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ABSTRACT
Style transfer has been successfully applied on photos to gener-

ate realistic western paintings. However, because of the inherently

different painting techniques adopted by Chinese andwestern paint-

ings, directly applying existing methods cannot generate satisfac-

tory results for Chinese ink wash painting style transfer. This paper

proposes ChipGAN, an end-to-end Generative Adversarial Network

based architecture for photo to Chinese ink wash painting style

transfer. The core modules of ChipGAN enforce three constraints –

voids, brush strokes, and ink wash tone and diffusion – to address

three key techniques commonly adopted in Chinese ink wash paint-

ing. We conduct stylization perceptual study to score the similarity

of generated paintings to real paintings by consulting with pro-

fessional artists based on the newly built Chinese ink wash photo

and image dataset. The advantages in visual quality compared with

state-of-the-art networks and high stylization perceptual study

scores show the effectiveness of the proposed method.
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1 INTRODUCTION
Any successful artist has his or her uniquely defined painting style.

Studying such uniqueness in painting style is important in painting

skill training. In addition to the traditional art theories training,

computer vision and graphics techniques, such as style transfer
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Figure 1: Given an input photo, existing style transfer tech-
nique (Gatys et al. [11]) is able to generate western paint-
ing with visually close style to the real painting (top row),
but not for the Chinese ink wash painting (bottom left). The
proposed ChipGAN with three constrains achieves realistic
transfer result (bottom row).

[17, 37] and non photorealistic rendering [12, 36, 38], have been

developed to help painting artists in systematically understanding

how to apply an appropriate painting technique to present a type

of unique style by observing a real scene or photo.

Migrating the styles of paintings to images can be implemented

through texture synthesis using low-level image features [8, 9, 26,

43], which ignores the semantic information of an image. To ex-

tract high-level semantic information from images for style transfer,

Convolutional Neural Network (CNN) [25, 27] is utilized by [11, 21],

which shows visually realistic results (Figure 1, photo to generated

western painting according to the style of real western painting).

However, directly applying existing style transfer techniques to

Chinese ink wash paintings results in unrealistic results (in Fig-

ure 1, generated ink wash painting, note the chaotic lines and

thick color). This is because there are several essential differences

between western and Chinese ink wash painting techniques, as

comparison between real paintings in the last column of Figure 1

shows: 1) In terms of the composition of a picture, western paint-

ings are filled with colors over the whole image, while Chinese

ink wash paintings contain certain areas of voids1; 2) In terms of

expression skills, western paintings seldom use strong lines, while

1
It refers to areas of the white paper, which Chinese ink wash painting artists purposely

leave to inspire the viewers to imagine [5].
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Chinese ink wash paintings adopt brush strokes with vigorous lines

to emphasize the object in silhouette; 3) In terms of color richness,

western paintings tend to use a great diversity of colors, while Chi-

nese ink wash paintings mainly use ink with different gray levels

that diffuses on a piece of rice paper (ink wash tone and diffusion).
To achieve style transfer for Chinese ink wash paintings, we

propose a photo to Chinese ink wash painting style transfer solu-

tion based on Generative Adversarial Network (GAN) [14], named

ChipGAN. We propose three special constrains according to the

three techniques of Chinese ink wash painting: voids, brush strokes,

and ink wash tone and diffusion. For voids, our constraint combines

adversarial loss with cycle consistency loss [2, 50], since they aim to

generate more realistic result by converting information to an im-

perceptible signal [4] thus leaves the white area. For brush strokes,

we embed a pre-trained holistically-nested edge detector [44] and

enforce a redesigned cross entropy loss [6] between edge maps of

photo and fake painting to emphasize vigorous lines. For ink wash

diffusion and tone, we use eroded and blurred images to mimic

such painting properties and propose the ink wash discriminator

to distinguish between processed real and fake paintings.

