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ABSTRACT

Recently, visual saliency has drawn great research interest
in the field of computer vision and multimedia. Various ap-
proaches aiming at calculating visual saliency have been pro-
posed. To evaluate these approaches, several datasets have
been presented for visual saliency in images. However, there
are few datasets to capture spatiotemporal visual saliency in
video. Intuitively, visual saliency in video is strongly affected
by temporal context and might vary significantly even in vi-
sually similar frames. In this paper, we present an extensive
dataset with 7.5-hour videos to capture spatiotemporal visual
saliency. The salient regions in frames sequentially sampled
from these videos are manually labeled by 23 subjects and
then averaged to generate the ground-truth saliency maps. We
also present three metrics to evaluate competing approaches.
Several typical algorithms were evaluated on the dataset. The
experimental results show that this dataset is very suitable for
evaluating visual saliency. We also discover some interest-
ing findings that would be addressed in future research. Cur-
rently, the dataset is freely available online together with the
source code for evaluation.

Index Terms— Visual saliency, dataset, evaluation met-
rics, saliency map, salient regions

1. INTRODUCTION

Visual saliency is the distinct subjective perceptual quality
which makes some items in the scene stand out from their
neighbors and immediately grab our attention [1]. Recently,
visual saliency has drawn great research interest in the field
of computer vision and multimedia. It is often assumed that
visual saliency is extracted and represented in an explicit
saliency map, which serves to determine the salient regions.
Such salient regions can be selected to assist applications such
as content-relevant advertising [2] and shot matching [3].

With the numerous algorithms proposed to estimate visual
saliency, evaluation becomes a critical issue. An evaluation
strategy for visual saliency involves at least two aspects:
appropriate criteria and metrics, and benchmark datasets.
Among them, benchmark datasets can provide us an open
testing platform to choose from many different proposals and

to evaluate new approaches against older ones. Usually, such
benchmark dataset for visual saliency could be constructed
through subjective evaluation. For example, Liu et al. [4]
had 9 subjects to manually label the most salient object in
each image. Regional saliency is obtained by averaging the
labeling results. Bruce et al. [5] recorded the eye tracking
data of 20 subjects when they were watching the 120 nat-
ural images, each for 4 seconds. Then the fixation density
maps were generated. However, the two approaches might
encounter difficulties for spatiotemporal visual saliency in
video, which is strongly affected by temporal context and
might vary significantly even in visually similar frames. It
was often inaccurate to directly label the salient objects by
treating each frame as an independent image. Itti et al. [6]
constructed a video dataset by recording eye tracking data of
8 subjects. However, as shown in Fig.1 (a) and (c), human
beings tend to attend multiple objects synchronously when
watching videos. It is difficult to recover regional saliencies
of multiple objects merely from several eye fixations recorded
in the short interval of each frame (See Fig.1 (b) and (c)).

In this paper, our goal is to construct an extensive dataset
on visual saliency in video. We focus on revealing the re-
gional saliency in sequential frames. Firstly, we collected a
dataset consisting of 431 short videos with a total length of
7.5 hours. According to psychological evidences in [7] that
“interesting” objects, rather than early features, guide human
attention, the salient objects in sampled frames are manually
labeled by 23 subjects. The labeling results are then averaged
to generate the ground-truth saliency maps (GSMs). Three
metrics are presented to evaluate visual saliency estimation
approaches on the dataset. Experiments performed with sev-
eral typical methods show that this dataset is suitable for eval-
uating visual saliency. We also discover some interesting find-
ings that would be addressed in future research.

(a) (b) (c)

Fig. 1. Examples for effects of eye tracker in video [6].



The rest of the paper is organized as follows. Sec. 2 briefly
reviews the evaluation methodologies in related work. In
Sec. 3, the collection and labeling of the dataset are presented.
Sec. 4 proposes some evaluation metrics. Sec. 5 shows exper-
iments of several typical algorithms on the dataset and Sec. 6
concludes the paper.

