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Abstract 
In this paper, auto regressive (AR) model is applied to error concealment for block-based 

packet video encoding. Each pixel within the corrupted block is restored as the weighted 
summation of corresponding pixels within the previous frame in a linear regression manner. 
Two novel algorithms using weighted least squares method are proposed to derive the AR 
coefficients. First, we present a coefficient derivation algorithm under the spatial continuity 
constraint, in which the summation of the weighted square errors within the available 
neighboring blocks is minimized. The confident weight of each sample is inversely 
proportional to the distance between the sample and the corrupted block. Second, we provide 
a coefficient derivation algorithm under the temporal continuity constraint, where the 
summation of the weighted square errors around the target pixel within the previous frame is 
minimized. The confident weight of each sample is proportional to the similarity of geometric 
proximity as well as the intensity gray level. The regression results generated by the two 
algorithms are then merged to form the ultimate restorations. Various experimental results 
demonstrate that the proposed error concealment strategy is able to increase the peak signal-
to-noise ratio (PSNR) compared to other methods. 
 
1. Introduction 

State-of-the-art video coding standard H.264/AVC [1] significantly outperforms the 
previous coding standards, such as MPEG-1, H.262/MPEG-2 and H.263. Although many 
newly adopted techniques lead to the improvement of compression efficiency, the highly 
compressed bit stream is susceptible to transmission errors due to the limited bandwidth 
constraint. Consequently, packet errors, which will severely degrade the display quality at the 
decoder side, are unavoidable. 

Error concealment (EC) is a post processing technique which hides the packet errors 
utilizing the correctly received information at the decoder side without modifying source and 
channel coding schemes. According to the information utilized, EC can be categorized into 
spatial approaches that employ spatially adjacent pixels for recovering the lost blocks, and the 
temporal approaches that fill the lost blocks utilizing the pixels in the previous frames. 

Smoothness constraint is commonly utilized by the spatial methods. Y. Wang [2] proposed 
a spatial error concealment method by minimizing a first-order derivative-based smoothness 
measure. To suppress the induced blurring artifacts, second-order derivatives were considered 
in [3]. Although smoothness constraint achieves good results for the flat regions, it may not 
be satisfied in areas with high frequency edges. To tackle such shortcomings, an edge-
preserving algorithm [4] was proposed to interpolate the missing pixels. Spatial methods may 
yield better performance than temporal methods in scenes with high motion, or after a scene 
change [5]. However, they can not restore the detail textures of the corrupted blocks. In this 
case, the information from the past frames (temporal methods) may improve the quality of the 
concealed blocks. 
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Different from spatial methods, temporal methods restore the corrupted blocks by 
exploiting temporal correlation between successive frames. An important issue with this 
method is to find the most suitable substitute blocks from the previous frame, i.e., selecting 
the optimal motion vectors (MVs) for the lost blocks. If the MV of the corrupted block is 
available at the decoder, it can be utilized directly to motion-compensated the corrupted 
block. When the MV is also lost, it has to be estimated. Many pioneering works have been 
done on recovering of MVs. In [6], zero MV, the MV of the collocated block in the reference 
frame, and the average or the median of the MVs from the spatially adjacent blocks are 
selected as the candidate MVs for the corrupted blocks. The well known Boundary matching 
algorithm (BMA) proposed in [7] selected the MV that minimizes the total variation between 
the internal boundary and the external boundary of the reconstructed block as the optimal one 
to recover the corrupted block. There are also some more sophisticated algorithms [8-12] to 
obtain better MVs for the corrupted blocks. All these methods attempt to find the best MV in 
the previous quarter-pel resolution frame, which are interpolated by the fixed filter tap. 
However, the fixed interpolation filter can not capture the local region property quite well. To 
adaptively tune the interpolation filter coefficient, we propose an auto-regressive (AR) based 
EC scheme by extending our previous work [13] in this paper. In [13], the AR coefficients are 
derived by the least squares method assigning the same confident weight for each sample. 
However, [13] does not consider the influence of noisy samples. To better inhibit the 
influence of noisy samples, we assign a confident weight for each sample under the spatial 
continuity constraint in this paper. Besides, we also propose a weight derivation algorithm 
under the temporal continuity constraint. The regression results generated by the two 
algorithms are merged to form ultimate restorations for the corrupted blocks. 
 