Existing painting datasets mainly contain artworks by western

artists (e.g., Van Gogh, Monet, et al.) [50], and there is no available

dataset that consists of real photos and images of the corresponding

Chinese ink wash paintings. For solving our problem, we present

a Chinese ink wash painting dataset with Photos of real scene
and images of paintings collected from the Internet and art studio,

named “ChipPhi". Our dataset consists ofHorse dataset containing
1630 photos of horses (with different colors and in various poses)

and 912 images of paintings
2
by Xu Beihong and Landscape dataset

with 1976 photos of landscapes (with famous landscapes around

the world) and 1542 images of paintings by Huang Binhong.

In summary, the contributions of this paper are three-fold:

• We propose ChipGAN, the first
3
weakly supervised deep

network architecture to perform photo to Chinese ink wash

painting style transfer, with special considerations on three

essential techniques of Chinese ink wash painting: void,

brush stroke, and ink wash tone and diffusion.

• We introduce stylization perceptual study involving pro-

fessional artists to evaluate the style consistency between

generated and real paintings and analyze Chinese ink wash

painters’ techniques with the help of deep neural network.

• We build the first dataset with photos in real scenes and

images of Chinese ink wash painting named ChipPhi to

facilitate the training and testing of the proposed approach

and benefit follow-up research on Chinese ink wash painting

style transfer.

2 RELATEDWORK
Image-level style transfer means migrating the style of a certain

example image to the target one. Previous Image-level style trans-

fer can be divided to texture synthesis and Convolutional Neural

2
All the paintings are cropped to remove the Chinese characters.

3
Jing et al. [20] transfer the style of a Chinese ink wash painting to a given photo

by directly using the method of Gatys et al. [11], without proposing a new approach

specially for Chinese ink wash painting style transfer.

Network based approaches. Domain-level style transfer means ren-

dering a given image (e.g., photo) with style of a certain domain

(e.g., style of a certain painter). It is accomplished by approaches

based on Generative Adversarial Network (GAN) [14, 19]. Besides,

we also review some computational methods particularly designed

for Chinese ink wash paintings.

Texture synthesis. There are some non-parametric algorithms

[8, 9, 43] which can synthesize textures by resampling the given

texture image. Efros and Freeman [8] propose a correspondence

map which constrains the texture synthesis procedure according

to image intensity of the target image. Ashikhmin[1] concentrates

on transferring the high-frequency texture but preserves the scale

of the target image. Hertzman et al. [16] apply image analogies

to transfer style of a source image to the target one. However,

since texture synthesis mainly depends on patches and low-level

presentations, they fail to transfer semantic style of artistic works.

CNN based approaches. CNN based models target to extract

semantic representations by pre-trained convolutional neural net-

work. Gatys et al. [11] first use CNN to obtain the representations of

images, and reproduce famous panting styles on the natural photos.

Li et al. [30] find linear kernel is a good substitute for Maximum

Mean Square. Yin [48] and Chen and Hsu [3] investigate content-

aware neural style transfer and improve the results. Most of these

approaches suffer from low speed and high computational cost,

which can be accelerated by the methods in [21, 39]. Li and Wand

[29] train a Markovian feed-forward network to solve the efficiency

problem. Dumoulin et al. [7] propose to learn multiple styles at

the same time. Although these methods have generated impressive

stylized images for western painting, they fail to transfer Chinese

ink wash style due to its essentially different properties.

GAN based approaches. When tackling the style transfer task

from the perspective of GAN, some image-to-image translation

approaches are reasonably effective. CoupledGAN [34] learns a

joint distribution of multi-domain images by enforcing a weight-

sharing constraint. However, this method can only take a noise

vector as input to generate paired images. So it cannot be directly

used as style transfer model. Liu et al. [33] combine CoupledGAN

[34] with variational auto-encoder [24] and propose a framework

named UNIT [33]. Zhu et al. introduce cycle consistency losses

to reduce permutation of mappings and propose CycleGAN [50].

Based on architecture of CycleGAN [50], DistanceGAN [2] enforces

the constraint where the distance of two samples in one domain

should be preserved in the mapping to another domain. We also

adopt cycle consistency losses in our model to overcome mode

collapse [13], and combine it with adversarial loss to simulate voids.