2. RELATED WORK

This section is devoted to reviewing the evaluation methods
on visual saliency. In general, the evaluation methodologies
can be divided into three categories: point-based evaluation
(e.g., [1], [5], [8, 9]), region-based evaluation (e.g., [4], [10,
11]), and subjective evaluation (e.g., [3], [12]).

Traditionally, visual saliency calculation was modeled as
a gaze prediction problem. In Itti’s early work [1], gaze points
were selected from the estimated saliency maps (ESMs) to
check whether they could locate the most salient object in
images. However, Bruce et al. [5] argued that it might be
not appropriate to select discrete fixations from the ESMs.
Instead, they evaluated the ESMs with the recorded eye fix-
ations in images by computing the receiver operator charac-
teristic (ROC) scores. Similarly, Kienzle et al. [8] computed
the ROC scores with respect to the eye fixations in videos. In
[9], Itti et al. sampled small patches from the ESMs around
the recorded fixations and random points respectively, and
quantified the difference between their distributions using the
Kullback-Leibler distance (KLD). In general, these evaluation
approaches are effective for evaluating predicted gaze but not
for the regional saliency.

Often, regional saliency was evaluated by comparing the
estimated and labeled salient regions. In [4, 10, 11], the masks
of the salient objects in natural images were firstly generated
by combing the labeling results of multiple subjects. The
mask maps were then used for regional saliency evaluation.
Unfortunately, there are no datasets and evaluation methods
for regional saliency evaluation in video.

Subjective evaluation was also frequently used. In [3] and
[12], for example, subjective scores on the estimated salien-
cies were reported on three levels: “Good”, “Acceptable” and
“Failed”. Clearly, subjective evaluation approach can not be
extended to large scale datasets.

In summary, although salient region detection is an im-
portant issue in many multimedia tasks such as scalable video
coding, content analysis, and content-relevant advertising,
there are few video datasets and evaluation methods on spa-
tiotemporal visual saliency in video.

3. DATASET DESIGN

3.1. Data Collection

The main goal of data collection is to cover videos of various
scenes. The dataset is collected as follows:

1) Surveillance video. In most cases, surveillance video
contains static backgrounds and dynamic salient objects,
which can be used for visual saliency analysis. In our dataset,
surveillance videos are selected from the CAVIAR dataset
(http://homepages.inf.ed.ac.uk/rbf/CAVIAR/).

2) Artificial video. To explore the differences of visual
saliency in natural and artificial scenes, we select artificial
video clips from 2D and 3D cartoons.

3) Natural video with artificial parts. Usually, the arti-
ficial parts in natural video such as captions and logos have
a strong impact on visual saliency. We collect videos with
artificial parts from TRECVID 2006/2007 and the Internet.

4) Natural video. Similarly, we select natural videos with
no artificial parts such as overlaid captions and logos from
TRECVID 2006/2007 and the Internet.

In total, our dataset contains 431 short videos with a total
length of 7.5 hours. In total, 764,806 frames are involved. The
dataset mainly covers videos from six genres: documentary,
ad, cartoon, news, movie and surveillance.

3.2. Data Labeling

Among the collected videos, the salient (foreground) ob-
jects in surveillance videos have already been labeled. For
other videos, we assign 23 subjects to label them (17 men,
6 women, aged between 21 and 37 years, 10-23 subjects for
each clip). Since it is invincible to manually generate the
GSM for each frame, we sample 62,356 key frames from the
selected videos (I frames for MPEG videos or sampling one
frame out of every 15 frames for other videos).

