Multimed Tools Appl (2014) 70:1799-1824
DOI 10.1007/s11042-012-1210-1

Optimal entropy-constrained non-uniform scalar quantizer
design for low bit-rate pixel domain DVC

Bo Wu - Nan Zhang - Siwei Ma + Debin Zhao - Wen Gao

Published online: 24 August 2012
© Springer Science+Business Media, LLC 2012

Abstract In this paper, an optimal entropy-constrained non-uniform scalar quantizer is
proposed for the pixel domain DVC. The uniform quantizer is efficient for the hybrid video
coding since the residual signals conforming to a single-variance Laplacian distribution.
However, the uniform quantizer is not optimal for pixel domain distributed video coding
(DVCQ). This is because the uniform quantizer is not adaptive to the joint distribution of the
source and the SI, especially for low level quantization. The signal distribution of pixel
domain DVC conforms to the mixture model with multi-variance. The optimal non-uniform
quantizer is designed according to the joint distribution, the error between the source and the
SI can be decreased. As a result, the bit rate can be saved and the video quality won’t
sacrifice too much. Accordingly, a better R-D trade-off can be achieved. First, the quanti-
zation level is fixed and the optimal RD trade-off is achieved by using a Lagrangian function
J(Q). The rate and distortion components is designed based on P(¥]Q). The conditional
probability density function of SI ¥ depend on quantization partitions Q, P(¥|Q), is approx-
imated by a Guassian mixture model at encocder. Since the SI can not be accessed at
encoder, an estimation of P(Y]Q) based on the distribution of the source is proposed. Next, J
(Q) is optimized by an iterative Lloyd-Max algorithm with a novel quantization partition
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updating algorithm. To guarantee the convergence of J(Q), the monotonicity of the interval
in which the endpoints of the quantizer lie must be satisfied. Then, a quantizer partition
updating algorithm which considers the extreme points of the histogram of the source is
proposed. Consequently, the entropy-constrained optimal non-uniform quantization parti-
tions are derived and a better RD trade-off is achieved by applying them. Experiment results
show that the proposed scheme can improve the performance by 0.5 dB averagely compared
to the uniform scalar quantization.

Keywords DVC - Non-uniform scalar quantizer - Optimal quantizer

1 Introduction

Recently, the new applications such as wireless low power video surveillance and wireless
sensor network are emerging. In these applications, a light encoder is required because the
computation and memory resources on sensors are scarce. Accordingly, a DVC scheme
which has a much low computation complexity video encoder has been proposed [1-3, 7].
With the development of the advanced channel codes, the practical DVC schemes are
emerging, such as the practical Wyner-Ziv codec developed by Stanford [1, 2], the DIS-
COVER system [3, 7] proposed by DISCOVER DVC organization etc. The DVC coders can
be classified into pixel-domain and transform-domain coders. Transform domain coders
have greater coding efficiency than the pixel-domain ones. However, pixel domain DVC
encoders are less complex than their transform domain counterparts [19]. Therefore, the pixel
domain DVC s still a current research focus [4, 13, 25, 30]. In this paper, we present an optimal
entropy-constrained non-uniform scalar quantizer for the low bit-rate pixel domain DVC.

Scalar quantizers have been applied in diverse lossy source coding schemes, such as H.264/
AVC, due to their efficiency and simplicity. However, the quantizer design for the practical
DVC is just emerging [9, 18, 20, 23, 28]. In this paper, we focus on the optimal non-uniform
scalar quantizer design for practical pixel domain DVC. The source signals distribution of pixel
domain DVC can be model by a mixture Gaussian with multiple variances, which is different
from the conventional hybrid video coding. The uniform quantizer is not appropriate to this
model in case of low bit-rate coding. This causes the bit error rate (BER) between the source and
Sl increases and lowered the coding efficiency. Therefore, we adopt a non-uniform quantizer for
the pixel domain DVC. In the proposed quantizer design, the quantization level is fixed first and
the conditional probability density function of SI Y depend on quantization partitions O, P(Y]0),
is approximated by a Guassian mixture model at encocder. Next, the coding rate and distortion
model of pixel domain DVC is designed based on P(Y]Q). Then, a rate-distortion Lagrangian
function is established and the function is optimized by an iterative Lloyd-Max algorithm with a
novel quantization partition updating algorithm. Consequently, the entropy-constrained optimal
non-uniform quantization partitions are derived and a better RD trade-off is achieved by
applying them. From the simulation results, the BER between the source and SI in one
quantization partition is effectively decreased and the RD performance for pixel domain
DVC is effectively improved.

The remainder of this paper is structured as follows. Section 2 reviews related work in
optimal scalar quantizer design and its extension to Wyner-Ziv video coding (WZVC) scenario.
Section 3 provides a detailed description to the optimal entropy-constrained quantizer design
for low bit rate practical pixel domain DVC. In Section 4, the proposed optimum non-uniform
quantizer is applied to the pixel domain DVC and the experiment results are discussed. In
Section 5, the conclusions and directions for future work are presented.
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2 Related work