Though cycle consistency loss makes the model preserve some

details in the original photo, it at the same time tends to remove

some important brush strokes incorrectly, which motivates us to

come up with additional constraints for modeling brush strokes of

Chinese ink wash paintings.

Computational methods for Chinese ink wash paintings.
Chinese ink wash paintings can be generated using different compu-

tational approaches. Yu et al. [49] combine the brush stroke texture

from a real painting with color information of given landscape

image to synthesize an ink wash painting. Xu et al. [45] decompose

the brush strokes of a Chinese ink wash painting with a prepared
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Figure 2: Pipeline of ChipGAN. We take an input photo (red box) of a horse to get a generated ink wash painting (blue box).
The void constraint (blue part, middle; “Rec.” for “Reconstructed”), brush stroke constraint (green part, left), and ink wash
constraint (red part, right), are illustrated using this horse example.

brush strokes library to render animations. Yang and Xu [46] fur-

ther refine the brush stroke decomposition method by providing

automatic brush stroke trajectory estimation. Wang [41] propose

an effective algorithm to simulate ink wash diffusion based on the

Kubelka-Munk equation. Yeh et al. [47] andWay et al. [42] generate
ink wash paintings based on the board lines strokes and interior

shading of 3D models. Liang and Jin [31] generate ink wash paint-

ing from a given photo through image processing on edges, colors,

and paper texture. Instead of relying on existing brush strokes sim-

ulation and low-level image features as prior, our method explores

data-driven techniques to learn realistic Chinese ink wash painting

feature representations.

3 PROPOSED METHOD
ChipGAN learns a mapping from the photo domain X (e.g., defined
by real-world photos of horses) to the painting domain Y (e.g.,
defined by Chinese ink wash paintings of horses). We combine

cycle consistency loss and adversarial loss as a constraint to deal

with void technique in Section 3.1; we then propose brush stroke

loss to remove unnecessary brush strokes while preserving essential

ones in Section 3.2; we further introduce ink wash loss to ensure

the correct tone of whole image and add the diffusion effect in

Section 3.3. Our full objective and training details are provided in

Section 3.4 and Section 3.5, respectively. The complete pipeline of

ChipGAN is illustrated in Figure 2.

3.1 Void constraint
Intuitively speaking, applying voids means leaving blanks at proper

places on the canvas [5]. Taking the horse as an example, appro-

priately applying voids requires the generated image completely

ignores the sky and partly ignores the grass in photo while clearly

keeping the horse silhouette, as shown in the middle part of Fig-

ure 2. The horse photo and a Chinese ink wash painting of horse

have different entropies, because the photo has rich color and tex-

ture compared to the image of painting. Such different entropies

between the source domain and target domain are utilized in image-

to-image translation tasks [4] to effectively convert information

about a source image into a nearly imperceptible signal, by com-

bining the adversarial loss and cycle consistency loss. We therefore

adopt the similar strategy to enforce the void constraint.

Adversarial loss. Given unpaired training sets which are re-

garded as two domains X and Y , our model includes two mappings:

G : X → Y and F : Y → X . For G : X → Y and its discriminator

DY , the adversarial loss [19] is given by:

LGAN (G,DY ,X ,Y ) =Ey∼p
data

(y)[logDY (y)]
+Ex∼p

data
(x )[log(1 − DY (G(x)))],

(1)

whereG endeavors to generate samples that are similar to real ones

from domainY , whileDY tries to discriminate between the fake and

real samples. This objective is minimized over G and maximized

over DY , i.e., minG maxDY LGAN (G,DY ,X ,Y ). For mapping F :

Y → X and its discriminator DX , there is a similar objective, i.e.,
minF maxDX LGAN (F ,DX ,Y ,X ).