In the labeling process, subjects are first instructed to
watch a short video. Then the key frames of the former
video are displayed again in chronological order. Subjects
are asked to label all regions that they thought to be “salient”
in previous watching with one or multiple rectangles. Label-
ing differences might occur at borders, which can be greatly
reduced by combining the labels of multiple subjects. For ex-
ample, we select 10 subjects and divide them into two groups
A and B. The labeling difference between the two groups is
computed as:

LD(A,B) =
∑

|NA −NB |/
∑

(NA + NB), (1)

where NA and NB denote the numbers of subjects in A and
B who have labeled the same position. On average the dif-
ference between two subjects is 39.68%± 5.22%, whereas
that between two groups is reduced to 23.05% ± 1.77%. It
shows that the labeling differences between groups are much
smaller. After labeling, the GSMs can be obtained by com-
bining the labeling results of all subjects. For a frame Fi,
ai,k subjects have selected the k-th macro block as “salient”.
Thus, the ground-truth visual saliency of the k-th macro block
can be computed as:

gi,k = ai,k/
∑

j

ai,j . (2)



To smooth the edges of the labeling rectangles, the GSMs
generated from (2) are convolved with a 2D Gaussian kernel
(σ = 8). Some examples of GSMs are shown in Fig. 2. From
Fig.2 (a-c), we see that our labeling method can reveal the
saliencies of multiple regions. Moreover, the effect of tem-
poral context is taken into account in the labeling. For exam-
ple, we can see from Fig.2 (d-f) that the GSMs of the three
consequent frames are changing even they are visually simi-
lar. Meanwhile, objects (e.g., dog, gate) with rare inter-frame
variation are almost ignored.

3.3. Advantages and Drawbacks of Our Dataset

Our dataset provides a feasible benchmark for evaluating the
spatiotemporal saliency in video. The effects of temporal
context can be effectively reflected in the GSMs, since sub-
jects are asked to label the salient objects by recalling what
they have seen in the previous video watching process instead
of directly labeling each frame. Moreover, it is the salient ob-
jects that are labeled instead of interesting points. Thus the
dataset is also useful for evaluating saliency-based applica-
tions such as content-relevant advertising.

One drawback of our dataset owes to the rectangular la-
beling. To solve this problem, we will incorporate image seg-
mentation approaches to improve the borders of labeled ob-
jects in the future. Another drawback is that it is inefficient
to evaluate the prediction algorithms of gazes and interesting
points since we only provide regional saliency.

4. EVALUATION METHODOLOGY

Given the dataset, we need a set of appropriate criteria and
metrics to quantitatively evaluate the performances of dif-
ferent approaches for visual saliency estimation. Intuitively,
the evaluation metrics should take the following criteria into
account. 1) Consistency: the saliency distributions in the
GSM and the ESM should be perfectly consistent; 2) Regional
similarity: the salient regions extracted from the GSM and
the ESM should precisely overlap; and 3) Compactness: the
saliencies of the ESM should converge into limited regions.
Consequently, we present the following three metrics:

1) Precision. Suppose that the GSM and ESM of the i-th
frame are expressed as normalized vectors gi and g′i, we can
evaluate their consistency (precision) with cross entropy:

Pi = exp

[
−1

2

∑

k

(gi,k log
2gi,k

gi,k+g′
i,k + g′i,k log

2g′i,k

gi,k+g′
i,k )

]
,

(3)
where exp(·) function is used to normalize the precision into
[0, 1]. We use the Jensen-Shannon Divergence (JSD) here
to evaluate the cross entropy instead of KLD since JSD is
symmetric and would work better in the cases of small or zero
possibilities. The precision score would be larger if the ESM
better approximates the GSM.

(a) (b) (c) (d) (e) (f)

Fig. 2. Some representative examples of frames and GSMs.

2) ROC. ROC is effective to evaluate a binary classifier
system. Here we use it to evaluate the similarity of ESMs
and GSMs. In the evaluation process, both the ESM and the
GSM are first quantized with different thresholds to obtain
the salient regions. The thresholds can be randomly selected
respectively for the ESM and the GSM. After that, the ROC
curve is plotted as the false positive rate vs. true positive rate,
and the ROC score is defined as the area under the ROC curve.
Perfect prediction corresponds to a score of 1.