Scalar quantizers have been studied for decades. The Lloyd-Max scalar quantization [5, 10,
14, 15] is to find a set of quanta {y, ..., y,} and a set of partition endpoints {xi,..., x,;} that
minimize the mean squared error distortion for a given probability distribution p(x). The
necessary optimal condition of the Lloyd-Max process shows that each quantum is the
centroid of the area of p(x) between two adjacent endpoints, whereas each endpoint is at the
midpoint of two adjacent quanta. Because there are not a closed form equations for the
centroid and midpoint, a trial-and-error iterative process was proposed to successively adjust
y; value until a stationary solution is obtained. The obtained optimal quantizer is not uniform.
Since the rate of the Lloyd-Max scalar quantizer is only determined by the quantization
level, this kind of quantizer is named fixed-rate quantizer. If the entropy coding is considered
in optimal scalar quantizer design, a better rate-distortion tradeoff can be achieved. Thus the
fixed-rate quantizer design is generalized to entropy-constrained quantizer design [5]. In [5],
Berger provided the rate-quantization (R-Q) model and distortion-quantization (D-Q) model
which are correlated to the quantization parameter Q. Then, the Lagrangian function was
used, which is a linear combination of the rate R and distortion D as the optimal function for
quantizer design. It is well known that the Lloyd-Max design techniques may produce only
locally optimal quantizer. The globally optimal fixed-rate scalar quantizer design has been
explored in [8, 26, 27]. Bruce [8] showed that a dynamic programming technique can be
used to compute the globally optimal K: N quantizer in polynomial-time for general error
measure. Then, Wu [26] reduced the time complexity of a dynamic programming algorithm
for the mean square error measure. Later, Wu and Zhang [27] generalized the previous
algorithms to a considerably wider class of error measure. In [16], the dynamic programming
strategy is generalized to the optimal entropy constrained scalar quantizer design. They
developed a globally optimal quantizer which gives the optimal tradeoff between rate and
distortion. And this algorithm is suitable for a family of single-source multiple-receiver and
side-information source coding application including the Wyner-Ziv coding scenario. How-
ever, it was pointed out that the globally optimal is not guaranteed for Wyenr-Ziv quantizer
even with respect to the convex codecell constraint [16].

The optimal scalar quantizer design is extended to Wyner-Ziv coding scenario recently. In
general, a Wyner-Ziv codec can be considered to consist of a quantizer followed by a
Slepian-Wolf encoder (SWC) [21, 29]. The Slepian-Wolf encoder exploits the correlation
between the source and SI over a virtual channel. A good Slepian-Wolf codec is capable of
approaching the joint entropy between the source and the SI, so it can be regarded as a
lossless entropy encoder. The entropy-constrained quantizer design for Wyner-Ziv coding
was proposed in [18, 23]. Since the Lloyd-Max algorithm is easy to implement and has low
complexity, many authors extended it to generate the optimal entropy-constrained scalar
quantizers in Wyner-Ziv coding. In [18], the authors studied the design of quantizer for
distributed lossless source coding in terms of the trade-off between distortion and rate. The
contribution is that the ideal coding rate equals to the joint conditional entropy of the
quantization indices given the SI. Then, an extended Lloyd-Max algorithm which generates
the optimal quantizer with disconnected quantization regions was raised for the distributed
source coding case. The authors also prove that that uniform quantization is optimal at high
rates for distributed source coding. In [23], the authors first designed an optimal quantizer
with a fixed number of partitions and the optimal function is a linear combination of the rate
and distortion. Then, the necessary conditions were given and they were only correlated with
the endpoints of the quantizer. At last, an iterative algorithm was proposed to find the
optimal partitions to minimize the optimal equation. The iterative algorithm is an extended
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Lloyd-Max type I algorithm, in which each endpoint is bracketed in a convex interval first
and then a bisection search is used to locate a local minimum trade-off serving as the new
endpoint. This updating procedure guarantees the cost is non-increasing and the optimiza-
tion function converges to a limit. However, the above optimal quantizer design algorithm is
not suitable for practical DVC scenario, since the real signal is not continuous and the joint
conditional entropy is difficult to obtain. The reason is that the source and the SI cannot be
simultaneously accessed at the encoder or decoder. Therefore, it is necessary to exploit a
method to generate optimal quantizer for practical DVC.

Our approach differs from these existing works. First, the conditional distribution of SI
given the quantization partition bins P(Y|Q) is approximated at encoder. The mixture
Gaussian model is used to model the conditional distribution P(Y|Q). Since the ST Y can
not be accessed at encoder, a coarse estimation of P(Y|Q) based on the distribution of the
source X is proposed. Second, the optimal RD tradeoff is achieved by using a Lagrangian
function J(Q) which is a linear combination of rate and distortion. Both of the rate and
distortion in J(Q) are modeled based on the conditional distribution P(Y|Q), Third, to
guarantee the convergence of the optimization function J(Q) in the Lloyd-Max algorithm,
the monotonicity of the interval in which the endpoints of the quantizer lie must be satisfied.
Therefore, a quantizer partition updating algorithm which considers the extreme points of
the histogram of the input source is proposed. At last, experimental results reveal that the
proposed non-uniform scalar quantization can improve the coding performance by 0.5 dB
averagely compared to the uniform scalar quantization at low bit rate.

3 Optimal non-uniform scalar quantizer design

In pixel domain DVC, in case of low bit-rate, non-uniform scalar quantizer may achieve a
better RD trade-off than the uniform scalar quantizer. This is due to the distribution of the
source signals and the characteristics of the RD curve of the pixel domain DVC. In this
section, we derive the optimal non-uniform quantizers using a modified Lloyd-Max algo-
rithm and apply them to the practical pixel domain DVC. First, the pixel domain DVC
scheme with optimal non-uniform quantizer is introduced. Second, the relationship between
the rate and distortion in pixel domain DVC is analyzed. Particularly, the capability of
reaching a RD trade-off is pointed out. Third, we propose the rate and distortion models
which are correlated with quantization bins. At last, a modified Lloyd-Max algorithm is
described in detail. It is designed to iteratively derive the optimal quantizer. In this algorithm,
a novel quantization partition updating algorithm is adopted.

3.1 Pixel domain DVC scheme

The coding scheme of the employed pixel domain DVC system is similar to the scheme
proposed in [1]. The frames of the input video sequence are classified into intra frames (7
frame) and Wyner-Ziv frames (W frame). / frames, i.e. odd frames, are coded with the
traditional DCT based intra coding method. W frames, i.e. even frames, are encoded with the
turbo codes and decoded using log-MAP algorithm together with SI. The coding scheme is
shown in Fig. 1.

