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Abstract— Recovering images from corrupted observations is
necessary for many real-world applications. In this paper, we
propose a unified framework to perform progressive image
recovery based on hybrid graph Laplacian regularized regression.
We first construct a multiscale representation of the target
image by Laplacian pyramid, then progressively recover the
degraded image in the scale space from coarse to fine so that
the sharp edges and texture can be eventually recovered. On one
hand, within each scale, a graph Laplacian regularization model
represented by implicit kernel is learned, which simultaneously
minimizes the least square error on the measured samples and
preserves the geometrical structure of the image data space.
In this procedure, the intrinsic manifold structure is explicitly
considered using both measured and unmeasured samples, and
the nonlocal self-similarity property is utilized as a fruitful
resource for abstracting a priori knowledge of the images. On the
other hand, between two successive scales, the proposed model is
extended to a projected high-dimensional feature space through
explicit kernel mapping to describe the interscale correlation, in
which the local structure regularity is learned and propagated
from coarser to finer scales. In this way, the proposed algorithm
gradually recovers more and more image details and edges,
which could not been recovered in previous scale. We test our
algorithm on one typical image recovery task: impulse noise
removal. Experimental results on benchmark test images
demonstrate that the proposed method achieves better
performance than state-of-the-art algorithms.

Index Terms— Image denoising, graph Laplacian, kernel
theory, local smoothness, non-local self-similarity.

I. INTRODUCTION

THE problem of recovering patterns and structures in
images from corrupted observations is encouraged in

many engineering and science applications, ranging from
computer vision, consumer electronics to medical imaging. In
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many practical image processing problems, observed images
often contain noise that should be removed beforehand for
improving the visual pleasure and the reliability of subsequent
image analysis tasks. Images may be contaminated by various
types of noise. Among them, the impulse noise is one of the
most frequently happened noises, which may be introduced
into images during acquisition and transmission. For example,
it may be caused by malfunctioning pixels in camera sensors,
faulty memory locations in hardware or transmission in a noisy
channel [1]. In this paper, we focus on the task of impulse
noise removal.

Removing impulse noise from images is a challenging
image processing problem, because edges which can also
be modeled as abrupt intensity jumps in a scan line are
highly salient features for visual attention. Therefore, besides
impulse noise removal, another important requirement for
image denoising procedures is that they should preserve impor-
tant image structures, such as edges and major texture features.

A vast variety of impulse noise removal methods are
available in the literature, touching different fields of signal
processing, mathematics and statistics. From a signal process-
ing perspective, impulse noise removal poses a fundamental
challenge for conventional linear methods. They typically
achieve the target of noise removal by low-pass filtering which
is performed by removing the high-frequency components of
images. This is effective for smooth regions in images. But
for texture and detail regions, the low-pass filtering typically
introduces large, spurious oscillations near the edge known
as Gibb’s phenomena [2], [3]. Accordingly, nonlinear filtering
techniques are invoked to achieve effective performance. One
kind of the most popular and robust nonlinear filters is the so
called decision-based filters, which first employ an impulse-
noise detector to determine which pixels should be filtered and
then replace them by using the median filter or its variants,
while leaving all other pixels unchanged. The representative
methods include the adaptive median filter (AMF) [4] and the
adaptive center-weighted median filter (ACWMF) [5].

Besides, many successful frameworks for impulse noise
removal can be derived from the energy method. In this frame-
work, image denoising is considered as a variational problem
where a restored image is computed by a minimization of some
energy functions. Typically, such functions consist of a fidelity
term such as the norm difference between the recovered image
and the noisy image, and a regularization term which penalizes
high frequency noise. For example, Chan et al. [6] propose
a powerful two-stage scheme, in which noise candidates
are selectively restored using an objective function with an
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Fig. 1. Intra-scale and inter-scale correlation.

�1 data-fidelity term and an edge-preserving regularization
term. Under the similar scheme, Cai et al. [7] propose a
enhanced algorithm used for deblurring and denoising, and
achieve wonderful objective and subjective performance. Dif-
ferent from Chan and Cai’s work, Li et al. [8] formulate
the problem with a new variational functional, in which the
content-dependent fidelity assimilates the strength of fidelity
terms measured by the �1 and �2 norms, and the regularizer
is formed by the �1 norm of tight framelet coefficients of the
underlying image.

From a statistical perspective, recovering images from
degraded forms is inherently an ill-posed inverse problem. It
often can be formulated as an energy minimization problem
in which either the optimal or most probable configuration
is the goal. The performance of an image recovery algorithm
largely depends on how well it can employ regularization
conditions or priors when numerically solving the problem,
because the useful prior statistical knowledge can regulate
estimated pixels. Therefore, image modeling lies at the core
of image denoising problems.