Cycle consistency loss. We add the cycle consistency con-

straint [50] by translating the given image x from domain X to

target domain Y and then back to domain X , which should result

in the same image, i.e., F (G(x)) ≈ x . Because the cycle consistency
constraint requires recovery in both directions, for each image y in

domain Y , there is also a cycle consistency constraint: G(F (y)) ≈ y.
Thus, the cycle consistency loss is defined as:

Lcycle (G, F ,X ,Y ) =Ex∼p
data

(x )[∥F (G(x)) − x ∥1]
+Ey∼p

data
(y)[∥G(F (y)) − y∥1].

(2)

This constraint makes the generated image preserve some informa-

tion of source domain, so that the generated one can be converted

back to source domain.



3.2 Brush stroke constraint
Given the properly generated blank area, our next goal is to add

brush strokes to clearly depict the silhouette of objects in Chinese

ink wash painting style, e.g., the head and body of the house should
have vigorous silhouette. To model various types of brush strokes

with different thicknesses in Chinese ink wash paintings [45] in a

unified manner, we formulate our brush stroke constraint used to

enforce the consistency between different levels of edge maps of

real photos and generated paintings.

We adopt holistically nested edge detector [44] E to extract five

levels of edges from the input image, to simulate five types of

brush strokes of different thickness, as shown in the left part of

Figure 2. We then merge edge maps generated from different stages

of pre-trained VGG-16 feature extractor to obtain the final edgemap.

Different from regarding the edge detection task as a pixel-level

binary classification problem, we train a multi-level edge detector

from the perspective of regression to obtain smooth brush strokes

with different thicknesses. Every pixel in training ground truth

is labeled with a real number from 0 to 1 which indicates their

probability to be a part of an edge [44]. By applying E, we obtain
edge maps of real photo and generated painting E(x) and E(G(x)).
We then take E(x) as ground truth and calculate balanced cross

entropy loss to let G generate proper brush strokes as

Lbrushstroke (G,X ) = Ex∼p
data

(x )[−
1

N

N∑
i=1

µE(x)i logE(G(x))i

+ (1 − µ)(1 − E(x)i ) log(1 − E(G(x))i )],
(3)

where N is the total number of pixels in edge map of photo or fake

painting and µ is a balancing weight. µ = N−/N and 1− µ = N+/N .

N− and N+ are the sum of non-edge and edge probability of every

pixel in E(x), respectively.

3.3 Ink wash constraint
With the voids and brush strokes properly modeled, our final pro-

cessing is to make the global tone (e.g., the overall color temperature

of the generated horse painting should be close to the real one) and

diffusion effects (e.g., the abdomen of the horse shows link diffuses

to different gray levels on the rice paper) consistent between the

real painting y and generated paintingG(x). Therefore, we further
introduce the ink wash constraint.

The diffusion of inkwash on rice paper is approximately isotropic,

so we simulate it with an erosion operation and followed by a

Gaussian blur operation. With salient objects being blurred, such

an operation suppresses explicit comparison of texture and con-

tent information [18], so that the model tends to focus more on

the tone consistency, as illustrated in the right part of Figure 2..

Therefore, we add an adversarial discriminator DI which is trained

to distinguish between yeb and G(x)eb :

yeb (i, j) =
∑
k,l

(y ⊖ B)i+k, j+l ·Gk,l , (4)

G(x)eb (i, j) =
∑
k,l

(G(x) ⊖ B)i+k, j+l ·Gk,l , (5)

whereyeb is the real painting processed by erosion and blur,G(x)eb
is the generated painting processed by erosion and blur, ⊖ is the

erosion operator, B is an erosion kernel, and Gaussian blur kernel

Gk,l =
1

2πσ 2
exp (−k2+l 2

2σ 2
). Finally, the ink wash loss is defined as

Linkwash (G,DI ,X ,Y ) =Ey∼p
data

(y)[logDI (yeb )]
+Ex∼p

data
(x )[log(1 − DI (G(x)eb ))].