2. AR model based EC 

Current framePrevious frame tX1t−X  

Fig. 1 Auto-regressive Model 
Fig. 1 shows the restoring process by AR model. For each corrupted pixel, the 

corresponding pixel along the integer-pel accuracy motion vector in the previous 
reconstructed frame is first found, and then all the pixels within a square centered at the 
corresponding pixel are combined in a linear regression form to recover the corrupted pixel. 
As shown in Fig.1, the linear regression can be expressed as 

( ) ( ) ( )1ˆ , , ,
R R

t t
k R l R

x i j k l x i k j lα −
=− =−

= + +∑ ∑ , (1) 

where ( )ˆ ,tx i j  represents the corrupted pixel located at ( ),i j  within the current frame tX , 
( )1 ,tx i j−  represents the corresponding pixel (pointed by the integer-pel accuracy motion 
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vector) within the previous reconstructed frame 1t−X , ( ),k lα  represents the desired 
coefficients, and R represents the radius of the AR model. 

Defining , ,k l RΨ  as an operator that extracts a patch of a fixed and predetermined size 
(centered at ( ),k l  and with ( ) ( )2 1 2 1R R+ × +  pixels) from an image, the expression , , 1k l R t−Ψ X  
( 1t−X  is represented as a vector by lexicographic ordering) results with a vector of length 

( )22 1R +  being the extracted patch.Thus, the linear regression in Eq. (1) can also be expressed 
as 

( ) , , 1ˆ , T
t i j R tx i j −= Ψ X α , (2) 

where α  represents the coefficient vector of the AR model. The summed square error 
between the corrupted and the actual pixel is  

( ) ( )( ) ( )( )
1 1 1 1 222

, , 1
0 0 0 0

ˆ, , ,
N N N N

T
t t t i j R t

i j i j
e x i j x i j x i j

− − − −

−
= = = =

= − = − Ψ∑ ∑ ∑ ∑ X α , (3) 

where N represents the width of the corrupted block. To minimize 2e , the first derivative of 
2e  to α  should be equal to zero according to the least squares algorithm, i.e., 

( ) ( ) ( ) ( )
2 1 1 1 1

, , 1 , , 1 , , 1
0 0 0 0

, 0
N N N NT TT

i j R t i j R t t i j R t
i j i j

e x i j
− − − −

− − −
= = = =

∂ ⎛ ⎞= Ψ Ψ − Ψ =⎜ ⎟∂ ⎝ ⎠∑ ∑ ∑ ∑X X α X
α

. (4) 

By solving the above equation, we will get the optimal coefficients as 

( ) ( ) ( )( )
1

1 1 1 1

, , 1 , , 1 , , 1
0 0 0 0

,
N N N NT TT

i j R t i j R t t i j R t
i j i j

x i j
−

− − − −

− − −
= = = =

⎡ ⎤ ⎡ ⎤⎛ ⎞= Ψ Ψ Ψ⎢ ⎥ ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑ ∑α X X X . (5) 

However, since the actual pixel ( ),tx i j  is not available at the decoder side, we can not 
directly obtain the AR coefficients according to Eq. (5). Instead, we have to estimate the 
optimal AR coefficients according to the adjacent spatial and temporal information of the lost 
blocks. 
 
3. Weighted least squares algorithm 
 
3.1. Weight derivation under spatial continuity constraint 

Current framePrevious frame tX1t−X  
Fig. 2 Spatial continuity constraint 

Pixels within adjacent blocks have a high possibility of belonging to the same object, 
which can be reflected by the phenomenon that adjacent blocks possess similar motion trends. 
This property is called spatial continuity constraint in this paper, based on which we can 
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derive the AR coefficients of the corrupted block. It is noted that under spatial continuity 
constraint, all the pixels within the lost block have the same AR coefficients, just like all the 
pixels within the corrupted block have the same MV in the traditional EC method. As shown 
in Fig.2, each pixel within the corrupted block and the available neighboring blocks can be 
regressed by the corresponding pixels within the previous reconstructed frame utilizing the 
same AR coefficients. 

