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Abstract: The advent and popularity of Kinect provides a new choice and opportunity for hand gesture recognition (HGR)
research. In this study, the authors propose a discriminating features extraction for HGR, in which features from red, green
and blue (RGB) images and depth images are both explored. More specifically, histogram of oriented gradient feature,
local binary pattern feature, structure feature and three-dimensional voxel feature are first extracted from RGB images
and depth images, then these features are further reduced with a novel deflation orthogonal discriminant analysis,
which enhances the discriminative ability of the features with supervised subspace projection. The extensive
experimental results show that the proposed method improves the HGR performance significantly.
1 Introduction

Hand gestures, an unsaid body language, play very important roles in
daily communication. They are considered as the most natural
expressive means of communication between humans and
computers [1]. For the purpose of improving humans’ interaction
with computers, considerable scholarly work has been undertaken
on hand gesture recognition (HGR), whose extensive applications
include sign language recognition [2], socially assistive robotics
[3], directional indication through pointing [4] and so on [5].
1.1 Hand gesture recognition

Hands have highly articulated structures with some 27° of freedom
(DOF). Owing to these high DOF of the human hand, HGR is
indeed an extremely challenging task. Many researchers have tried
with different instruments and equipment to measure hand
movements such as sensors or wires. For sensor-based methods,
Kadous [6] demonstrated a system based on Powergloves to
recognise isolated Australian sign language. Fels and Hinton [7]
developed a system using a data glove with a Polhemus tracker as
input devices. Kim et al. [8] used fuzzy min–max neural network to
recognise manual alphabets and Korean signs based on data gloves.
Fang used fuzzy decision trees and synthetic data generation
technique for large vocabulary Chinese sign recognition [9, 10].

The sensor-based methods have high recognition accuracy because
they can precisely catch themovement of hands [9, 10]. However, due
to cumbersome and expensiveness of devices, these techniques make
less sense in practical usage [11]. Consequently, computer
vision-based HGR system, which can perform recognition as
natural as human-to-human interaction, is considered to be the more
promising method, as local features such as histogram of oriented
gradient (HOG) [12] and local binary patterns (LBPs) [13]
extracted from red, green and blue (RGB) pictures can be efficient
used in computer vision-based HGR system.

Computer vision-based methods depend on direct registration of
hand gestures with 2D image features and many promising
vision-based system have been developed [14]. Skin colour is one
of the most important clues commonly used in computer
vision-based HGR [15]. In [16], scale-space colour features were
used to recognise hand gestures in user independence conditions.
In [17], a clear-cut and integrated hand contour was first obtained
and then used to compute the curvature of each point on the
contour for recognition. In [18], a view-based approach is
proposed for continuous American SLR. They used single camera
to extract 2D features and the extracted features were then taken as
the input of hidden Markov model (HMM). Recently, there have
been some research efforts focusing on local invariant features
[19–21]. In [19], AdaBoost learning algorithm and scale-invariant
feature transform (SIFT) features were used to achieve in-plane
rotation invariant hand detection.

Although these existing vision-based methods have achieved great
success, they are still facing challenging problems caused by the
complex nature of static and dynamic hand gestures, cluttered
backgrounds, transformations, lighting changes, and occlusions.
These problems are quite difficult to solve by the current feature
descriptors and classifiers based on RGB camera.
1.2 Kinect and its application in HGR

One difference between human vision system and ordinary camera is
the ability to interpret three-dimensional (3D) information. In an
ordinary camera-based system, there is loss in information
whenever a 3D image is projected to a 2D plane. Kinect [22] is an
infrared light range-sensing camera, a motion sensing input device
by Microsoft for the Xbox 360 video game console and Windows
personal computers. In June 2011, Microsoft released a Kinect
Software Development Kit for extracting scene depth and object
masks and subsequently building a skeleton model in real time.
Although its resolution and accuracy is relatively low, the low-cost
promises to make Kinect the primary 3D measuring devices in
human–computer interfaces.