(6)

3.4 Full objective
Our full objective is a linear combination of the four types of losses

introduced above:

L(G,F ,DX ,DY ,DInk ) = LGAN (G,DY ,X ,Y )
+LGAN (F ,DX ,Y ,X ) + λLcycle (G, F ,X ,Y )
+βLbrushstroke (G,X ) + γLink (G,DInk ,X ,Y ),

(7)

where hyper-parameters λ, β , and γ control the contributions of

the individual objectives. We then aim to solve:

G∗, F ∗ = argmin

G,F
max

DX ,DY ,DInk
L(G, F ,DX ,DY ,DInk ). (8)

In Section 5.2, we will analyze our method against ablation of

full objective by removing Lbrushstroke or Link or both of them

to demonstrate that the losses specially designed for Chinese ink

wash paintings are indispensable.

3.5 Architecture and training details
We build our generator networks with two stride-2 convolutions,

9 residual blocks [15] and two fractionally strided convolutions.

Besides, we adopt instance normalization [40] in generator net-

works to generate stable and smooth images. The discriminator

networks are constructed by 70 × 70 PatchGANs [19, 28, 29] which

are designed to classify whether 70× 70 overlapping image patches

are real or fake. The pre-trained VGG-16 whose last pooling and

all fully connected layers have been cut, is embedded into the edge

extraction part. By adding fractionally strided convolutions into

the modified VGG-16, the multi-level edge extraction part converts

the feature maps from conv1 2, conv2 2, conv3 3, conv4 3 and

conv5 3 to corresponding edge maps with the same size as input

images. After that, all the edge maps are merged by a convolution

to generate the final edge map.

During the training stage, all the input images are resized to

256 × 256. All networks are trained from scratch and weights are

initialized from a Gaussian distribution with mean 0 and standard

deviation 0.02. In all our experiments, the network is trained by

Adam [23] solver with batch size of 1. The learning rate is initialized

to 0.0002 for all generators and 0.0001 for all discriminators. We

keep the same learning rate for the first 100 epochs and linearly

decay the rate to zero over next 100 epochs. We set λ = 10, β = 10,

and γ = 0.05 in Equation (7).

4 DATASET AND EVALUATION METHOD
4.1 The ChipPhi dataset
To the best of our knowledge, image dataset collected specially for

Chinese ink wash paintings is not publicly available. We build the

ChipPhi dataset containing photos of real scenes and images of

Chinese ink wash paintings collected from the Internet to evaluate

our method and hopefully to inspire the follow-up research. The



ChipPhi dataset consists two parts: Horse and Landscape, which

are Chinese ink wash paintings of horses and landscapes drawn

by Xu Beihong and Huang Binhong and photos of horses and land-

scapes. To ensure our dataset contains images with rich content

diversity, we collect horse photos with various colors (e.g., white,
black, brown) and postures (e.g., standing, running, part of the horse
such as head), and the landscape photos covering famous hills from

all over the world (e.g.,Mount Huangshan, Rocky Mountains, Great

Smoky Mountains National Park).

To generate stylized images with high quality, we remove the

photos in which the objects are unrecognizable or blocked by wa-

termarks. For images of Chinese ink wash paintings, they usually

contain some calligraphy to indicate the name of the artist, the year

when the painting was created, or even some poems. We clean the

painting images to get rid of Chinese characters by cropping.

Sincewe aim to learn the style of a painter, the inkwash paintings

for a certain content (e.g., horse) should be those drawn by the

same artist (e.g., Xu Beihong). Nonetheless, the total number of

real paintings is rather limited. To compensate the deficiency, we

augment our data by horizontal flip. Considering Horse, We first

collect 456 ink wash paintings and 819 photos. For both the photo

and painting domain, we divide them into training and testing set

by a ratio of 9 to 1. After that, a horizontal flip is applied. We finally

prepare 1478 photos and 822 paintings for training, 160 and 90 for

testing. For Landscape, we collect 1774 photos and 1388 paintings

for training, 202 and 154 for testing.

4.2 Stylization perceptual study
Since there is no ground truth to compare with, it is infeasible to

quantitatively measure the style similarity of synthesized images to

real paintings. We therefore design a stylization perceptual study

[20], which asks ink wash painting artists to rank and rate scores

about the style similarity to the real paintings from our generated

paintings and other baselines.

