (1a)(1b)(1c) mixed, (2) paintings, (3) video frames, (4) landmarks, (5) common
objects, referring to exemplar images in figure 12. Experiments are performed over 30,256 reference images plus 1 million distractor images
(collected from Flickr). The mean average precision comparison indicates that landmark search is the most challenging task.
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considered as a good reference model of generic
compact descriptors. However, context is not
included into CDVS core experiments (Yuri et al.
2012) due to the challenging issue of collecting
context-tagged data sets covering rich objects in
addition to the geotagged PKUBench data set (Ji et
al. 2011c).
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Notes
1. Note that the contextual learning consists of two iter-
ative stages: (1) optimizing the partition of geotagged ref-
erence images; and (2) learning the compact vocabulary
within each partition. The context learning is performed
offline. In online search, a mobile phone just exploits the
location context to determine the partition and accord-
ingly select its corresponding compact vocabulary for
generating compact descriptors. The vocabularies may be
prestored in a mobile phone or downloaded at the
mobile users’ request. In other words, a mobile phone
does not involve intensive online computation from con-
text learning.

2. Note that our landmark search work does not use addi-
tional context beyond location, although context infor-
mation often provides rich meanings or functionalities.

3. For the convenience of explanation, we denote scalars
as italic letters, for example, v; vectors as bold letters, for
example, v; instance spaces for n as Rn; and the inner
product between u and v as 

4. Cosine similarity is a measure of similarity between
two vectors by measuring the cosine of the angle between
them. This is often used to compare documents in text
retrieval. The resulting similarity ranges from –1, mean-
ing exactly opposite, to 1, meaning exactly the same,
with 0 usually indicating independence and in between
values indicating intermediate similarity or dissimilarity.

5.  For a more practical viewpoint, dense regions are
selected from popular tourism zones. The size of location
regions mainly depends on the photo volume, which
usually ranges from 0.2 to 0.5 kilometer in diameter. For
hot zones (like Tiananmen Square in Beijing city), the
region diameter is less than 0.1 kilometer, while the
diameter of suburb regions even reachs up to 5 kilometer.

6. See M. Bober et al., Description of Core Experiments on
Compact Descriptors for Visual Search (MPEG ISO/IEC
JTC1/SC29/WG11/N12551, 2012/2).

7. To evaluate the descriptor scalability, MPEG CDVS
requires proposals to report the results at 6 operating
points with descriptor lengths per query: 512 bytes, 1 KB,
2 KB, 4 KB, 8 KB, and 16 KB.

8. Extra bits for location coding are not counted here.

9. See Yuri Reznik et al., Call for Proposals for Compact
Descriptors for Visual Search (ISO/IEC JTC1/SC29/WG11

u �v= ui
i=1

n

� vi

N12201, 2011/07); K. Iwamoto, R. Mase, et al., NEC’s
Response to CFP for Compact Descriptor for Visual
Search (MPEG ISO/IEC JTC1/SC29/WG11/ M22717,
2011/11); V. Chandrasekhar, G. Kirsch, et al., CDVS Pro-
posal: Stanford Nokia Aptina Features (MPEG ISO/IEC
JTC1/SC29/WG11/ M22554, 2011/11); C. Wang, L.-Y.
Duan, J. Chen, and R. Ji, Peking Compact Descriptor-PQ-
WGLOH (MPEG ISO/IEC JTC1/SC29/WG11/M22619,
2011/11); and J. Chen, L.-Y. Duan, Rongrong Ji, et al.,
Peking Compact Descriptor: PQ-SIFT (MPEG ISO/IEC
JTC1/SC29/WG11/M22620, 2011/11).
10. Smart phones have memory limit per process; for
example, the limit is 16 MB for the first generation
Android phone and 24 MB for the second generation. A
smaller footprint is necessary for apps.
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