One common prior assumption for natural images is
intensity consistency, which means: (1) nearby pixels are likely
to have the same or similar intensity values; and (2) pixels
on the same structure are likely to have the same or similar
intensity values. Note that the first assumption means images
are locally smooth, and the second assumption means images
have the property of non-local self-similarity. Accordingly,
how to choose statistical models that thoroughly explore such
two prior knowledge directly determines the performance of
image recovery algorithms. Another important characteristic
of natural images is that they are comprised of structures
at different scales. Through multi-scale decomposition, the
structures of images at different scales become better exposed,
and hence be more easily predicted. At the same time, the
availability of multi-scale structures can significantly reduce
the dimension of problem, hence, make the ill-posed problem
to be better posed [9], [10].

Early heuristic observation about the local smoothness of
image intensity field has been quantified by several linear
parametric models, such as the piecewise autoregressive (PAR)
image model [11], [12]. Moreover, the study of natural image
statistics reveals that the second order statistics of natural
images tends to be invariant across different scales, as illus-
trated in Fig. 1 (denoted by inter-scale correlation). And those

scale invariant features are shown to be crucial for human
visual perception [13], [14]. This observation inspires us to
learn and propagate the statistical features across different
scales to keep the local smoothness of images. On the other
hand, the idea of exploiting the non-local self-similarity of
images has attracted increasingly more attention in the field
of image processing [15], [16]. Referring to Fig. 1 (denoted
by intra-scale correlation), the non-local self-similarity is
based on the observation that image patches tend to repeat
themselves in the whole image plane, which in fact reflects
the intra-scale correlation. All those findings tell us that local-
nonlocal redundancy and intra-inter-scale correlation can be
thought of as two sides of the same coin. The multiscale frame-
work provides us a wonderful choice to efficiently combine
the principle of local smoothness and non-local similarity for
image recovery.

Moreover, recent progress in semi-supervised learning gives
us additional inspiration to address the problem of image
recovery. Semi-supervised learning is motivated by a consid-
erable interest in the problem of learning from both labeled
(measured) and unlabeled (unmeasured) points [17]. Specially,
geometry-based semi-supervised learning methods show that
natural images cannot possibly fill up the ambient Euclidean
space rather it may reside on or close to an underlying
submanifold [18], [19]. In this paper, we try to extract this kind
of low dimensional structure and use it as prior knowledge to
regularize the process of image denoising. In another word,
in the algorithm design, we will explicitly take into account
the intrinsic manifold structure by making use of both labeled
and unlabeled data points.

Motivated by the above observation, the well-known theory
of kernels [20] and works on graph-based signal processing
[24]–[26], in this paper, we propose a powerful algorithm to
perform progressive image recovery based on hybrid graph
Laplacian regularized regression. Part of our previous work
has been reported in [21]. In our method, a multi-scale
representation of the target image is constructed by Laplacian
pyramid, through which we try to effectively combine local
smoothness and non-local self-similarity. On one hand, within
each scale, a graph Laplacian regularization model represented
by implicit kernel is learned which simultaneously minimizes
the least square error on the measured samples and preserves
the geometrical structure of the image data space by explor-
ing non-local self-similarity. In this procedure, the intrinsic
manifold structure is considered by using both measured
and unmeasured samples. On the other hand, between two
scales, the proposed model is extended to the parametric
manner through explicit kernel mapping to model the inter-
scale correlation, in which the local structure regularity is
learned and propagated from coarser to finer scales.

It is worth noting that the proposed method is a gen-
eral framework to address the problem of image recovery.
We choose one typical image recovery task, impulse noise
removal, but not limit to this task, to validate the perfor-
mance of the proposed algorithm. Moreover, in our method
the objective functions are formulated in the same form for
intra-scale and inter-scale processing, but with different solu-
tions obtained in different feature spaces: the solution in the
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original feature space by implicit kernel is used for intra-scale
prediction, and the other solution in a higher feature space
mapped by explicit kernel is used for inter-scale prediction.
Therefore, the proposed image recovery algorithm actually
casts the consistency of local and global correlation through
the multi-scale scheme into a unified framework.

The rest of the paper is organized as follows: In Section II,
we introduce the proposed graph Laplacian regularized
model and its kernel-based optimization solutions. Section III
details the proposed multi-scale image recovery framework.
Section IV presents some experimental results and compara-
tive studies. Section V concludes the paper.

II. IMAGE RECOVERY VIA GRAPH LAPLACIAN

REGULARIZED REGRESSION

A. Problem Description

Given a degraded image X with n pixels, each pixel can be
described by its feature vector xi = [ui , bi ] ∈ �m+2, where
ui = (h, w) is the coordinate and bi ∈ �m is a certain context
of xi which is defined differently for different tasks. All pixels
in the image construct the sample set χ = {x1, x2, . . . , xn}. We
call the grayscale value yi as the label of xi .