We invite 60 artists who have studied Chinese ink wash paint-

ings for eight years in average. Our stylization perceptual study is

performed using the following steps:

(1) Artists are first told whose paintings styles we are going to

generate using the given photos.

(2) Artists are asked to review and rate 40 groups of images. In

each group, the leftmost image is the input photo randomly

selected from the testing set, and other images, which are

displayed in random order, are generated style-transferred

paintings by our method and four baseline methods using

the same input photo.

(3) Artists are asked to rank the generated paintings based on

the criterion whether the void and brush strokes are applied

properly, and whether the tone and ink wash diffusion looks

natural. No time constraints are placed.

(4) The average score ϕ for a certain method is calculated from

ranks as

ϕk =
1

Np

∑
i

∑
j
(Nm − ranki, j,k + 1), (9)

where Nm is the total number of evaluated methods in each

group, Np is the total number of participants, and i, j,k in-

dicate the i-th participant, j-th group of images and k-th
method, respectively.

5 EXPERIMENTS
We train and evaluate ChipGAN using ChipPhi dataset. We first

introduce the baseline approaches adopted in our evaluation.

Gatys et al. [11] show that the content and style of a certain

image are separable and synthesize a new image that simultane-

ously matches the content representation of photo and the style

presentation of painting. The style representation by this method is

calculated by Gram matrix, which depends on feature correlations.

Johnson et al. [21] train a feed-forward transformation net-

work with perceptual loss of style and content to accelerate the

process of style transfer. For our experiments, we train this style

transfer network on Microsoft COCO dataset [32] based on the

style of a painting which is randomly chosen from the painting

set. Similar with Gatys et al., this method also applies Gram matrix

calculated from feature maps as style representation.

CycleGAN [50] learns a mapping G : X → Y to generate a

new distributionG(X )where the images are indistinguishable from

the ones in domain Y . To further reduce the number of possible

mappings, G is coupled with an inverse mapping F : Y → X and a

cycle consistency constraint:G(F (X )) ≈ X is enforced. This method

provides a solution to avoid mode collapse [13] and generate more

realistic images in the target domain.

DistanceGAN [2] is based on CycleGAN [50] architecture. It

further reduces the amount of mapping by enforcing the constraint

that the distance of two samples in one domain should be preserved

in the mapping to another domain.

5.1 Comparison with baselines
We compare the visual quality of generated paintings by ourmethod

against the baselines, and then use stylization perceptual study to

evaluate the style similarity to real paintings of generated paintings

from different approaches.

Visual quality comparison. As illustrated in the top row of

Figure 3, for Horse , CNN based models (Gatys et al. [11] and
Johnson et al. [21]) preserve the shapes of horses to some extent.

But the generated paintings have thick strokes which are more

similar to western oil paintings. Besides, these two methods fail to

represent voids and show unexpected noise. In contrast, paintings

generated by GAN based models (ChipGAN (ours), CycleGAN [50]

and DistanceGAN [2]) look realistic, and they all have voids well

represented. Compared against ChipGAN, CycleGAN [50] and Dis-

tanceGAN [2] lose some brush strokes, while adding some unnec-

essary ones. Among these methods, ChipGAN generates paintings

with the most reasonable tone, thanks to the ink wash constraint.

The comparison of Landscape data is shown in the bottom

row of Figure 3. Though CNN based models (Gatys et al. [11] and
Johnson et al. [21]) can depict the contours of mountains, their

results suffer from severe artifacts and cannot express the feeling of

distance. As for GAN based models, the feeling of distance is well



Input Photo ChipGAN (ours) CycleGAN DistanceGAN Gatys et al. Johnson et al.