At encoder, each pixel of W frame is quantized using the optimal non-uniform scalar
quantizer with 2" levels. According to the compression rate of turbo codes, several quantizer
indexes are organized together to form a symbol. For example, if 4-level quantizer is used,
two indexes (each index has 2 bits) form a symbol for the rate 4/5 turbo codes. All these
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Fig. 1 Framework of DVC scheme based on the optimal non-uniform quantizer

symbols in a frame form a symbol block W,. Then, the quantized block W, is sent to the rate
compatible punctured turbo (RCPT) encoder which consists of two constituent convolu-
tional codes with rate 4/5. After encoding, the system bits of the block are discarded. The
parity bits are stored in the buffer and transmitted to decoder upon request successively.

At decoder, the SI Yis generated by using the motion compensated interpolation (MCI)
algorithm [1]. Then, the SI Y'is fed into the turbo decoder module. A Log-MAP algorithm [6]
is adopted to decode the quantized symbol block W, with the help of the SI Y until an
acceptable bit error rate (BER) is achieved. After turbo decoding, the decoded symbol block
W, can be used to reconstruct Wyner-Ziv frame W together with ¥.

3.2 Analysis of optimal condition

Quantization can impact on the coding performance of the pixel domain DVC remarkably. In
traditional hybrid video coding, quantization is performed on the coefficients of the trans-
formed prediction residue. The distribution of the residual is known to the encoder and it is
assumed to be Laplacian or Gaussian with single variance. So the quantizer accompanied
with an entropy encoder can be designed to achieve optimum rate-distortion with the penalty
at encoder. While for the pixel domain DVC case, quantization is performed on the original
pixel values of the Wyner-Ziv frame. The quantized source signal is encoded individually
but decoded depending on the SI at decoder. If the distribution of the Wyner-Ziv frame and
the SI in one quantization partition mismatches too much, the BER between the source and
the SI will be large and more parity bits will be cost for turbo decoding. This situation may
decrease the coding performance. Moreover, the distribution of the pixel values in a frame is
a mixture model with multi-variance. And the distribution varies if the content of the frame
changes. Hence, there is a higher probability that the error between the source and the SI is
bigger if a uniform quantizer is adopted, which is not adaptive to the joint distribution of the
source and the SI, especially for low level quantization. If the quantizer is designed
according to the joint distribution of the source and the SI with non-uniform quantization
partition, the error between the source and the SI in one quantization partition will be small.
As a result, the bit rate consumed by Wyner-Ziv decoding can be saved. Accordingly, a
better RD trade-off can be achieved. Therefore, how to get the optimal quantizer is one of the
most important problems in DVC.

First, we will analyze the relationship between the rate and distortion in the pixel domain
DVC. Figure 2 shows the rate and distortion curves when different quantization partitions
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are applied to practical pixel domain DVC. In this test, we use the rand functions in Matlab
to generate a source X and a noise signal N. While the SI Y'is equal to the source X with the
noise N. Both of the source X and SI Y conform to Gaussian distribution as shown in Fig. 2
(a). The noise signal N complies with the Laplacian distribution as shown in Fig. 2(b). Then,
the source X is encoded by the pixel domain DVC scheme with different quantization
partitions bins. Correspondingly X is reconstructed with the help of the SI Yat decoder side.
The quantizers are comprised of 4-level uniform and non-uniform partition bins. When the
SNR equals to 26.94 dB, the applied partition bins are shown in Table 1. For the other five
SNR cases, the settings of quantization partition bins are similar. We use SNR to measure the
correlation between X and Y. In this test, six X-Y pairs with different SNR are adopted.
Accordingly, in Fig. 2(c), each curve corresponds to an X-Y pair with certain correlation. The
SNR is the quotient of the source X and the noise N and it is defined as follows,

M
>

SNR = 10log,y ————— (1)
(x; —J’t)z

=

where x; is one element of the source and y; is corresponding element of the SI. M is the
block size of the generated Gaussian source and it equals to 25344 in the test. In Fig. 2(c),
the vertical axis is the mean squared error (MSE) between the original source and the
decoded signal. The horizontal axis is the bit rate and the unit is kilobits per second
(kbps). The bit rate is calculated as follows,

_ Th-fr

"~ fin- 1000 @)

where 75 is the total bits used in decoding and f# is the frame rate. fi is the number of coded
frame. Therefore, in Fig. 2(c), each curve show the rate-distortion results of above DVC
coding test with different quantizers for a certain X-Y correlation. From this figure, we can
see that the distortion increase is slow compared with the rapid reduce of the rate. Hence, it is
possible to design an optimal quantizer to reduce the rate significantly while keeping the
distortion increase little, and a better RD trade-off can be achieved if the optimal non-
uniform quantizer is applied to such DVC schemes.

Then, the reason of applying non-uniform quantizer which can reduce Wyner-Ziv coding
rate is explained here. The Wyner-Ziv encoder is equivalent to a quantizer followed by a
Slepian-Wolf encoder [1]. The quantization process is to map the pixel values to a certain
quantizer index. Let O denotes the quantization partition patterns. The ¢, and g, denote the
quantizer index of source signals x and SI y. Y denotes the SI and X denotes the source. That

Table 1 Coding results of DVC

with different quantization SNR(dB) Quantization partition Bit rate (kbps) MSE
partition
26.94 [0,78,128,178,256] 288.84 29.67
[0,72,129,184,256] 264.84 30.18
[0,66,128,189,256] 240.6 30.72
[0,61,128,194,256] 215.4 31
[0,58,128,199,256] 215.64 31.21
[0,54,128,201,256] 215.04 31.32
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has been shown in [18] that when ideal SWC is assumed, the achievable rate R is given by H
(Q|Y). The conditional entropy equals to [11],