For image impulse noise removal, when image measures are
noise-dominated, the performance of image recovery can be
improved by implementing it in two steps [6]: The first step
is to classify noisy and clean samples by using the adaptive
median filter or its variant, which depends on the noise type.
Then, noisy samples are treated as unlabeled ones with their
intensity values to be re-estimated, and the rest clean samples
are treated as labeled ones with intensity values unchanged.
The second step is to adjust the inference to give a best fit
to labeled measures and uses the fitted model to estimate the
unlabeled samples. In view of machine learning, this task can
be addressed as a problem of semi-supervised regression.

B. Graph Laplacian Regularized Regression (GLRR)

What we want to derive is the prediction function f , which
gives the re-estimated values of noisy samples. Given labeled
samples Xl = {(x1, y1), . . . , (xl , yl)} as the training data, one
direct approach of learning the prediction function f is to
minimize the prediction error on the set of labeled samples,
which is formulated as follows:

arg min
f ∈Hκ

J ( f ) = arg min
f ∈Hκ

l∑

i=1

‖yi − f (xi )‖2 + λ‖ f ‖2, (1)

where Hκ is the Reproducing Kernel Hilbert Space (RKHS)
associated with the kernel κ . Hκ will be the completion
of the linear span given by κ(xi , ·) for all xi ∈ χ , i.e.,
Hκ = span{κ(xi, ·)|xi ∈ χ}.

The above regression model only makes use of the labeled
samples to carry out inference. When the noise level is heavy,
which means there are few labeled samples, it is hard to
achieve a robust recovery of noisy image. Moreover, it fails
to take into account the intrinsic geometrical structure of the
image data. Note that we also have a bunch of unlabeled
samples {xl+1, . . . , xn} at hand. In the field of machine

learning, the success of semi-supervised learning [20]–[25]
is plausibly due to effective utilization of the large amounts
of unlabeled data to extract information that is useful for
generalization. Therefore, it is reasonable to leverage both
labeled and unlabeled data to achieve better predictions.

In order to make use of unlabeled data, we follow the
well-known manifold assumption, which is implemented by
a graph structure. Specially, the whole image sample set is
modeled as a undirected graph, in which the vertices are
all the data points and the edges represent the relationships
between vertices. Each edge is assigned a weight to reflect
the similarity between the connected vertices. As stated by the
manifold assumption [18], data points in the graph with larger
affinity weights should have similar values. Meanwhile, with
the above definition, the intrinsic geometrical structure of the
data space can be described by the graph Laplacian. Through
the graph Laplacian regularization, the manifold structure can
be incorporated in the objective function. Mathematically, the
manifold assumption can be implemented by minimizing the
following term:

R( f ) = 1

2

∑n

i, j
( f (xi ) − f (x j ))

2Wi j . (2)

where Wi j is in inverse proportion to d2(xi , x j ). Wi j is
defined as the edge weight in the data adjacency graph which
reflects the affinity between two vertices xi and x j . In graph
construction, edge weights play a crucial role. In this paper, we
combine the edge-preserving property of bilateral filter [16]
and the robust property of non-local-means weight [15] to
design the edge weights, which are defined as follows:

Wi j = 1

C
exp

{
−||u j − ui ||2

σ 2

}
exp

{
−||b j − bi ||2

ε2

}
,

σ > 0, ε > 0.

(3)

where bi (b j ) is defined as the local patch centered on ui (u j ).
The first exponential term considers the geometrical nearby,
and the second one considers the structural similarity.

Let D be a diagonal matrix, whose diagonal elements
are the row sums of W, i.e., D(i, i) =∑

j Wi j . We define
L = D − W ∈ �n×n as the graph Laplacian. With above
definition, Eq.(2) can be further written as:

R( f ) =
∑n

i=1
f (xi )

2
∑n

j=1
Wi j −

∑n

i, j
Wi j f (xi ) f (x j )

= fT Df − fT Wf = fTLf, (4)

where f = { f (x1), . . . , f (xn)}. Combining this regularization
term with Eq.(1), we obtain the objective function of Laplacian
regularized least square (LapRLS):

arg min
f ∈Hκ

{J ( f ) = ∥∥yL − fL
∥∥2 + λ‖ f ‖2 + γ fTLf}, (5)

where yL = [y1, . . . , yl ]T , fL = [ f (x1), . . . , f (xl)]T and f =
[ f (x1), . . . , f (xn)]T .

C. Optimization by Implicit Kernel

In order to obtain the optimal solution for the above
objective function, we exploit a useful property of RKHS, the
so called representer theorem. It states that minimizing of any
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optimization task in Hilbert space H has finite representation
in H.