3D information provided by Kinect is an important supplementary
to the traditional vision-based HGR especially in the condition that
the background clutters or the hands may have different textures.
Until now, several works have been done related to Kinect-based
gesture recognition and other similar area [23, 24]. In this paper,
we propose hand gesture classification based on Kinect, in which
two kinds of complemented features on RGB images and depth
images are first extracted, more specifically, HOG feature, LBP
feature, and structure feature are extracted. It is noted that it is the
first time to extract such features from depth image for SLR. The
main contributions of this paper are summarised as follows:

† One of the crucial challenges in HGR, how to capture the most
meaningful information of gestures is addressed. Instead of
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extracting features from the whole frame, the dynamic regions,
which convey the most meaningful information of gestures, are
effectively extracted.
† HOG features, LBP features, and structure features are extended
to the depth domain. We verify that RGB and depth information
collaborate with each other in the HGR task, and with the
adoption of these features, the HGR performance can be improved
significantly.
† On the basis of the subspace projection, the concatenate features
are reduced with the proposed deflation orthogonal discriminant
analysis to enhance the discriminative ability, in which the feature
vectors are mapped to a low-dimensional space where the class
separability is maximised with respect to Fisher discriminant
criteria. Compared with existing techniques, the proposed method
does not depend on the number of classes which determines the
rank of the between-class-scatter matrix.

The remainder of this paper is organised as follows. Related work
is reviewed in Section 2. The feature explorations in RGB images
and depth images are presented in Section 3. Section 4 elaborates
the proposed supervised subspace projection methods. Extensive
experiment results are reported in Section 5. Section 6 concludes
this paper.
2 Related work

Vision-based HGR encompasses two main categories: 3D
model-based methods and appearance-based methods. The former
computes a geometrical representation of a hand configuration
using the joint angles of a 3D articulated structure recovered from
a hand gesture sequence, which provides a rich description that
permits a wide range of hand gestures. However, the computation
of 3D model has high computational complexity [23]. In contrast,
appearance-based methods extract appearance features from a hand
gesture sequence and then construct a classifier to recognise
different hand gestures, which have been widely used in
vision-based HGR [25].

Thewell-known features used to locate human hands and recognise
hand gestures are colour [26, 27], shapes [28, 29] andmotion [30, 31].
In earlywork, colour information is widely used to segment the hands.
To simplify the colour-based segmentation, the users are required to
wear single or differently coloured gloves [29, 32]. The skin colour
models are also used [33, 34] where a typical restriction is wearing
of long sleeved clothes. When it is difficult to exploit colour
information to segment the hands from an image, motion
information extracted from two consecutive frames is used for
HGR. Agrawal and Chaudhuri [35] explore the correspondences
between patches in adjacent frames and uses 2D motion histogram
to model the motion information. Shao and Ji [36] compute optical
flow from each frame and then use different combinations of the
magnitude and direction of optical flow to compute a motion
histogram. Zahedi et al. [37] combine skin colour features and
different first- and second-order derivative features to recognise
sign language. Wong et al. [38] use principal component analysis
(PCA) on motion gradient images of a sequence to obtain
features for a Bayesian classifier. To extract motion features,
Cooper et al. [39] extend Haar-like features from spatial domain to
spatiotemporal domain and propose volumetric Haar-like features.

The features introduced above are usually extracted from RGB
images captured by a traditional optical camera. Owing to the
nature of optical sensing, the quality of the captured images is
sensitive to lighting conditions and cluttered backgrounds, thus the
extracted features from RGB images are not robust. In contrast,
depth information from a calibrated camera pair [40] or direct
depth sensors such as light detection and ranging is more robust to
noises and illumination changes. More importantly, depth
information is useful for discovering the distance between the
hands and body orthogonal to the image plane, which is an
important cue for distinguishing some ambiguous hand gestures.
Since the direct depth sensors are expensive, inexpensive depth
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cameras, for example, Microsoft’s Kinect, have been recently used
in HGR [24]. Although the skeleton information offered by Kinect
is more effective in the expression of human actions than pure
depth data, there are some cases that skeleton cannot be extracted
correctly, such as interaction between human body and other
objects or micro-movement in close distance. Besides, when an
action is too fast or hands occlude each other, the positions of
hands are difficult to locate. To extract more robust features from
Kinect depth images for HGR, Ren et al. [41] propose the
part-based finger shape features, which do not depend on the
accurate segmentation of the hands. Wan et al. [42] extends SIFT
to spatiotemporal domain and proposes 3D EMoSIFT to extract
features from RGB and depth information, which is invariant to
scale and rotation, and has more compact and richer visual
representations. On the basis of 3D histogram of flow (3DHOF)
and global HOG (GHOG), Fanello et al. [43] apply adaptive
sparse coding to capture high-level feature patterns. Mahbub et al.
[31] propose a space–time descriptor and apply motion history
imaging (MHI) techniques to track the motion flow in consecutive
frames.