Figure 3: Visual quality comparison of different methods. From left to right: input, ChipGAN (ours), CycleGAN [50], Distance-
GAN [2], Gatys et al. [11], and Johnson et al. [21]. The close-up views are provided in color boxes below the result and the
detailed analysis is in Section 5.1.
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Figure 4: Stylization perceptual study result: The left verti-
cal axis stands for the total number of images with different
scores by different approaches onHorse (top) and Landscape

(bottom). The right vertical axis stands for the average score
ϕ for each approach.

presented by leaving some voids. However, CycleGAN [50] and

DistanceGAN [2] fail to correctly handle some smoothly textured

region (e.g., the close-up view of river in the second row), while

ChipGAN represents it in a natural way. Similar to the results

in Horse , our method outperforms other baselines in correctly

applying Chinese ink wash painting techniques.

Stylization perceptual study result. Figure 4 summarizes

the scores of stylization perceptual study by different methods

based on professional artists’ evaluation. The test score reflects

the style similarity of the generated horse paintings to the style of

real paintings by Xu Beihong as well as the generated landscape

paintings to the style of real paintings by Huang Binhong. It is

obvious that ChipGAN has the highest score for the most numbers

of images. For the average scores ϕ calculated by Equation (9), our

approach outperforms the baselines in both datasets. Gatys et al.
[11] and Johnson et al. [21] achieve similar scores on Horse, but

Johnson et al. [21] has lower score on Landscape due to the the

lack of instance normalization [40] in feed-forward network which

results in repetitive patterns which seldom appear in real paintings.

The GAN based models have higher scores than CNN based models,

since the well-presented voids areas look closer to the real paintings.

Compared with CycleGAN [50], the distance preserving property

of DistanceGAN [2] may result in the losing of brush strokes which

is easily perceived in perceptual study and causing the lower scores.

We use Kendall’s W test to assess agreement among participants

towards results generated by a certain model; Kendall’s W [22] are

0.837 for horse and 0.825 for landscape. Besides, the differences

among methods are evaluated by Freidman test [10] (we observe

a p-value < α (significance level set as 0.05) which indicates the

differences are significant.).

5.2 Ablation study
Our proposed method includes three essential constraints to deal

with voids, brush strokes, and ink wash tone and diffusion in Chi-

nese ink wash paintings, respectively. Since the void constraint is



ChipGAN (ours)Input Photo Only Void Void + Brushstroke Void + Ink Wash

Figure 5: Visual quality comparison of different variants of our method. From left to right: input photo, ChipGAN (with full
objective), with only void constraint, with void and brush stroke constraints, and with void and ink wash constraints. The
dashed boxes represent differences in brush strokes and the dotted boxes represent the differences in ink wash diffusion and
tone. The close-up views are provided below each image and the detailed analysis can be found in Section 5.2.
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Figure 6: Stylization perceptual study result: The left verti-
cal axis stands for the total number of images with differ-
ent scores by different ablations and full objective on Horse

(top) and Landscape (bottom). The right vertical axis stands
for the average score ϕ for each approach.

the combination of generative adversarial loss and cycle consis-

tency loss, which cannot be ablated from the complete network,

we focus on evaluating the importance of other two constraints.

We therefore train three variant networks, one for void constraint

only, one for void and brush stroke constraints, the other one for

void and ink wash constraints.

Visual quality comparison. We then show the results of ab-

lation experiments in Figure 5. For Horse, method without brush

stroke constraint loses essential brush strokes and adds inappropri-

ate ones (e.g., dotted boxes for the horse). And ink wash constraint

helps to fade the unnecessary textures (e.g., dashed boxes for the

horse). As for Landscape, mountains are correctly depicted by

adding brush stroke constraint (e.g., dotted boxes for the landscape).
Besides, methods with ink wash constraint can simulate the tone

and diffusion effect of ink wash and represent a feeling of depth on

the far away mountains (e.g., the dashed boxes for the landscape).

Stylization perceptual study result. Figure 6 compares the

complete ChipGAN against ablations of full objective in terms of

style similarity to real paintings through perceptual study. Remov-

ing either brush stroke or ink wash constraint lowers the scores.

When adding brush stroke constraint, the performance is largely

improved. The influence of ink wash constraint is not obviously

reflected in score, this difference is easy understand. The brush

strokes depict essential parts of an object, so if they are applied

inappropriately, the whole painting style is significantly biased.