Theorem 1. (Representer Theorem [18]). Let χ be a
nonempty set and κ a positive-definite real-valued kernel on
χ ×χ with corresponding reproducing kernel Hilbert space H.
Given a set of labeled samples {(x1, y1), . . . , (xl , yl)} ∈ χ×�,
a strictly monotonic increasing function 	 : [0,∞) → �, and
a loss function c : (χ × �)2 → � ∪ {∞}, each minimizer
f ∈ H of the regularized risk functional

c((y1, f (x1)), . . . , (yl , f (xl))) + 	
(‖ f ‖H

)
(6)

admits a representation of theory

f (x) =
∑l

i=1
αiκ(xi , x). (7)

In this paper, the loss function c is specified as the quadratic
loss, and the regularization term 	

(‖ f ‖H
)

takes the form
	

(‖ f ‖H
) = λ‖ f ‖2 = λ f T f . The Representer Theorem

above allows us to express the solution of regularized least
square (RLS) formulated in Eq.(1) directly in terms of the
labeled data and the kernels. As stated in the above subsection,
we extend the RLS to LapRLS formulated in Eq.(5) to utilize
both labeled and unlabeled information in regression. The
following extended version of the Representer Theorem shows
that the minimizer has an expansion in terms of both labeled
and unlabeled samples and it is a key to our algorithm.

Theorem 2. (Representer Theorem for Semi-supervised
Learning [18]) Given a training sample set including both
labeled and unlabeled samples {(x1, y1), . . . , (xn, yn)}∈χ×�,
the minimizer of the optimization problem formulated in

c((y1, f (x1)), . . . , (yl , f (xl))) + 	
(‖ f ‖H

) + γ fTLf (8)

admits an expansion

f (x) =
∑n

i=1
αiκ(xi , x) (9)

in terms of both labeled and unlabeled samples.
With the above exteneded Representer Theorem, we define

the solution f of Eq.(5) as:

f =
⎡
⎢⎣

f (x1)
...

f (xn)

⎤
⎥⎦ =

⎡
⎢⎣

∑n
i=1 αiκ(xi , x1)

...∑n
i=1 αiκ(xi , xn)

⎤
⎥⎦ = Ka. (10)

where K is the kernel gram matrix with Ki j = κ(xi , x j ),
a = [α1, . . . , αn]T . Denoting KL as the submatrix consisting
of rows of K corresponding to those labeled samples in the
set X L , we have fL = KLa.

Mathematically, the kernel function is defined as: κ(xi , x) =
〈�(xi ),�(x)〉 = �(xi )

T �(x), where 〈·, ·〉 is the inner product
operator; and � : χ → H is the kernel induced feature
mapping, which maps the points in χ to a higher-dimensional
RHKS space H. According to the above definition, Eq.(9) can
be further written as:

f (x) = (
∑n

i=1
αi�(xi )

T )�(x). (11)

f in the second term of Eq. (5) is referred to as the coefficient
vector of the mapped feature �(x) in RHKS space, which is
derived as

f = (
∑n

i=1
αi�(xi )

T ) = [�(x1), . . . ,�(xn)]a. (12)

As a result, we have

‖ f ‖2 = aT [�(x1), . . . ,�(xn)]T [�(x1), . . . ,�(xn)]a
= aT Ka, (13)

With above representations, the objective function defined
in Eq. (5) can be rewritten as:

arg min
a∈Rn

{J (a)=∥∥yL − KLa
∥∥2 + λaT Ka + γ aT KLKa}. (14)

Therefore, the original minimization problem converts to a
quadratic problem with respect to the representation coefficient
vector a. By taking ∂ J (a)/∂a = 0, we can derive a closed-
form solution as:

a∗ =
(

KLKT
L + λK + γ KLK

)−1
KLyL . (15)

Substituting this optimal coefficient vector into Eq. (10), we
can get the optimal predicted values for all samples. How to
define Ki j = κ(xi , x j ) will be elaborated in next section.

We call the above model as implicit kernel GLRR
(IK-GLRR), since the form of kernel function κ(xi , x j ) is
directly given (as formulated in Eq. (21) and Eq. (22)), without
relying on any concrete definition of �. The above implicit
kernel induced framework addresses the problem of nonlinear
estimation in a nonparametric manner, which relies on the data
itself to dictate the structure of the model. It provides us an
effective approach to explore the intra-scale similarity, and can
handle image recovery from very sparse data.

D. Optimization by Explicit Kernel

We further consider explicitly mapping samples to a high
dimensional feature space in order to reformulate the proposed
graph Laplacian regularized model in a linear manner in that
space. This is equivalent to solving a nonlinear problem in the
original space. This will bring us additional insights to address
the current ill-posed problem.