HOIY) ==Y > p(gsqy)log, (( %)

i qx: qy)

oL oL ) (3)
=-> Zp i.j)1

=1 j= J

The joint probability p(g,.q,) is as follows:

pi.j) =p(gwqy) = / / p(x,y)dxdy (4)

*€[li-0 1)) ye[T,0.T)

in which (7, 75, ..., Tp,) means the endpoints of the quantization partition. QL is the
quantization level. The marginal probability p(g,) is

oL
pG) =p(ay) = ZP(QM‘U ) (5)

Jj denotes is the jth quantization bin and the jth bin is [7j_;,7;) . Let’s define a joint
distribution function to measure the variation of the joint probability distribution under
different quantization partition patterns. From equation (4), it is known that p(i,i) denote the
probability of x and y is partitioned into the same quantization bin. Therefore, the joint
distribution function adopts the sum of the traces of the joint distribution matrix p(g, g,) to
measure the joint probability. The function is defined as

.ﬁuint = Z 6]x7 q} Zp I l (6)

To investigate the relationship between the Slepian-Wolf coding rate and the quantization
partition pattern, we show the numerical result of ideal SWC coding rate in (3), the joint
distribution factor in (6) and the actual BER corresponding to different quantization partition
types in Table 2. From Table 2 we can see that the joint distribution of p(i,i) increases and the
BER decreases if the quantization bins with high probability density are enlarged. Moreover,
the conditional entropy (3) is proportional to BER. Intuitively, we hope to decrease the
conditional entropy, equivalently, to increase the joint distribution of p(i,i). Subsequently,
both of the BER and the rate for Slepian-Wolf coding are decreased.

From the above analysis, it is known that an optimal condition which considers the trade-
off between the rate and distortion has to be achieved at encoder side in the optimal non-
uniform quantizer generation algorithm. However, since the source and the SI cannot appear

Table 2 Comparison of the

Slepian-Wolf coding results, Quantization partition bins ~ SWC rate  fiu Actual BER
SNR=26.94 dB
[0,78,128,178,256] 0.5991 0.8473 0.085
[0,72,129,184,256] 0.0887 0.8574 0.077
[0,66,128,189,256] 0.0369 0.8736 0.07
[0,61,128,194,256] 0.0317 0.8818 0.065
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simultaneously at encoder or decoder, the accurately conditional probability distribution of
the SI given the source is hard to be calculated. So the rate and distortion of Wyner-Ziv
coding cannot be precisely computed. In the next subsection, we will propose a method to
estimate the rate and distortion for the practical pixel Wyner-Ziv coding.

3.3 Rate distortion model design

To achieve a better rate and distortion trade-off while applying different quantization
partitions to the practical pixel domain DVC, a Lagrange function is adopted as an optimal
condition in decision-making process. The function is described as follows,

J(Q) = min{D(Q) +AR(Q)} (7)

In the above function, Q is a kind of quantization partition pattern. R represents the rate
and D denotes the distortion; A is a multiplier of the Lagrange function. In the following, the
model of rate and distortion which can be obtained at encoder side is described.

According to the analysis, there is a linear relationship between the actual coding rate and
actual bit-error rate. The relationship is shown in Fig. 3. In Fig. 3, three test sequences
(Foreman\Akiyo\Mother&Daughter@QCIF) are used and the average quality of key frames
is 35.57 dB. Therefore, we propose a method to estimate the conditional probability at
encoder. The model of rate and distortion are both based on the estimated conditional
probability. Let P(Y]Q) denote the conditional probability. Since Y can not be obtained at
encoder, we use the distribution of X to estimate the distribution of Y. This estimation is
reasonable because these two distributions are very similar in general. This is shown in
Fig. 4. The histograms of Y and X which are the first Wyner-Ziv frames of Forman@QCIF
sequence are compared. We use a Gaussian mixture model to estimate the conditional
probability density function P(Y]Q). It is defined as follows:

P(Y|Q) = >, N (Xelisg ov)
k=1,..0L

(8)
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Fig. 3 Linear relationship between the coding rate and the BER
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Fig. 4 Similarity between the histogram of the source X and that of the SI Y, , the Ist frame of
Foreman@QCIF

where QL is the quantization level. P(¥]Q) is a linear combination of QL Gaussian compo-
nents. N (X gy, ox) is the Gaussian distribution model for x;, in the kth quantization partition
bins. yi is the mean and oy is the variance. The parameter 7, is the mixing coefficients. We
use the following method to estimate the mixing coefficient.

_ Ne

- o)

TTj
where N is the total pixels number of the source x. N, is the number of the source x which is
contained in the kth quantization partition bin. The mixing coefficient 7, meets the normal-
ization condition.

The method of moment estimation is used to estimate the probability density functions of each
Gaussian component in the Gaussian mixture model (8). The estimation function for mean is

=— X (1
= Z x(7) (10)
The estimation function for variance is

RN ;
=N ; (ock (2) = puge) (e (1) = p1. ) (11)

xk(i) € [Tk*l’ Tk)k =1,..,0L

Figure 5 shows the pixel domain histograms of X and Y which are the 1st frame of Wyner-
Ziv frame in test sequence Foreman@QCIF. The curve is the estimated conditional proba-
bility density functionP(Y|Qy) . The area characterized by different colors represents the real
mismatch between X and Y. It is denoted that y; falls outside certain quantization partition bin
[Tk, Ty:;) while the corresponding x; resides in it. x; and y; are pixels having the same
position k in the original frame and the corresponding SI. The ratio between the color area
and the total area of the histogram is the actual BER.