In many real-world applications, the feature dimension (i.e. the
number of features or attributes in an input vector) could easily be
as high as tens of thousands. Such extreme dimensionality could
be very detrimental to data analysis and processing. As a solution
to the curse of dimensionality, feature reduction [44] for
classification has been a popular topic for decades. There are
many reasons for caring about the dimensionality. (i) Overfitting is
inevitable for high-dimensional feature space, which might ruin
the generalisation ability of the classifier. (ii) When the number of
variables is too large, high storage capacity is required, and
computational complexity is yet another issue. (iii) In many cases,
high dimensionality causes computational instability and
singularity [45]. (iv) Class separability is very likely to be
enhanced by eliminating redundant information.

There are two types of feature reduction techniques: feature
selection and feature extraction. Feature selection [46] is to select a
subset of the variables with respect to some criteria. On the other
hand, feature extraction attempts to find a function f (x): Rm→ Rk,
which transforms data from the original space Rm to a
low-dimensional feature space Rk where m > k. Statistically, a
training dataset is commonly modelled as multivariate stochastic
observations with a Gaussian distribution. In this case, the optimal
subspace can be obtained via PCA, which exploits the statistical
dependence and inherent redundancy embedded in the multivariate
training dataset to obtain a compact description of the data.
Pearson [47] proposed PCA in 1901 as a methodology for fitting
planes in the least squares sense. Subsequently, it was Hotelling
[48] who adopted PCA for the analysis of the correlation structure
between many random variables. Some interesting applications
may be found in some recent books, for example [49, 50].
Assuming Gaussian distributed data, PCA is well known to be
optimal under both mean-square-error and maximum-entropy
criteria. PCA can be computed by several numerically stable
algorithms, including eigenvalue decomposition and singular value
decomposition [51, 52]. Moreover, the optimal performances
achieved by PCA can be expressed in closed form. Consequently,
PCA is commonly adopted as a convenient tool for feature
extraction and visualisation.

Linear discriminant analysis (LDA) has a very long history. The
underlying idea is based on Fisher criteria for maximising the
class separability. Given class label c∈ {+, −} and training data
Xc = {X c

1 , . . . , XC
Nc
}, the class separability is measured using the

‘between-class scatter matrix’ SB and the ‘within-class scatter
matrix’ SW. In LDA, a vector w is estimated to maximise the
following Fisher score:

J = WTSBW

WTSWW
(1)

The solution is the generalised eigenvector corresponding to the
largest eigenvalue of the problem SBw = SWwl. However,
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problems occur when the within matrix SW is singular. There are
many ways of tackling this problem [53, 54] and one way is to
compute the eigenvector of the Fisher matrix F= S+

wSB. The
objective of LDA is to find a projection vector such that the
projected values of data from both classes have maximum class
separability. In LDA, only one such vector can be found due to
the rank deficiency.
Fig. 2 Hand shape segmentation

a C1
b C2
3 Features exploration in RGB images and depth
images

In the gesture sequence, dynamic regions in each frame contain the
most meaningful location information, which are illustrated in Fig. 1
and it should be segmented and represented. We assume that there is
a home pose between a gesture and another one in a multi-gesture
sequence. The proposed segmentation is illustrated in Fig. 1.

In Fig. 1, threshold segmentations of the foreground and
background are applied to obtain the gesturer’s foreground on the
depth image. The threshold used is maximal depth minus 100. The
segmented gesturer’s foreground in the first depth image indicates
the initial position of the gesture, which is then denoised by
median filter and dilated ten times. A swing region is obtained by
the subtraction of the denoised foreground from the dilated
foreground. The swing region covers the slight swing of gesturer’s
trunk and can be used to eliminate the influence of body swing.
For depth frame It, define region Ξ as:

J = (m, n)|F1(m, n)− Ft(m, n) ≥ ThresholdQOM

{ }
(2)

where F1 and Ft are the foregrounds of the first depth image and the
depth image It, respectively. In the process of gesture
communication, the gesturer’s trunk has a slight back-and-forth
movement due to breathing and keeping balance. This kind of
automatic movement should be excluded from the segmentation of
dynamic region. On the basis of this consideration and the range
of depth information, ThresholdQOM is set to 60 empirically in this
paper. For each connected region in Ξ, only if the number of
pixels in this region exceeds Np and the proportion overlapped
with swing region is less than r of the connected region, it is
regarded as a dynamic region. Here Np = 500 is a threshold used to
remove the meaningless connected regions in the difference frame.
If a connected region has less than Np pixels, we think this region
should not be a good dynamic region for extracting location
features. This parameter can be set intuitively. The parameter
r = 50% is also a threshold used to complement with Np to remove
the meaningless connected regions in the difference frame. After
using Np to remove some connected regions, there may be a
retained connected region which has more than Np pixels, but it
may still not be a meaningful dynamic region for extracting
position features if the connected region is caused by the large
Fig. 1 Dynamic region segmentation
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movement of the body. Obviously, we can exploit the swing
region to remove such a region. To do this, we first compute the
overlap rate between this region and the swing region. If the
overlap rate is larger than r, it is reasonable to think of this region
is mainly produced by the movement of the body. Therefore, it
should be further removed.

Once the dynamic regions of a frame have been obtained, the
largest dynamic region D is used for hand shape segmentation.
Although hand shapes are complex, they do not have robust
texture and structured appearance. In most cases, hand shapes can
be distinguished with their shape contour. The contour points of D
are extracted using the Canny algorithm. The obtained contour
point set is defined as C1. K-means is adopted to cluster the points
in D into two clusters using Euclidean distance based on the
image coordinates and depth of each point, because if a gesturer
faces the camera, the cluster with smaller depth value contains
most information for identifying the hand shape component.
Canny algorithm is used again to extract contour points of the
cluster with smaller depth value. The obtained closed contour
point set is defined as C2 (Fig. 2).

3.1 Feature extraction

Having obtained the dynamic region, two kinds of complemented
features are extracted from the corresponding RGB image and
depth image. First, the dynamic region is resized according to the
maximal boundary dissentience in horizontal and vertical, with
this procedure, a mask image is obtained. Then HOG feature, LBP
feature, structure feature and 3D-voxel features are extracted in the
dynamic region and concentrated accordingly.

3.1.1 HOG feature in RGB and depth images: In the
proposed method, HOG features [12] are extracted from both RGB
images and depth images according to the obtained mask. For
each image of size 48 48, we finally made 14 blocks. Each block
is divided into four cells, and for all the pixels in one cell, the
gradient is calculated and the histogram of that cell is obtained
675



Fig. 3 HOG feature in RGB and depth images

a One block in the first layer
b Four blocks in the second layer: 1, 2, 4, 5/2, 3, 5, 6/4, 5, 7, 8/5, 6, 8, 9
c Nine blocks in the third layer: 1, 2, 5, 6/2, 3, 6, 7/3, 4, 7, 8/5, 6, 9, 10/6, 7, 10, 11/7, 8,
11, 12/9, 10, 13, 14/10, 11, 14, 15/ 11, 12, 15, 16

Fig. 5 Structure feature

Centre point P and the rays

accordingly, which contains nine bins and each bin corresponding to
40°.

The 14 blocks are arranged into three layers. In the first layer, one
block of size is adopted, containing the global information. In the
second layer, four blocks of sizes are used, each containing a
16-pixel overlap region with the neighbouring block. In the third
layer, we use nine blocks and there is a 12-pixel overlap region
between two blocks, as illustrated in Fig. 3. Finally, a 2016 (4
images 14 blocks 4 cells 9 bins) dimension vector is obtained as
the HOG feature of one group images.
3.1.2 LBP feature in RGB and depth images: LBP proposed
by Ojala [13] is a powerful and effective texture description
descriptor, keeping invariance to light by measuring and extracting
the inner texture information of an image (Fig. 4).