It should be noted that during the weight derivation process, different training samples 
should be assigned different probabilistic confidence to inhibit the influence of noisy sample. 
For example, the pixels that are closer to the corrupted block or with similar textures should 
be assigned a larger probabilistic confidence. Let tB  be available neighboring blocks within 
the current frame, i.e., t t⊂B X . In addition, let ( ),tb i j  be an arbitrary pixel within tB , i.e., 

( ),t tb i j ∈ B , and the corresponding probabilistic confidence of ( ),tb i j  under the spatial 
continuity constraint is ( ),w i jα , with ( )0 , 1w i j≤ ≤α  and 

( )
( )

,
, 1

ti j
w i j

∈
=∑ α

B
. ( ),tb i j  can also 

be represented by the regression function of 1t−X  and α  as  

( ) , , 1
ˆ , T
t i j R tb i j −= Ψ X α . (6) 

Assume the regression error of ( ),tb i j  induced by α  and 1t−X  follows independent 
Gaussian distribution, i.e., 

( )( )
( ) ( ) 2

1 2

ˆ, ,1, , | exp
2

t t
t t

b i j b i j
P b i j

πσ σ−

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪
⎩ ⎭

α α
X α , (7) 

where σα  represents the variance of the error between ( ),tb i j  and ( )ˆ ,tb i j . Since the 
probabilistic confidence of ( ),tb i j  is ( ),w i jα , the weighted error is termed as 

( ) ( )( ) ( )ˆ, , ,t tb i j b i j w i j− α , and accordingly, the corresponding weighted error distribution is 
represented as 

( )( )
( ) ( )( ) ( )

2

1 ' ' 2

ˆ, , ,1, , | exp
2

t t
t t

b i j b i j w i j
P b i j

πσ σ−

⎧ ⎫−⎪ ⎪
= −⎨ ⎬

⎪ ⎪
⎩ ⎭

α

α α
X α , (8) 

where 'σα  represents the variance of the weighted error between ( ),tb i j  and ( )ˆ ,tb i j . Based 
on the observations of tB  and 1t−X , the AR coefficients can be obtained via a maximum a 
posteriori (MAP) as follows. 

Under MAP, the coefficient α̂  is given by 
( )1ˆ arg max | ,t tP −=

α
α α X B , (9) 

where ( )1| ,t tP −α X B  represents the occurring probability of α  given 1t−X  and tB . Using 
Bayesian law, we have 

( ) ( ) ( )
( )
1

1
1

, |
| ,

,
t t

t t
t t

P P
P

P
−

−
−

=
X B α α

α X B
X B

, (10)

where ( )1, |t tP −X B α  is the observation conditional probability, ( )P α  is the prior probability 
for AR coefficients. Since ( )1,t tP −X B  is not a function of α , it can be ignored when 
maximizing ( )1| ,t tP −α X B . Based on the assumption that α  obeys uniform distribution, 
maximizing ( )1| ,t tP −α X B  equals to maximizing ( )1, |t tP −X B α . Consequently, we have 
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( )

( )
( )( )

( )

( ) ( )( ) ( )

( )
( ) ( )( ) ( )

1

1
,

2

' ' 2
,

2

,

ˆ arg max , |

arg max , , |

ˆ, , ,1arg max exp
2

ˆarg max exp , , ,

t

t

t

t t

t t
i j

t t

i j

t t
i j

P

P b i j

b i j b i j w i j

C b i j b i j w i j

π σ σ

−

−
∈

∈

∈

=

=

⎧ ⎫−⎪ ⎪
= −⎨ ⎬

⎪ ⎪
⎩ ⎭

⎧ ⎫⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭

∏

∏

∑

α

α B

α

α B α α

α α
α B

α X B α

X α

, 
(11)

with ( )'
' 22 expt tC πσ

σ

− ⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

B
α α

α

B
. 