More specifically, after the process of feature mapping,
we get x̃i = �(xi ), which is a projected point in the high-
dimensional space. Then we define a linear kernel function in
this higher-dimensional feature space as κ (̃xi , x̃) = x̃T

i x̃. With
the definition, the representer theorem formulated in Eq. (9)
can be written as:

f (̃x) =
∑n

i=1
αiκ (̃xi , x̃) =

(∑n

i=1
αi x̃T

i

)
x̃. (16)

Denoting wT = (∑n
i=1 αi x̃T

i

)
, then f (̃x) converts to a linear

function with the coefficient vector w. And f̃ can be written
as:

f̃ =
⎡

⎢⎣
f (̃x1)

...
f (̃xn)

⎤

⎥⎦ =
⎡

⎢⎣
wT x̃1

...

wT x̃n

⎤

⎥⎦ = X̃T w, (17)

where X̃ = [̃x1, . . . , x̃n] is the feature matrix in the mapped
high-dimensional space. Since f in Eq.(5) indicates the coef-
ficient vector of the mapped feature �(x) in RHKS space,
we have f = w for explicit kernel optimization. Thus,
	

(‖ f ‖H
) = λ‖ f ‖2 = λwT w.
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Fig. 2. Model duality across different scales. Black dots represent samples
at coarser scale, black dots and blank dots together represent samples at
finer scale. The information of second order statistics is scale invariant, and
therefore can be propagated from coarser scale to finer scale.

Substituting Eq. (17) into Eq. (5), the objective function can
be formulated into a parametric quadratic form with respect
to w:

arg min
w

{J (w)=
∥∥∥yL −X̃T

L w
∥∥∥

2 + λwT w + γ wT X̃LX̃w}, (18)

where X̃L = {̃x1, . . . , x̃l}. By taking ∂ J (w)/∂w = 0, we
derive a closed-form solution as:

w∗ =
(

X̃LX̃T
L + λI + γ X̃LX̃

)−1
X̃LyL . (19)

Here, I is the identity matrix. We call the above model
as explicit kernel GLRR (EK-GLRR), since it relies on an
explicitly defined feature mapping �, which will be detailed
as follows.

The kernel trick described above maps the non-linear fea-
tures into a higher dimensional linear feature space, in which
we can obtain a linear relationship between mapped features.
In the field of image processing, some linear models, such as
autoregressive (AR) model, have been widely used to quantify
the local smoothness of image intensity field [11], [12].
It inspires us that the EK-GLRR model also can be used
to finish similar tasks. Moreover, the study of natural image
statistics reveals that the second order statistics of natural
images tends to be invariant across different scales. Based on
such an observation, as shown in Fig. 2, we first estimate
the EK-GLRR model from the recovered image at a coarse
scale and then use the model to adapt the reconstruction at
the finer scale based on the geometric duality across different
scales. In this way, we can learn and propagate the statistical
features across different scales to keep the local smoothness of
images. In practical design, the explicit projection � : R → R4

is defined as mapping one pixel to 4-dimensional vector
including its four 8-connected neighbors along two diagonal
directions.

E. Discussion

The IK-GLRR and EK-GLRR models described above
supply complementary views towards the regularity in natural
images: The former model operated in the original feature
space is derived from the perspective of global geometry
consistency, which attempts to explore the property of non-
local self-similarity among image samples, and connect the

labeled and unlabeled samples through the graph Laplacian
regularization; while the latter model is derived from the
perspective of local structure preservation, which explicitly
map the image data points to a high dimensional feature space,
and establish a direct connection between the inter-scale cor-
relation and the linear regression in the mapped feature space.

III. PROGRESSIVE HYBRID GRAPH LAPLACIAN

REGULARIZATION

As stated in the above section, the IK-GLRR and EK-GLRR
models provide two complementary views about the current
image recovery task. A natural question is how to combine
them together into an elegant framework. In this paper, we
propose to use a simple multi-scale framework to achieve
such a purpose. There are at least several reasons why we use
the multi-scale framework. First, one important characteristic
of natural images is that they are comprised of structures at
different scales. Through multi-scale decomposition, the struc-
tures of images at different scales become better exposed, and
hence be more easily predicted. Second, a multi-scale scheme
will give a more compact representation of imagery data
because it encodes low frequency parts and high frequency
parts separately. As well known, the second order statistics
of natural images tends to be invariant across different scales
[13], [14]. Therefore, the low frequency parts can be extracted
from much smaller downsampled image. Third, the stronger
correlations among adjacent image blocks will be captured
in the downsampled images because every four image blocks
are merged into one block in the downsampled image. As a
consequence, in this paper, we propose an effective approach
to recover noisy imagery data by combining hybrid models
and the multi-scale paradigm.

We now introduce the multiscale implementation of the
proposed method. To give a clear illustration, we summary the
proposed multi-scale scheme in Fig. 3, where 90% samples in
the test image Peppers are corrupted. We use the subscript l
to indicate the level in the pyramid of downsampled images.
The finest level (the original image) is indicated by l = 0. The
larger is l, the coarser is the downsampled image. We denote
the highest level to be l = L.