Due to the SI Y cannot be accessed at encoder. The actual BER cannot be obtained. This
means that the color area cannot be achieved. Thus, the area bounded by the curve of P x
(Y|Or) , which falls outside the boundary of quantization bins, and the axis of Bins is used to
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Fig. 5 Estimated probability distribution of P(Y|Qy) , the 1st frame of Foreman@QCIF

fit the BER. Let’s denote the specified area as S. The linear relationship also exists in the
actual bit-error rate and the conditional probability of Y given the quantization partition
pattern Q. The relationship is shown in Fig. 6. The test sequence is Foreman@QCIF and the
average quality of the key frame in the DVC coding is 32 dB. Since the actual coding rate
and BER are in a linear relationship, the area S can be used to estimate the rate.

R= stk Zkzle{m P P(yk()|Qk)k€[1 OL]i€[0,255] (12)

in which y,(i) denotes the ith bin of curve P(Y|Qy) in the kth quantization partition. The bin
width is 1. The range of y;(i) is [0,255] and it is determined by the pixel values. P(yy(i)| Q)
is the probability of P(Y|Qy) at y4(i) and it can be calculated by equation (8).

Similarly, the conditional probability can also be used to estimate quantization distortion.

D=3 3" Pex()|00) 107 (1)) — ] (13)

where i € {i|P(y(i)|Ox) > THR} . It means that the ith bin in the kth quantizer partition is
used to calculate the distortion if the corresponding probability P(yy(i)|Qx) is larger than a
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Fig. 6 Linear relationship between the estimated coding rate and the actual BER

@ Springer



1810 Multimed Tools Appl (2014) 70:1799-1824

threshold value. Q~!(y,(i)) means the inverse quantization value of bin y;(i). The mean
value p is defined as follows:

M% ZxE[TH,M)x if y(i) < Bty ”
SRE: Doty ¥ i pe(i) > A

where M, = card({x|x € [Tk,l, T"*‘;Tk)}) and M, = card({x|x € [W,Tk) }) .M,
and M, are the numbers of source elements in the first and the second half-part of each
quantization partition respectively. So far, the rate and distortion models have been
established.

The aim of Lagrange cost function is to minimize the function (7) and the \ is the so
called Lagrange multiplier. Consequently, how to determine A become a key problem. In our
proposed method, both of the distortion D and rate R are related to quantization partition
pattern O, Supposing R and D to be differentiable everywhere, the minimum of function (7)
is given by setting its derivative to zero, i.e.

diJ(Q)} _ d{D(Q)} |, HR(Q)}
dQ dQ dQ

=0 (15)

leading to,

A d{D }/d{R _ D (16)

dR

Therefore, the above equation derives the Lagrange multiplier and it indicates that A
corresponding to the negative slope of the rate-distortion curve. In our scheme, we use a
quantization partition updating algorithms to iteratively derive the optimal quantization
partition bins. In each updating cycle, the corresponding partition bin is extended with equal
steps. As the quantization partition bins changes, it produces a new pair of rate R and
distortion D. We use an offline training method to obtain a sequence level A. In this method,
a sequence level rate-distortion curve can be calculated using the RD model (12) and (13)
according to the quantization partition updating cycle. Consequently, the negative slope of
the sequence level rate-distortion curve is the Lagrange multiplier \.

3.4 Modified Lloyd-Max quantizer design algorithm

In this section, a modified Lloyd-Max algorithm is described in detail. It is designed to
iteratively derive the optimal quantizer. In the modified Lloyd-Max algorithm, a novel
quantization partition updating algorithm is proposed. These quantization partition bins
are updated according to the monotonicity of histogram. The modified Lloyd-Max algorithm
in the encoder is described as following:

1. Analyze the histogram of the pixels which are drawn from the Wyner-Ziv frame;

Choose the uniform quantization partition bins as the initial quantization partition for a

fixed quantization level,

Set k=1, ’=MAX_VAL;

4. Compute the new optimal reproduction values for these partitions using the centroid
condition; then, using the nearest neighbor condition to gather the source elements to
different QL partitions; consequently, new Voronoi quantization partitions are obtained.

W
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5. Calculate the rate and distortion for the particular quantization partition, using equation
(10)~(12). Compute the cost function J* = D + AR and compare it with the previous
step costJ =D If J5J%=1) | continue to next step; Else, stop and exit the iteration;

6. Perform the quantization partition updating algorithms. It chooses new initial reproduc-
tions set which expand the cell that contains those inputs with high probability. Increase
iterator, k++ and go back to 4.

The 4th step is to use the Lloyd algorithm to adjust the new quantization partition and
calculate the new reproduction value for these new partition bins. First, the Lloyd algorithm
uses the nearest neighbor rules to compute the new quantization partition bins.

Vi = {xld(n%) < d(x,50)sall k #i} ki € [1,0L] (17)

where X; is the reproduction value for the ith quantization partition bin. The initial
reproduction value X; is the midpoint of the quantization partition bin. d denotes the distance
from sample points x to the neighbor X; and the Euclidean distance is taken as the distance
metric. In our scheme, the sample point is the pixel value and the neighbor is the reproduc-
tion value. V; is the rearranged ith quantization partition bins.

X =(Ti +T)/2i € [1,0L] (18)

Second, the new reproduction values are computed for the new quantization partition V;
using the centroid condition rule.

~ doTiX

P = ) 19
b= (19)
in which,
|1 ifxel;
i = { 0 otherwise (20)

The mean value in (19) is the new reproduction value for V;. The aim of rearranging the
quantization partition is that the produced V; is beneficial to the Turbo decoding procedure.
According to the nearest neighbor condition, it is known that the distance from those pixels
in one particular partition to the corresponding reproduction value is shorter than that to
other reproduction values. This circumstance improves the joint distribution between the
original source and SI [11]. Hence, the bit error rate between the original and the SI is
decreased. Consequently, the bit-rate consumed by recovering the error is decreased.