From Eq. (11), it is obvious that maximizing ( )1, |t tP −X B α  equals to minimizing 

( )
( ) ( )( ) ( )

2

,

ˆ, , ,
t

t t
i j

b i j b i j w i j
∈

−∑ α
B

, i.e.,  

( )
( ) ( )( ) ( )

2

,

ˆˆ arg min , , ,
t

t t
i j

b i j b i j w i j
∈

= −∑ αα B
α . (12)

Since the correlation between pixels decreases with the increase of distance, ( ),w i jα  is set 
to be inversely proportional to the distance between ( ),tb i j  and the corrupted block. That is 
to say 

( )

( )

( )

( )

( )

1 , ,

1 , ,
,

1 , ,
1

1 , ,
1

t

t

t

t

if b i j up neighboring
N i

if b i j left neighboring
N j

w i j
if b i j bottom neighboring

i

if b i j right neighboring
j

⎧ ∈⎪ −⎪
⎪ ∈⎪ −⎪= ⎨
⎪ ∈
⎪ +
⎪
⎪ ∈

+⎪⎩

α

　bl ock

　bl ock

　bl ock

　bl ock

, ( )0 , 1i j N≤ ≤ − . 
(13)

By setting the first derivative of the weighted square errors in Eq. (12) to zero, the AR 
coefficients under spatial continuity constraint is computed as 

( ) ( )
( )

( )( )
( )

1

, , 1 , , 1 , , 1
, ,

,
t t

T TT
i j R t i j R t t i j R t

i j i j
b i j

−

− − −
∈ ∈

⎡ ⎤ ⎡ ⎤⎛ ⎞⎢ ⎥ ⎢ ⎥= Ψ Ψ Ψ⎜ ⎟
⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑
B B

α X X X . (14)

With the obtained AR coefficient α , the lost block is restored according to Eq. (2).  

 
3.2. Weight derivation under temporal continuity constraint 

Besides spatial continuity constraint, video sequence also has temporal continuity 
constraint, which can be embodied by the observation that the same object among adjacent 
frames is usually threaded by the same motion trajectory. If the current frame has two 
previous frames, the temporal continuity constraint can also be utilized to derive the AR 
coefficients. As shown in Fig. 3, for each corrupted pixel ( ),tx k l , the corresponding pixel 

( )1 ,tx k l−  in the closest reconstructed frame is first found, and the corresponding pixel 
( )2 ,tx k l−  in the second closest reconstructed frame is also found. After that, ( )1 ,tx k l−  is 

regressed by ( )2 ,tx k l−  as well as the pixels surround it as 

( )1 , , 2ˆ , T
t k l R tx k l− −= Ψ X β , (15)
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where β  represents the AR coefficients derived by the temporal continuity constraint. The 
derived coefficient β  is then utilized to restore the corrupted pixel ( ),tx k l . 
 

Current framePrevious framePrevious frame tX1t−X2t−X  
Fig. 3 Temporal continuity constraint 

It is noted that under spatial continuity constraint, all the pixels within the corrupted block 
have the same AR coefficients. Obviously, it can not reflect the local features of each 
corrupted pixel. To remedy the deficiency of this method, we assign different AR coefficients 
for different pixel under the temporal continuity constraint. To compute the appropriate AR 
coefficients for ( ),tx k l , we need to find some training samples around ( )1 ,tx k l− . In this 
paper, the training sample is defined to be , , 1k l M t−Ψ X , with M R≥ . 