First, the level-l image Il passes a low-pass filter F , which
is implemented in our method by averaging the existing pixels
in a 2 × 2 neighborhood on higher resolution. Then, the filter
image is downsampled by 2 to get a coarser image Il+1.

Il+1
.= F(Il) ↓ 2, l = 0, . . . , L − 1. (20)

In this way, we can construct a Laplacian pyramid. In the
practical implementation, we construct a tree-level Laplacian
pyramid.

At the beginning, we have the image I2 at scale 2 at
hand, which is defined on the coarsest grid of pixels G2.
This initial image lacks a fraction of its samples. We start
off by recovering the missing samples using the proposed
IK-GLRR model, which has been detailed in Section II-C, to
get a more complete grid Î2. This procedure can be performed
iteratively by feeding the processing results Î2 to the GLRR
model as a prior for computing the kernel distance κ . In the
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Fig. 3. Diagram of the proposed method.

practical experiments, two iterations was found to be effective
in improving the processing results in such type of operations.
Specially, in the first iteration, since there is only coarsest
degraded image I2 at hand, we construct the kernel distance
by Gaussian kernel:

κ(xi , x j ) = ex p(
∥∥ui − u j

∥∥2
/σ 2), (21)

where ui and u j are the location coordinates of xi and x j

respectively. For the rest iteration and iterations in other higher
level, we use non-local means kernel to explore the global
correlation among the whole image samples:

κ(xi , x j ) = ex p(
∥∥bi − b j

∥∥2
/σ 2). (22)

Here, bi and b j are the local patches centered on xi and x j

respectively, which represent the context information around
xi and x j .

The recovered image Î2 is then interpolated to a finer grid G1
using the proposed EK-GLRR model, which has been detailed
in Section II-D. The upsampled image Î1 can be used as a
prior estimation for the IK-GLRR model towards a refined
estimate Î∗

1. Then Î∗
1 can be upconverted to Î0 in the original

resolution grid G0 by the EK-GLRR model. And the refined
estimate Î0 can be combined with I0 into another IK-GLRR
recovery procedure towards the final results Î∗

0. Using the
above progressive recovery based on intra-scale and inter-scale
correlation, we gradually recover an image with few artifacts.

Note that the basic scheme we use is closely related to
the work [27]. However, we replace most of the components
it uses with application-specific ones that we describe in the
above section. The first contribution is that we explicitly take
into account the intrinsic manifold structure by making use
of both labeled and unlabeled data points. This is especially
useful for the current impulse noise removal task, in which the

number of clean samples is usually not enough to train a robust
predictor when the noise level is heavy. The large amounts of
unlabeled data can be effectively utilized to extract information
that is useful for generalization. The second contribution
is that we propose to use the model induced by implicit
kernel to consider the property of scale-invariant of natural
image, which are shown to be essential for visual perception.
This model can effectively learn and propagate the statistical
features across different scales to keep the local smoothness
of images.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, extensive experimental results are presented
to demonstrate the superiority of the proposed algorithm on
the task of impulse noise removal. In experiments, we test
two cases: only denoising and both denoising and deblurring,
to show the power of our method on handling different
distortion. For these two cases, we test two kinds of impulse
noise: salt-and-pepper noise and random-value noise. For
thoroughness of our comparison study, we select seven widely
used images in the literature as test images, as illustrated
in Fig. 4. The images are all sized of 512 × 512. There
are a few parameters involved in the proposed algorithm.
σ 2 and ε2 are fixed to 0.5. λ and γ are set as 0.5 and 0.01
respectively.

For comprehensive comparison, the proposed algorithm is
compared with some state-of-the-art work in the literature.
More specifically, four approaches are included in our com-
parative study: (1) kernel regression (KR) based methods [22];
(2) two-phase method proposed by Cai et al. [7]; (3) iterative
framelet-based method (IFASDA) proposed by Li et al. [8];
(4) our method. The source code of our method can be
available from http://homepage.hit.edu.cn/pages/xmliu.
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Fig. 4. Seven sample images in the test set.

TABLE I

OBJECTIVE QUALITY COMPARISON OF FOUR ALGORITHMS (IN dB) FOR SALT-AND-PEPPER NOISE REMOVAL

For the first stage, we use the adaptive median filter (AMF)
for salt-and-peppers noise detection, and use the adaptive
center-weighted median filter (ACWMF) for random-value
noise detection. Suppose that f be a noisy image with impulse
noise and y be the filtered result by median-type filter, A be
the image plane. The candidates of noisy pixels contaminated
by impulse noise can be determined as follows:

(1) For salt-and-peppers noise:

N = {(i, j) ∈ A : yi j �= fi j and fi j ∈ {dmin, dmax}},
(23)

(2) For random-valued impulse noise:

N = {(i, j) ∈ A : yi j �= fi j } (24)

Then the detected noisy pixels are treated as missing pixels
(filled with 0) and the rest clean pixels are kept their original
value to get the reference image. For more information about
the methods of noise detection, we refer the interested readers
to [4] and [5].