We extract LBP feature from RGB images and depth images. For
one mask image of size 48 × 48, it is divided into 4 × 4 blocks;
ignoring the edge of a picture, each block has a size of 14 × 14,
the starting and ending point is 2–15/12–25/22–35/32–45, so there
are four pixels overlapping between two blocks. Finally, an 1888
(2 images × 14 blocks × 4 cells × 9 bins) dimension vector is
obtained as the LBP feature of one group images.
3.1.3 Structure feature: Structure feature is used to descript the
structure character of an obtained mask image. First, obtain the
Canny edge of the mask image, and then randomly choose a point
P inside the edge enclosed region. Considering the tradeoff
between the time complexity and recognition accuracy, for each P,
18 rays are launched, 20° per ray. Accordingly, 18 bins can be
obtained, each bin corresponding to a fan of 40° with 20°
overlapping. Then the statistics for each bin, mean and variance of
the corresponding RGB image and depth image are estimated. To
keep the invariance to hand movement, P can be chosen randomly
50 times in a range {(x, y), 20 < x, y < 28}, and then finally taking
the mean vector as the structure feature (Fig. 5).
Fig. 4 LBP code calculating. If pi < pc, code+ = (1 < <i)
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3.1.4 3D-voxel feature: 3D-voxel feature describes the hand
skeletal coordinates of centre which is collected by Kinect. For all
the voxel coordinates that have a z value of 1, meaning that point
is belonging to hand, save all the distance between that point and
the hand joint coordinates, and then find the maximum distance.
Normalise all the distance with maximum distance, and a
statistical histogram with the set of distance can be obtained, by
dividing the range [0, 1] into 16 bins. Here, we use the mean,
variance, symmetry as statistical information and finally a 51D
feature is obtained as 3D-voxel feature, describing the space
information of hands.
4 Supervised subspace projection methods

LDA is the most popular supervised feature extraction method. In
this method, the between-class scatter matrix SB is maximised and
simultaneously the within-class scatter matrix SW is minimised.
There are some difficulties with LDA. The within-class scatter
matrix becomes singular in small sample size situation. Moreover,
the rank of between-class scatter matrix is limited. Therefore, LDA
can extract maximum c–1 features (where c is the number of
classes). In LDA, only one such vector can be found due to the
rank deficiency for binary classification problems. Having obtained
a supervised training dataset [X, Y ], the subspace projection is to
find an optimal M ×m matrix: W = [w1…wm] and the subspace
vector x→WTx presents a lower m-dimensional description of the
original M-dimensional vector x for better HGR performance.
Supposing L is the number of classes, the between-class scatter
matrix SB can be defined as

SB =
∑L
l=1

Nl[m
(l) − m][m(l) − m]T (3)

and a multi-class scatter matrix SW is further defined as

SW =
∑L
l=1

∑Nl

j=1

[x(l)j − m(l)]Nl[x
(l)
j − m(l)]

T
(4)

where Nl is the samples’ number of the lth class. The centre-adjusted
scatter matrix is represented as

�S = �X �X
T =

∑N
i=1

[xi − m][xi − m] (5)
4.1 Deflation-based orthogonal discriminant analysis

Assume m components are expected to be extracted, the
signal-to-noise ratio (SNR) pertaining to the ith component can be
IET Comput. Vis., 2015, Vol. 9, Iss. 5, pp. 673–680
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Fig. 7 Seven commonly used static hand gestures performed by the
gesturers

Fig. 6 Deflation-based orthogonal discriminant analysis
defined as

SNRi =
wT
i SBwi

wT
i SWwi

, i = 1, . . . , m (6)

Ideally, we would prefer maximising the sum-of-SNRs of all the
components. More precisely, such optimiser aims at finding a
solution for WSoSNR

W SoSNR = argmax
W=[w1 ...wm]:WTW=I

∑m
i=1

wT
i SBwi

wT
i SWwi

( )
(7)

Unfortunately, this is an NP complete problem and the complexity
for computing the SoSNR-optimal solution is heavy. For
numerical efficiency, an approximated variant, the deflation-based
orthogonal discriminant analysis aims at sequentially finding w1,
w2, …, wm such that

maximisewi

wT
i SBwi

wT
i SWwi

(8)

subject to wi⊥w1, …, i−1

wT
i wi = 1, wi [ range(X )

The proposed method can be applied to either binary or multi-class
scenario. Let us now focus on the proposed procedure for binary
classification, that is, L = 2. Denote Δ = μ+−μ−, that is, the
difference between the positive and negative centroids in the
original space, the initial pseudo-inverse as Q (1)°(SW)

+. In this
case, the optimiser in (8) can be efficiently solved by the
following algorithm (see Fig. 6).

It is noted that this procedure enjoys an important merit in that no
eigenvalue decomposition is required, making it computationally
simpler than PCA and many others. Verifying that the procedure
indeed yields an optimal solution for the criterion given in (8).