3.5 Quantization partition updating algorithm

According to the analysis in section 3.2, if the quantization bins with high probability
density are enlarged, the joint distribution of source X and SI Y increases. Therefore, the
partition bin with the highest probability is extended first. To guarantee the convergence of
the optimization function J(Q), the boundary of current quantization bin needs to be
extended toward the decreasing direction of the monotonic interval. The detailed steps of
quantization partition updating algorithm are described as follows:

1. Count the probability distribution for each quantization partition. Firstly, integrate the
probability density of each quantization partition bin and the probability for each bin is
obtained. Secondly, sort the partition bin according to the probability.
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2. Extend the quantization bins based on the sorting order.

3. Determine the monotonic interval within which the boundary of current quantization
partition bin is estimated to lie. Afterwards the boundary is expanded toward the
direction of monotonic decreasing. When the boundary reaches the minimal value of
current monotonic interval, stop the expansion of the current interval and go to Step 2 to
deal with the next interval extension. Or the extending boundary coincides with the
other boundary of the neighboring quantization partition bin. Merge two quantization
partitions and generate a new quantization range. Then, go to Step 2 to deal with the
next interval extension.

Above all, we will introduce the first step. To get the probability for quantization
partition, the histogram of the pixel intensity should be counted up. Let’s define the
histogram of those pixels in one frame as,

h(k) => I{f(x,y)} =kk=0,1,..,255 (21)

in which 7{f(x,y)} denotes the pixel intensity at the position(x, y) in one frame f.k is the kth
intensity level and its value ranges from 0 to 255. Hence, the bin width of the histogram is 1.
h(k) is the histogram and it indicates the total number of the pixels with intensity level k. The
histogram /(k) implies the probability density. Then, the histograms are counted up to
calculate the probability of each quantization partition bin,

P(Qs) = > gesh(k) S =[1,0L] (22)

Q, represents the quantization partition S. P(Qy) is the probability of quantization partition S.

Then, the quantization partition bins are sorted according to P(Q). Next, the quantization
bins are extended based on the sorting order. Subsequently, the determination of monotonic
intervals is introduced as follows. To determine the monotonic intervals, the extreme points
of the histogram should be derived first. The extreme points are defined as:

hmax (1) = {n|h(n)h(n — 1)& h(n)h(n + 1)}

(1) = {nlh(n)h(n — 1)& h(n)h(n + 1)}, (23)

where the maximum value of histogram / is /,,,.(#) and the minimum value is /,;,(n).

Since the original frame f(x,y) contains high frequency information, there are a lot of
noise peaks in the histogram. If the histogram A(k) is directly used to derive the extreme
points, many pseudo extreme values may be obtained, as shown in Fig. 7. The red triangle is
the derived extreme points. Therefore, the histogram needs to be smoothed. Considering the
computational complexity, the moving window weighed average is used to smooth the
histogram. The weighing function is defined as follows:

AR S (24)

h, is the smoothed histogram, and the moving window function w(m) is defined as:

_N N
w(m):{l k=Fsmsk+s (25)

0 otherwise

After smoothing, the distribution of the extreme points is shown in Fig. 8. The blue curve
is the smoothed histogram. Compared with Fig. 7, the pseudo extreme points are signifi-
cantly decreased. However, there also exist some pseudo extreme points which are not
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located at the peak or valley of the histogram wave. Therefore, the pseudo extreme points
need to be further removed. From Fig. 8, it can be seen that the gradient of extreme points
gathered in the peak and valley is smooth, whereas the gradient of other groups of extreme
points descends steeply. So a threshold of the slope over a cluster of extreme points used to
remove those points which are not located at the peak or valley of the histogram. First, a
clustering method resembling k-means algorithm is used to gather the extreme points into
different sets. Then, the maximal slopes over different sets are calculated. The values of the
slopes are compared with the threshold to judge whether the points in each set are real
extreme points.

K-means clustering is a method which partition n observations into & clusters are based on
a specific criterion. The time complexity of k-means is O(tkn), in which n is the
number of the samples. k is the number of the cluster sets and ¢ is the iterative times.
k and t are often much smaller than n. Therefore, it is an efficient algorithm. The
weakness of k-means is that the number of cluster sets & should be predefined.
However, determining the correct number of clusters for an unknown sample set is
difficult. In our method, the number of clusters k& does not need to be determined first,
but to determine a radius R. In our scheme, an empirical radius R is taken. The radius
R is obtained by an offline training method and it is consistent at the sequence level.
For any point p in the sample space, the distance from p to the already known centers
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Fig. 8 Extreme points of smoothed histogram
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is measured. If the distance to center k£ is smaller than R, then p is added into cluster
set k. Otherwise if the distances from p to any center are all larger than R, p is
performed as a central point for a new cluster set k+1. The number of cluster set is
increased by 1. The two dimensional information that includes the pixel value and the
histogram of the extreme points p = (k, hy(k)) are adopted as a point in the sample
space. The distance » from p to any already known centers in our cluster method is
calculated as follows,

r= [k = )+ (s (k) = ()] (26)

where (4., hy(k.) ) is the center of the clustering set. The generated clustering sets are
shown as Fig. 9.

The slope of the cluster set is determined by the maximal histogram A" and the minimal
histogram A™" in one cluster set. The function is defined as:

| = |hmax hmm(kz)/kl | (27)
The concrete steps of the cluster algorithm are described as followed:

1. Set the cluster set as CSet = () and the set number k=0
While (i<PointSet.size) {

a) Select the sample point p; from the sample space PointSet,
b) Calculate the radius  from p; to all already known centers p = (k, hs(k)) of existing
cluster sets.