A. Salt-and-Pepper Noise Removal

We first examine the performance comparison on restoring
images contaminated by salt-and-pepper noise only. The test
images are corrupted by salt-and-pepper noise with high noise
rates: 80%, 85%, 90%. For detecting salt-and-pepper noise, we
use the AM filter [5] with a maximum window size of 19. We
quantify the objective performance of all methods by PSNR.
Table I tabulates the objective performance of the compared
methods. It is clear to see that for all images our method
gives highest PSNR values among the compared methods. The
average PSNR gain is up to 0.53dB compared with second best
perform algorithm. For Lena, the performance gain is 1.01dB
when the noise level is 85%.

It is worth mentioning that KR can be regarded as a
special case of our method, which only performs single-scale
estimation. KR fails to handle high noise levels, such as 90%.
At noise levels 80% and 85%, our method works better than
KR for all images except Barbara. In Barbara, there are many
globally repeated textures with regular directions. Since such
regions are not piecewise stationary, the geometric duality
across different scales does not exist. Therefore, the multi-
scale framework does not work well in this case. In contrast,
the single-scale and patch-based kernel regression works bet-
ter. For images with repetitive structures like Barbara, we can
degenerate the proposed scheme to single-scale to get better
results.

Given the fact that human visual system (HVS) is the
ultimate receiver of the restored images, we also show the
subjective comparison results. The recovered results for Lena,
Peppers and Boat are illustrated in Fig. 5, corresponding
to 90% salt-and-peppers noise. The contents of these noisy
images are almost not invisible. From the results, we can find
that, under high noise levels, the kernel regression methods
generate some spurious high frequency artifacts; Cai’s method
overblurs the results and cannot keep the edge structure well;
while the IFASDA approach causes irregular outliers along
edges and textures. It can be clearly observed that the proposed
algorithm achieves the best overall visual quality through
combining the intra-scale and inter-scale correlation: the image
is sharper due to the property of local smoothness preservation
when using inter-scale correlation, and the edges are more
consistent due to the exploration of non-local self-similarity
when using intra-scale correlation.

B. Random-Valued Impulse Noise Removal

We now consider the case that test images are corrupted
by random-valued impulse noise only. The random noise
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Fig. 5. Subjective quality comparison on salt-and-pepper noise removal with the noise level 90%. Column 1: the noisy images; Column 2: the results of KR;
Column 3: Cai’s results; Column 4: the results of IFASDA; Column 4: our results.

TABLE II

OBJECTIVE QUALITY COMPARISON OF FOUR ALGORITHMS (IN dB) FOR RANDOM-VALUED IMPULSE NOISE REMOVAL

values are identically and uniformly distributed in [dmin, dmax],
therefore, clearly random-valued impulse noise are more
difficult to detect than salt-and-pepper noise. And the task of
random-valued noise removal is expected to be more difficult
compared with salt-and-peppers noise removal. Therefore, for
random-valued impulse noise removal, we test three medium

noise levels: 40%, 50% and 60%. In our experiments, the
noise is detected by ACWMF [14], which is successively
performed four times with different parameters for one image.
The parameters are chosen to be the same as those in [23].

In Table II, we show the PSNR values when restoring
the corrupted images with random-valued impulse noise. As
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Fig. 6. Subjective quality comparison on random-valued noise removal with the noise level 50%, Column 1: the noisy image; Column 2: the results of KR;
Column 3: Cai’s results; Column 4: the results of IFASDA; Column 4: our results.

TABLE III

OBJECTIVE QUALITY COMPARISON OF FOUR ALGORITHMS (IN dB) FOR SALT-AND-PEPPER NOISE REMOVAL AND DEBLURRING SIMULTANEOUSLY

depicted in this table, our method also achieves the best objec-
tive performance among the compared methods. The proposed
algorithm achieves the highest average PSNR value for all
cases. The average PSNR gain is up to 0.55dB compared with
second best perform algorithm. The recovered results for Lena,
Peppers and Boat are illustrated in Fig. 6, corresponding to

50% random-valued impulse noise. From the results, we can
find after noise removal Cai’s method and IFASDA still have
some regions with noise, such the face region of Lena, the
region between two peppers in Peppers, and the mast region
of Boat. Our method produces more clear results compared
with other methods.
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Fig. 7. Subjective quality comparison on deblurring and denoising simultaneously for salt-and-peppers noise with noise level 90%. Column 1: the noisy
image; Column 2: the result of KR; Column 3: Cai’s result; Column 4: the results of IFASDA; Column 4: our results.