When i = 1, the first principle vector w1 can be computed. Then
the deflation operator (step 4) removes w1 component from Q (1),
forcing Range (Q(2)) to become orthogonal to w1. At the iteration
i = 2, note that w2 is orthogonal to w1 because w2∈Range(Q(2))
Now, in this iteration, a new deflation operator (Eq. (11)) will
further remove component from Q(2), forcing Range (Q(3)) to
IET Comput. Vis., 2015, Vol. 9, Iss. 5, pp. 673–680
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become orthogonal to both w1 and w2. By induction, it can be
shown that w1⊥w2⊥ · ⊥wm and thus the proof. When SW is
non-singular, such that

w1 / v1 = S(1)W

( )+
D(1) = S−1

W D(1) (9)

It is noted that Fisher discriminant analysis is the same as the first
vector obtained with the proposed method. Compared with the
recently proposed feature space discriminant analysis method SODA
[55], our proposed method has the advantage both in computation
complexity and discriminative ability. In each interaction of SODA,
eigenvalue decomposition is used to obtain w1 and pseudo-inverse
estimation is adopted in each deflation step. It means when dealing
with high-dimension features, the computational complexity will be
high and beyond tolerance in practice. To overcome this problem,
we adopted a different strategy to obtain wi. First, the difference
between the positive and negative centroids in the original space Δ is
estimated; then in each interaction, we compute vi with the updated
Q(i), and finally obtain the normalised wi. It is noted that no
eigenvalue decomposition is required in the proposed method. To
enhance the discriminative ability of the transformation matrix W,
the difference between the positive and negative centroids in the
original space Δ is updated in each interaction. In estimating the
current wi, the pre-estimated discriminative component is removed
from the original Δ, eliminating the possible negative effects of the
having obtained discriminative components.
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Table 1 Recognition accuracy with RGB features (HOG, LBP and structure features)

Original PCA KPCA LDA KLDA SODA [55] MMLDA [56] Proposed

AC 0.53 0.56 0.59 0.48 0.5 0.57 0.57 0.61
Close 0.31 0.35 0.37 0.27 0.29 0.35 0.33 0.39
Ctrl 0.6 0.59 0.61 0.53 0.55 0.59 0.58 0.64
Flat 0.33 0.36 0.38 0.31 0.32 0.37 0.37 0.39
Open 0.34 0.35 0.38 0.32 0.35 0.39 0.36 0.42
Pope 0.4 0.42 0.41 0.35 0.37 0.44 0.42 0.45
Side 0.36 0.37 0.4 0.31 0.33 0.36 0.33 0.37
Nega 0.67 0.65 0.66 0.61 0.63 0.65 0.66 0.68
Ave. 0.44 0.46 0.48 0.4 0.43 0.47 0.45 0.49
5 Experiment result

In this section, extensive experimental results are presented to
evaluate the proposed discriminative features learning in HGR. To
analyse this problem in detail, both static and dynamic gesture
recognitions are performed. All the experiments are performed in
MATLAB 7.12.0 on a Dell OPTIPLEX computer with Intel(R)
Core(TM) 2 Duo central processing unit E8400 processor (3.00 GHz),
3.25 G memory, and Windows 7 operating system. We first
evaluate the performance on standard gesture recognition and
further extend our method to compare with other state-of-the-art
methods. Our experiments reveal that the proposed method gives
superior recognition performance than many exiting approaches.
5.1 Recognition performance on standard static
gestures

The experiment data contain 700 samples of seven commonly used
static hand gestures performed 20 times by five performers. These
gestures are performed in front of Kinect as shown in Fig. 7. In
our training data, we classify gestures into seven gesture
categories: almost closed, closed, control, flat, open, pope, and
side. In the experiment, cross-validation is adopted, the data of
four people being used for training, the data of the left one used as
unregistered test set.