» If'there exists a cluster set k that satisfies r,< R, the sample point p; is added into
the kth cluster set CSet(k). Update the center of the kth cluster set CSet(k);
* Else if all radius r is larger than R, then p; is performed as a center for a new
cluster set. k++.
c) it+}

After performing the proposed clustering method, the pseudo extreme points which are
not located at the peak or valley of the histogram are removed. The maximum and minimum
values of the remaining extreme points are determined. The interval between two adjacent
maximum and minimum values is a monotonic one.
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Fig. 9 Clusters of extreme points using K-MEANS clustering algorithm

@ Springer



Multimed Tools Appl (2014) 70:1799-1824 1815

At last, the interval extension is introduced. First, the monotonic interval in which the
boundary 7; of the current quantization bin [T}, T;4+1) lies is determined. Then, 7; extends
toward the direction of monotonic decreasing, which is defined as follows:

(28)

T/ — T; + Step if T; € MD
P\ T, —Step if T, € ML

where MD represents a monotonically decreasing interval and MI represents a monotoni-
cally increasing interval. When 7} reaches the minimal value of current monotonic interval,
stop the extension of 7; and begin to extend Tj,;. Until both the boundaries of [T}, T;41)
reach the minimal values, the current quantization bin [7}, 7;11) stops extending and the
extension of next bin begins. Moreover when the boundary 7; coincides with that of adjacent
quantization bin T;_;, two adjacent bins are merged together. After that the quantization level
is decreased by 1 and a new quantization partition pattern is produced. To keep the
quantization level unchanged, a new quantization bin should be generated. First, the new
quantization partition is sorted according to the probabilities of each quantization bins.
Second, the quantization bin [7,,, T,,+1) with the minimal probability is chosen for the
generation of new quantization bin. The quantization [7},, T,,+1) bin is divided into two
partition bins [T, (T + Tus1)/2) and [(Tw + Twt1)/2, Tutr) -

4 Experimental results
4.1 Evaluation of RD performance using PSNR

In this section, the proposed optimal non-uniform quantizer is implemented on the pixel
domain DVC to verify the coding efficiency. The key frames are H.263 intra coded. The test
sequences are Foreman@QCIF, daughter@QCIF and Akiyo@QCIF. The parameter of the
test sequences are given in Table 3. The last column of Table 3 gives the average quality of
key frames which is used in the Wyner-Ziv coding. A rate-compatible punctured turbo
encoder (RCPT) is adopted in Slepian-Wolf codec and the acceptable bit error rate at the
decoder is set to 10>, The parameter of Laplacian distribution model is obtained by offline
fitting the difference between the original frame and its SI frame. The test results are shown
as Fig. 10. In Fig. 10, “Proposed Quantization” denotes the RD curve produced by the DVC
scheme which adopts the proposed optimal non-uniform quantizer in this paper. “Uniform
Quantization” denotes the RD performance of the DVC scheme which adopts the uniform
quantizer. “H.263-I” indicates the RD results of H.263 intra frame coding. “H.263-IBI”
indicates the RD results of I-B-I coding of H.263. The GOP size is 2 and the coding structure
is I-B-I-B. The fixed quantization 4-level is adopted by the uniform quantization in pixel
domain DVC. The range of pixel values is partitioned into four quantization intervals. The
level of non-uniform quantization is also four, but the lengths of intervals are unequal. In
each sequence, 150 frames are encoded and the coding structure is I-W-...-W-I. The GOP
size of Wyner-Ziv coding is 2.

From Fig. 10, we can see that our proposed optimal non-uniform quantizer outperforms
the uniform quantizer in practical pixel domain WZVC scheme. The average gain of the
Foreman sequence is 0.55 dB. The average gain of the Mother and Daughter sequence is
0.42 dB. The average gain of the Akiyo sequence is 0.46 dB. The average gain of the Silent
sequence is 0.47 dB at low bit-rate end. The average gain of the Mobile sequence is 0.12 dB
at low bit-rate end. The gain of Mobile sequence is not as significant as other test sequences.
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Table 3 Parameters of the test - -
sequences Test Resolution Luminance/ Frame Average

sequence Chroma number  quality
(PSNR)

Foreman 176x144  4:0:0 150 35.84 dB
34.02 dB
31.60 dB
30.71 dB
29.98 dB
29.35 dB
Mother and 176x144  4:0:0 150 44.8 dB
Daughter 40.39 dB
37.71 dB
3597 dB
Akiyo 176x144  4:0:0 150 45.58 dB
41.35 dB
38.67 dB
36.73 dB
Silent 176x144  4:0:0 150 343 dB
32.94 dB
31.85 dB
30.97 dB
30.27 dB
Mobile 176x144  4:0:0 150 31.89 dB
30.06 dB
28.64 dB
27.5 dB
26.56 dB
25.76 dB

It is because the pixel domain distribution of the Mobile is not so consistent with the mixture
Gaussian model.

4.2 Evaluation of image quality using SSIM

In this section, we use the Structural Similarity Index metric (SSIM) to evaluate the image
quality of the decoded video sequence. The SSIM quality assessment is based on the
degradation of structural information. It is under the assumption that human visual percep-
tion is highly adapted for extracting structural information from a scene. The SSIM has been
verified that it is sensitive to the structural information [24]. And it has been applied in many
fields to assess the video quality from the perspectives of human visual system, such as the
perceptual-based rate-distortion optimization (RDO) [17].

The equation of SSIM is defined as (13) in [24]. In our experiments, the block size of
SSIM measurement is typically 88, and the final SSIM value is the averaged SSIM of all
blocks. The maximum SSIM index is 1, which occurs when the two images are identical.
The more similar two images are, the closer SSIM index is to 1. Table 4 shows the average
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SSIM index, and average PSNR of various sequences. Compared with the uniform quan-
tizer, the SSIM gain of the proposed optimal non-uniform quantizer is from —0.016 to 0.001,
and PSNR gain is between —0.44 and 0.08 dB. For most sequences, both of the SSIM and
PSNR are loss. However, comparing with the rate savings, the PSNR decrease is not
significant. This result is consistent with the discussion in section 3.2. Since the distortion
increases slow compared with the rapid bit-rate reductions, if the optimal non-uniform
quantizers are applied, a little PSNR can be sacrificed to save more coding bits to achieve
a better R-D trade off for Wyner-Ziv coding. For the SSIM index, more than half of the cases
(10 of 16) the loss is smaller than 0.01. Therefore, the sacrificed objective quality brings
little harm to the subjective quality.