3) Compactness. By measuring the entropy of the ESM,
the compactness can be computed as:

Ci = exp

(
−

∑

k

g′i,k logg′i,k/
∑

k

gi,k loggi,k

)
, (4)

where the entropy of the GSM is used as the reference. Sim-
ilarly, we use exp(·) function to normalize the compactness
into [0, 1]. According to (4), perfect estimation should gen-
erate several salient regions while suppressing other regions.
These estimation should have a large compactness close to 1.

5. EXPERIMENTAL RESULTS

We also conducted experiments to verify whether our dataset
and evaluation metrics are effective. Six algorithms [1, 9,
10, 11, 12, 13] were performed in the experiments. Among
them, Itti’98 [1] and Itti’01 [13] are two well-known ap-
proaches which use the multi-scale center-surround contrasts
for saliency estimation; Itti’05 [9] and Zhai’06 [12] focus
mainly on finding irregularities in the inter-frame variations;
Hou’07 [10] and Guo’08 [11] explore the amplitude or phase
spectrum to select the irregular stimulus as “salient”. The
dataset and C++ source code for evaluation are available at
http://www.jdl.ac.cn/user/jiali/RSD Dataset.htm.

The overall results using the evaluation metrics proposed
in Sec. 4 are listed in Table 1. Some representative examples
are given in Fig.3. Since both Itti’98 [1] and Itti’01 [13] only
“pop-out” the most salient points in the saliency map using
“winner-take-all” strategy, it is meaningless to compare these
salient points with ground-truth regions. As a result, the ROC
scores are not given for the two algorithms.

From Table 1 and Fig.3, we can see that all the six al-
gorithms perform well in some scenes. For example, Itti’05
[9] performs well in scenes with static background (e.g., the
first, second and fifth columns in Fig.3 (d)), while Zhai’ 06
[12] can effectively detect the large objects with rigid mo-
tion (e.g., the first, second and fourth columns in Fig.3 (g)).



This indicates that our dataset are suitable for evaluating vi-
sual saliency. However, none of the algorithms performs per-
fectly on the whole dataset since our dataset covers a variety
of complex scenes. It is challenging to establish a unified
framework for visual saliency estimation on our dataset. By
analyzing the failures of these algorithms, we discover several
interesting issues that would be addressed in the future:

1) Noise suppression. A good visual saliency estimation
algorithm should effectively suppress noises while preserv-
ing salient regions. As shown in Fig.3 (e) and (f), the re-
sults of Hou’07 [10] and Guo’08 [11] have many noises be-
cause they tend to find all irregular “edges” in amplitude or
phase spectrums. This is the reason why they have low com-
pactness scores but high ROC and precision scores. In con-
trast, Itti’98 [1] and Itti’01 [13] over-suppress the noises using
the “winner-take-all” strategy, leading to high compactness
scores and low precision scores.

2) Generalization. A good algorithm should perform well
in various scenes. As shown in the third column in Fig.3 (d),
for example, Itti’05 [9] would fail in scenes with static salient
objects since it tends to detect strong inter-frame variations.
Similarly, Zhai’06 [12] can hardly detect small salient objects,
as shown in the fifth column in Fig.3 (g).

3) Saliency estimation of internal homogenous regions.
Beyond detecting the irregularities in images and videos, the
homogeneous regions inside the salient objects should also be
assigned with high saliencies.

6. CONCLUSION

In this paper, we present an extensive video dataset and an
evaluation methodology for visual saliency in video. The ex-
periment results show that our dataset is effective and espe-
cially suitable for evaluating regional saliency in video. We
have also discover several interesting issues that would be ad-
dressed in the future. One direction for improving this dataset
is to replace the rectangular labeling with labeling object bor-
ders. This could be done under the assistance of image seg-
mentation approaches.
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