We compare the classification results with original space, PCA,
kernel PCA, successively orthogonal discriminant analysis (SODA),
and median–mean line-based discriminant analysis (MMLDA). The
MMLDA is proposed in [56], alleviating the negative effect on the
class mean caused by outliers with introducing the median–mean line
Table 3 Recognition accuracy with RGB and depth features

Original PCA KPCA LDA

AC 0.71 0.73 0.75 0.67
Close 0.48 0.49 0.51 0.44
Ctrl 0.88 0.89 0.91 0.82
Flat 0.42 0.44 0.45 0.38
Open 0.51 0.52 0.55 0.45
Pope 0.52 0.55 0.56 0.49
Side 0.39 0.43 0.45 0.37
Nega 0.78 0.79 0.79 0.74
Ave. 0.59 0.61 0.62 0.55

Table 2 Recognition accuracy with depth features (HOG, LBP and structure fea

Original PCA KPCA LDA

AC 0.36 0.38 0.4 0.31
Close 0.2 0.22 0.24 0.19
Ctrl 0.62 0.64 0.66 0.56
Flat 0.36 0.38 0.39 0.31
Open 0.37 0.39 0.42 0.32
Pope 0.42 0.45 0.48 0.38
Side 0.32 0.35 0.37 0.3
Nega 0.61 0.63 0.65 0.55
Ave. 0.41 0.43 0.45 0.37

678
as an adaptive class-prototype. The classifier we used is support
vector machine (SVM) [57] with rbf kernel (σ = 1). We also
compared the classification results with LDA and its kernelised
variance kernel linear discriminant analysis (KLDA), such a
kernel-based classifier is formally derived by optimising a safety
margin measured by the distance metric defined in the kernel-induced
intrinsic space [58]. The parameter σ for the kernel-based methods is
set to be 0.5 for consistent and fair comparison. The reduced
dimensionality for the feature reduction techniques under comparison
is k = 4. This is chosen based on cross-validation on the dataset and
then applied to the rest of the datasets. The recognition comparison
with features from RGB images, depth images, and both RGB
images and depth images are shown in the following three tables. The
results shown are based on the averaged error rate of one-versus-one
scheme for all classes from the datasets.

As shown in Tables 1, 2 and 3, in the case of RGB information or
depth information explored alone, the result is not satisfied. If the
features both from RGB images and depth images are extracted,
the static gesture recognition performance increased significantly.
Obviously, RGB and depth information collaborate with each
other in the HGR task, and with the adoption of these features, the
HGR performance can be improved significantly.

Compare with the other feature space discriminant analysis
methods, the proposed deflation-based orthogonal discriminant
analysis achieves the best classification results. If the original data
is adopted directly, it is obvious that the original space of data
suffers from over fitting using SVM with rbf kernel, which results
in a 59% error probability. In such scenarios, PCA/kernel PCA
(KPCA) with extremely low dimensionality will do an even better
job than the original space. LDA outperforms SVM on original
space in all cases. Since the parameter selection of kernel SVM is
KLDA SODA [55] MMLDA [56] Proposed

0.69 0.72 0.7 0.74
0.45 0.54 0.52 0.56
0.83 0.9 0.89 0.91
0.39 0.5 0.48 0.52
0.47 0.55 0.53 0.57
0.51 0.56 0.53 0.58
0.37 0.43 0.42 0.45
0.75 0.81 0.81 0.84
0.56 0.63 0.61 0.65

tures)

KLDA SODA [55] MMLDA [56] Proposed

0.33 0.37 0.36 0.39
0.19 0.23 0.22 0.25
0.58 0.58 0.55 0.59
0.34 0.56 0.55 0.59
0.33 0.45 0.43 0.5
0.4 0.44 0.44 0.48
0.33 0.35 0.33 0.39
0.58 0.64 0.64 0.69
0.39 0.45 0.44 0.48
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Table 4 Performance comparison on the 20 development data batches

Methods Extend-MHI EA [60] Manifold LSR EA [61] 3DHOF+GHOG EA [43] Motion history EA [49] Proposed EK Proposed EA

TeLev 0.26 0.28 0.43 0.31 0.3 0.25
TeLev is the sum of the Levenshtein distance divided by the true number of gestures
a key for high performance, LDA enjoys the advantage of simplicity.
By obtaining an orthogonal transformation matrix which maps the
features to a new low-dimensional feature space, SODA achieves
better performance than LDA and MMLDA. By releasing the
restriction of 1D subspace, the proposed method achieves more
flexibility than LDA, and by evading pseudo-inverse procedure
and updating the difference between the positive and negative
centroids, the proposed method has advantages both in
computation complexity and discriminative ability. Compared with
these methods, the proposed method achieves the state-of-the-art
performance.
5.2 Comparison with other dynamic HGR methods

In this section, extensive experimental results are presented to
compare with other state-of-the-art methods of dynamic HGR.
ChaLearn Gesture Dataset (CGD2011) is used in the experiments
[59]. CGD2011 is the largest gestures dataset recorded with
Kinect, which consists of 50 000 dynamic gestures (grouped in
500 batches, each batch including 47 sequences and each sequence
containing of 1–5 gestures drawn from one of 30 small gesture
vocabularies of 8–15 gestures), with frame size 240 × 320, 10 fps,
recorded by 20 different users. The proposed view point
independent gesture recognition is compared by average
performance with other recent representative methods on the first
20 development data batches. On the basis of the proposed
discriminating features extraction, two strategies are adopted.