TABLE IV

OBJECTIVE QUALITY COMPARISON OF FOUR ALGORITHMS(IN dB) FOR RANDOM-VALUED NOISE REMOVAL AND DEBLURRING SIMULTANEOUSLY

C. Salt-and-Pepper Noise Removal and Deblurring

Next, let us examine the performance of compared methods
on mixed distortion, that is, performing denoising and deblur-
ring simultaneously, where the test images are first blurred
and then added with impulse noise. The blurring operators are
Gaussian blur with a window size of 7 × 7 and a standard
deviation of 1. We first test salt-and-peppers noise. The added

impulse noise is still with three heavy levels: 80%, 85%,
90%. Table III illustrates the quantitative comparison on these
test images. It can be observed that the proposed algorithm
achieves the highest PSNR values for all test images. The
average PSNR gain is up to 1.46dB compared with second
best perform algorithm.

We also test the subjective quality comparison. The recov-
ered results for Lena, Peppers and Boat are illustrated in Fig. 7,
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Fig. 8. Subjective quality comparison on deblurring and denoising simultaneously for random-valued impulse noise with noise level 50%. Column 1: the
noisy image; Column 2: the result of KR; Column 3: Cai’s result; Column 4: the results of IFASDA; Column 4: our results.

TABLE V

OBJECTIVE QUALITY VERSUS AVERAGE PROCESSING TIMES

(dB/SECONDS) RESULTS

corresponding to 90% salt-and-peppers noise and blurring. Our
method produces the most visually pleasant results among
all comparative studies. Even under blur and impulse noise
simultaneously, the proposed algorithm is still capable of
restoring major edges and repetitive textures of the images.
It is noticed that the proposed method can more accurately
recover global object contours, such as the edge along the

shoulder in Lena, the edge along the pepper in Peppers, and
the edges along the mast in Boat. It is easy to find that the edge
across the region with heavy noise cannot be well recovered
with other methods. This further demonstrates the power of
the proposed multi-scale impulse noise removal algorithm.
The strength of the proposed progressively recovery approach
comes from its full utilization of the intra-scale and inter-scale
correlations, which are neglected by the currently available
single-scale methods. And many large-scale structures can be
well recovered based upon the progressively computed low-
level results, which is impossible for traditional single level
impulse noise removal algorithms.

D. Random-Valued Noise Removal and Deblurring

We now consider the case that blurred images are corrupted
by random-valued impulse noise. We still test three medium
noise levels: 40%, 50% and 60%. Table IV tabulates the
objective quality comparison with respect to PSNR of the
four test methods. From this table, we can find at lower
noise levels, such as 40%, for test images Wheel and Man,
the proposed method loses slightly compared with IFASDA.
But the average PSNR is still higher than IFASDA. From
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higher noise levels, such as 50% and 60%, the proposed
method works the best among the compared methods for
all test images. The average gain is up to 0.65dB. This
demonstrates our method can handle more difficult cases.
Fig. 8 illustrates the subjective quality comparison for Lena,
Peppers and Boat when the noise level is 50%. It is noticed
that the proposed method can more accurately recover images.
Both the superior subjective and objective qualities of the
proposed algorithm convincingly demonstrate the potential of
the proposed hybrid graph Laplacian regularized regression for
impulse noise removal.

E. Running Time vs. Performance Comparison

Another major issue needed to consider in image denoising
is the computational complexity. Here we use random-valued
noise removal and deblurring as an example to show the
practical processing time and performance comparison among
the compared methods. Table V gives the PSNR versus aver-
age processing times results on a typical computer (2.5GHz
Intel Dual Core, 3G Memory). All of the compared algorithm
are running on Matlab R2012a. As depicted in Table V, the
computational complexity of the proposed method is higher
than KR but lower than two other state-of-the-art image
impulse noise removal algorithms, and achieves much better
quality with respect to PSNR than other methods.

V. CONCLUSION

In this paper, we present an effective and efficient image
impulse noise removal algorithm based on hybrid graph Lapla-
cian regularized regression. We utilize the input space and the
mapped high-dimensional feature space as two complementary
views to address such an ill-posed inverse problem. The
framework we explored is a multi-scale Laplacian pyramid,
where the intra-scale relationship can be modeled with the
implicit kernel graph Laplacian regularization model in input
space, while the inter-scale dependency can be learned and
propagated with the explicit kernel extension model in mapped
feature space. In this way, both local and nonlocal regularity
constrains are exploited to improve the accuracy of noisy
image recovery. Experimental results demonstrate our method
outperforms the state-of-the-art methods in both objective
and subjective quality. Moreover, the proposed framework is
powerful and general, and can be extended to deal with other
ill-posed image restoration tasks.
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