4.3 Computational overhead

The computational overhead of the proposed scheme mainly comes from the modified
Lloyd-Max quantizer design algorithm, which iteratively derive the optimal quantizer
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Fig. 10 RD results of DVC using optimal non-uniform scalar quantizer (a) Foreman@QCIF (b) Mother and
Daughter@QCIF (¢) Akiyo@QCIF (d) Silent@QCIF (e) Mobile@QCIF
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Table 4 Comparisons of SSIM and PSNR obtained for Wyner-Ziv coding with uniform quantizer and the
proposed optimal non-uniform quantizer at different quality levels of key frames

Sequence Average PSNR of  Uniform quantizer Proposed optimal non-uniform quantizer
key frames (dB)
SSIM PSNR (dB) SSIM PSNR (dB)
Foreman 35.84 0.941179 3531317 0.935474 (-0.005705)  35.07112 (-0.24)
34.02 0.930352  33.97601 0.922936 (—0.007416)  33.71171 (-0.26)
31.60 0.907405 32.05752  0.896616 (—0.010789)  31.74862 (—0.31)
30.71 0.896536  31.31767  0.883815 (—0.012721)  30.98456 (—0.33)
29.98 0.885639  30.68598  0.871051 (—0.014588)  30.32642 (—0.36)
29.35 0.875731 30.13102  0.858948 (—0.016783)  29.73194 (—0.39)
Mother and 44.8 0.986778  43.69433 0.987188 (0.00041) 43.74867 (0.05)
Daughter 40.39 0.973329  40.21276  0.973141 (-0.000188)  40.20593 (—0.007)
37.71 0.959655 37.87372  0.958332 (—0.001323)  37.81196 (—0.06)
3597 0.95011 36.30006  0.946973 (—0.003137) 36.1952 (—0.1)
Akiyo 45.58 0.990301 45.11039 0.990958 (0.000657) 45.19135 (0.08)
41.35 0.980876  41.40303 0.981132 (0.000256) 41.42901 (0.03)
38.67 0.969836  38.9031 0.969821 (—=0.000015)  38.89532 (—0.008)
36.73 0.956825 37.06971 0.955745 (—0.00108) 37.02954 (—0.04)
Silent 343 0935772 33.9837 0.931597 (—=0.004175)  33.70077 (—0.28)
32.94 0.920514  33.04094 0.91393 (—0.006584)  32.71387 (—0.33)
31.85 0.904564 3222912 0.896268 (—0.008296) 31.88112 (—0.35)
30.97 0.887804  31.55599  0.876676 (—0.011128)  31.16755 (—0.39)
30.27 0.873632 3099687  0.859653 (—0.013979)  30.60383 (—0.39)
Mobile 31.89 0.966267  32.38275 0.96368(—0.0026) 32.01314(-0.37)
30.06 0.955692  31.26217 0.952945(-0.0027) 30.90456(—0.36)
28.64 0.944253 30.24766 0.940841(—0.0034) 29.8754(-0.37)
27.5 0.931721 29.3644 0.927363(—0.0044) 28.97355(-0.39)
26.56 0.920065  28.6263 0.914652(—0.0054) 28.21834(-0.41)
25.76 0.908376  27.97749 0.901004(—0.0074) 27.5329(=0.44)

partitions for Wyner-Ziv coding according to the estimated rate distortion model. Table 5
shows the encoding time comparison between the uniform and the proposed optimal non-
uniform quantizer based WZVC. However, comparing with the state-of-art hybrid H.264/
AVC encoder, the encoding time of the optimal non-uniform quantizer based WZVC
keeping at millisecond level is reasonable. The motion estimation time of the encoder of
the JM reference software exceeds 100 s [12, 22].

5 Conclusion

This paper presents a novel optimal non-uniform quantization design method for the pixel
domain DVC scheme. A better RD trade-off can be achieved in pixel domain DVC by applying
non-uniform quantizer. The non-uniform quantizer considers that the joint distribution between
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Table 5 Encoding time

comparison Sequence Average PSNR WZVC with  WZVC with optimal
of key/intra uniform non-uniform
frames (dB) quantizer quantizer (Millisec)
(Millisec)

Foreman 35.84 5 371
34.02 6 374

31.60 5 376

30.71 5 376

29.98 5 376

29.35 5 379

Mother and 44.8 5 622
Daughter 40.39 5 623
37.71 5 622

35.97 5 626

Akiyo 45.58 5 394
41.35 5 391

38.67 6 387

36.73 6 392

Silent 343 5 359
32.94 5 363

31.85 5 362

30.97 5 366

30.27 5 372

Mobile 31.89 5 331
30.06 6 332

28.64 6 333

27.5 6 333

26.56 4 332

25.76 5 333

the source X and the SI Y can increase the joint probability distribution P(X, Y). In the Wyner-
Ziv coding scheme, as the joint probability distribution increases, the bit rate can be reduced
accordingly. Compared with the rapid reduce of the rate, the increase of the distortion is slow.
So a better rate and distortion trade-off can be achieved when the non-uniform quantization is
applied. Therefore, a rate-distortion optimization function is adopted in the modified Lloyd-
Max quantizer design algorithm which iteratively derives from the optimal quantization
partition. An estimation of the rate and distortion model at encoder side is presented in this
paper. In the modified Lloyd-Max quantizer design algorithm, a novel quantization partition
updating method is proposed. The experimental results show that the non-uniform quantization
based on RD optimization effectively improves the coding performance of the pixel domain
DVC system. The efficiency of the non-uniform scalar quantizer should be further explored in
the case of transform domain WZVC, such as the DCT domain WZVC and the wavelet domain
WZVC.
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