However, given the silhouette properly depicted, the ink wash con-

straint further refines the ink style and tone. Such improvements

are not easily to perceive, but they are indispensable for the style of

Chinese ink wash paintings. The Kendall’s W test [22] is performed

again, and we obtain Kendall’s W 0.804 for horse and 0.837 for

landscape, which indicates high agreement among participants.

Similarly, the p-value < α (= 0.05) in the Freidman test [10] again

indicates significant differences among different evaluated methods

are observed.
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Figure 7: Comparison among input photos (left), generated
paintings (middle), and real paintings (right, the horse byXu
Beihong and the landscape by Huang Binhong).

6 DISCUSSION
Computationalmethods for Chinese inkwash paintings have shown

to assist ink wash painting artists and inspire their creations [45, 49].

It will be interesting to discuss how our generated paintings relate

to the style of artists. Besides that, we will also discuss how our

trained model generalizes to different subjects and how to combine

our proposed constraints with other types of paintings.

Inspiration to painting artist. The first row of Figure 7 shows

some typical techniques used to draw ink wash horses by Xu Bei-

hong. In Xu’s painting, the horsehair at tails is drawn in a fluttered

style pointing to the sky to make the ink wash painting more vivid.

The generated one is also depicted in a similar style, which is dif-

ferent from the drooping horsehair at tail in the original photo.

Novice painters may be inspired by checking the subtle differences

between the original photo and our generated painting to learn the

expression spirit of an artist.

Different fromWestern realistic painters who attempt to present

subject matter realistically, Chinese ink wash paintings apply voids

to create artistic conceptions by omitting some unnecessary details.

The second row of Figure 7 shows that in the real painting of Huang

Binhong, the cloud and mist in a landscape scene is expressed

by leaving voids. Since our generated painting learns the voids

technique properly, by comparing the photo and painting generated

by our model, the painters can learn to make a decision on what to

preserve and what to omit when observing a real landscape scene.

Generalization of trained model. Because ChipGAN is de-

signed to learn general painting techniques in Chinese ink wash

paintings, the model trained on one dataset (e.g., horse) can be

adapted to other subjects. As shown in Figure 8, input photos of

cattle, dog and lion with different poses are successfully transferred

to ink wash painting style. The backgrounds are well handled by

void constraint, and the subjects are depicted with proper brush

strokes and correctly diffused ink wash.

Generalization to other types of painting. Since different

types of painting share some common techniques, our constraints

may be applied to other types of painting with slight modification.

Cattle Dog Lion

Figure 8: Chinese ink wash painting style transfer results of
cattle, dog and lion with model trained on horse.

For example, though watercolor paintings have more abundant

colors than Chinese ink wash paintings, they still require proper

tones and pigment diffusions. By adjusting the erosion kernel size

and deviation of Gaussian blur function, we may adapt the ink wash

constraint to watercolor painting area. Another example could be

woodcuts which consist of vigorous lines, we may generalize brush

stroke constraint by changing its weight and adjusting the output

layers of feature extractor.

Limitations. Because of the GPU memory limitation, we train

our model on 256 × 256 images. When the resolution of input

photos are high (e.g., 1024×1024), the generated ink wash paintings

contain chaotic lines, which is a common issue in the state-of-art

methods based on fully-convolutional operation [35]. This problem

can be partially solved by feeding the down sampled high-resolution

images into generator and increasing the output resolution using

pre-trained super resolution network [28]. An end-to-end high

resolution solution for this task is our future work.

7 CONCLUSION
In this work, we propose an end-to-end weakly supervised net-

work ChipGAN for photo to ink wash painting style transfer. This

network is designed based on the three important techniques of

Chinese ink wash painting: voids, brush strokes and ink wash. Ex-

periments on the newly built “ChipPhi” dataset show effectiveness

of our approach. Comparing photos, generated paintings with real

paintings, we find our model is able to present techniques typi-

cally adopted by a certain artist. We hope our work can inspire

computational and artistic study on Chinese ink wash painting.
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