† Extracting features from key frame (EK): In a dynamic hand
gesture sequence, the key frame, that is, the frame that has the
minimal relative motion quantity is more discriminative than the
other frames. First, the features are extracted from the key frames
in the reference and the test gesture sequences, and then the
distance between the key frames is calculated with the proposed
method in Section 4.1. The test gesture sequence is classified as
the gesture whose key frame has the smallest distance with the key
frame of test gesture sequence.
† Extracting features from all frames (EA): We extract the
discriminating feature form each frame in the gesture sequence,
and self-organisation feature map (SOFM)/HMM [62] is adopted
as the classification model. Here, SOFM/HMM is a three-state
left-to-right model allowing possible skips and the covariance
matrix is a diagonal matrix with all diagonal elements being 0.2.
The comparison results are reported in Table 4.

In the experiments, Levenshtein distance is used to evaluate the
HGR performance, which is also used in CHALEARN gesture
challenge. Levenshtein distance is the minimum number of edit
operations (substitution, insertion or deletion) that have to perform
from one sequence to another (or vice versa).

The proposed deflation-based orthogonal discriminant analysis is
applied to overcome the limitation of LDA, aiming at finding a
projection vector such that the projected values of data from both
classes have maximum class separability. In LDA, only one such
vector can be found due to the rank deficiency for binary
classification problems. The proposed deflation-based orthogonal
discriminant analysis attempts to obtain a transformation matrix
instead of a vector. We compare the proposed approaches with
some popular gesture matching methods as shown in Table 4,
including the extended motion history image and maximum
correlation coefficient (extended-MHI) [60], non-linear regression
framework on manifolds (manifold least squares regression (LSR))
IET Comput. Vis., 2015, Vol. 9, Iss. 5, pp. 673–680
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[61], the motion history-based silhouettes and Euclidean
distance-based classifiers (motion history) [49]. Our proposed EA
method achieves the best performance in the comparison. Compare
with the features adopted with the other methods, relative simple
features are used in our method, that is, HOG, LBP, structure and
3D-voxel features. With the proposed deflation-based orthogonal
discriminant analysis, these features are projected into a subspace
with more discriminative ability.

It is noted that the compared other methods extracted features
from all the frames. By extracting the discriminating features only
from the key frames, our proposed EK method further reduces the
computation complexity and achieves satisfying results. Compared
with the DHOF and GHOG [43], the proposed EK method
achieves significantly better performance. The final dynamic
gesture recognition performance depends not only on the
discriminative features extraction, but also on the classifier
adopted. Both extended-MHI [60] and manifold LSR [61] adopted
more complex classifiers. In the case of motion history feature, if
Euclidean distance-based classifiers is adopted [49], our prosed
EK method can also get better performance. In extended-MHI, the
similar motion history feature is used, whereas a correlation
coefficient method with higher computation complexity is adopted,
leading to a higher accuracy than the proposed EK. From these
comparison results, we can see that the proposed EK method has
relatively high recognition accuracy while low computational
complexity. The proposed methods achieve about 15 and 11 fps
for EK and EA, respectively, which is faster than the video
recording speed (10 fps) of CGD 2011. Besides, our work
indicates that the performance of gesture recognition can be
significantly improved by the adoption of deflation-based
orthogonal discriminant analysis, which will inspire other
researchers in this field to develop HGR along this direction.
6 Conclusion

In this paper, a discriminating features extraction strategy for HGR is
proposed. Both RGB images and depth images are explored; more
specifically, HOG feature, LBP feature, structure feature and
3D-voxel feature are first extracted from RGB images and depth
images, then a novel deflation-based orthogonal discriminant
analysis is explored for further feature reduction and enhancing the
discriminative ability, which allows high flexibility than LDA. The
proposed method has high recognition accuracy while low
computational complexity, and outperforms several state-of-the-art
methods in gesture recognition.
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