Based on the observation of , , 1k l M t−Ψ X  and 2t−X , the coefficient β̂  can be computed as 

( ), , 1 2
ˆ arg max | ,k l M t tP − −= Ψ

β
β β X X . (16)

Using the Bayesian law, we have 

( ) ( ) ( )
( )
, , 1 2

, , 1 2
, , 1 2

, |
| ,

,
k l M t t

k l M t t
k l M t t

P P
P

P
− −

− −
− −

Ψ
Ψ =

Ψ

X X β β
β X X

X X
, (17)

where ( ), , 1 2, |k l M t tP − −Ψ X X β  is the observation conditional probability, ( )P β  is the prior 
probability for AR coefficients. Similar to the previous subsection, maximizing 

( ), , 1 2| ,k l M t tP − −Ψβ X X  equals to maximizing ( ), , 1 2, |k l M t tP − −Ψ X X β . Again, assume the 
weighted error of ( )1 ,tx u v−  and ( )1ˆ ,tx u v− , ( ) , ,, k l Mu v ∈ Ψ , follows independent Gaussian 
distribution, i.e., 

( )( ) ( ) ( )( ) ( ) 2

1 1
1 2 2

ˆ, , ,1, , | exp
2

t t
t t

x u v x u v w u v
P x u v β

ββ σπσ
− −

− −

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

X β , (18)

where βσ  represents the variance of the weighted error between ( )1 ,tx u v−  and ( )1ˆ ,tx u v− , 

( ),w u vβ  represents the probabilistic confidence of ( )1 ,tx u v− , with ( )0 , 1w u vβ≤ ≤  and 

( )
( )

, , 1,
, 1

k l M tu v
w u vβ

−∈Ψ
=∑

X
. Consequently, we have 
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( )

( )
( )( )

( )

( ) ( )( ) ( )

( )
( ) ( )( ) ( )

, , 1

, , 1

, , 1

, , 1 2

1 2
,

2
1 1

2
,

2
1 1

,

ˆ arg m ax , |

arg m ax , , |

ˆ, , ,1arg m ax exp
2

ˆarg m ax exp , , ,

k l M t

k l M t

k l M t

k l M t t

t t
u v

t t

u v

t t
u v

P

P x u v

x u v x u v w u v

C x u v x u v w u v

β

β β

β

π σ σ

−

−

−

− −

− −
∈Ψ

− −

∈Ψ

− −
∈Ψ

= Ψ

=

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭

∏

∏

∑

β

β X

β X

β
β X

β X X β

X β

, 
(19)

with ( ) , , 1 , , 1
22 expk l M t k l M tC πσ

σ
−− Ψ −⎧ ⎫Ψ⎪ ⎪= −⎨ ⎬

⎪ ⎪⎩ ⎭

X
β β

β

X
. 

It is obvious that maximizing ( ), , 1 2, |k l M t tP − −Ψ X X β  equals to minimizing 

( )
( ) ( )( ) ( )

, , 1

2
1 1

,
ˆ, , ,

k l M t

t t
u v

x u v x u v w u vβ
−

− −
∈Ψ

−∑
X

, i.e., 

( )
( ) ( )( ) ( )

, , 1

2
1 1

,

ˆ ˆarg min , , ,
k l M t

t t
u v

x u v x u v w u vβ
−

− −
∈Ψ

= −∑
β X

β . (20) 

Current frame tXPrevious frame 1t−XPrevious frame 2t−X

( ),tx k l
( )1 ,tx k l−

( )1 ,tx u v−

 
Fig. 4 Pixels involved during probabilistic confidence computation under temporal continuity 

constraint 

Inspired by the nonlocal-means method in [14], each sample is assigned a confident weight 
that reflects the probability that this sample and the target sample have the same value. As 
shown in Fig. 4, when computing the AR weights for ( ),tx k l , we first find the corresponding 
pixel ( )1 ,tx k l−  (the target pixel sample) in the closest previous frame. And then we collect the 
training samples within , , 1k l M t−Ψ X . For each training sample ( )1 ,tx u v−  within , , 1k l M t−Ψ X , 
we will get the corresponding pixels , , 2u v R t−Ψ X  utilized during regressing. The similarity 
between ( )1 ,tx k l−  and ( )1 ,tx u v−  depends on the similarity of geometric proximity as well as 
the intensity gray level , , 2k l R t−Ψ X  and , , 2u v R t−Ψ X . The similarity is measured as a decreasing 
function of the weighed Euclidean distance between , , 2k l R t−Ψ X  and , , 2u v R t−Ψ X  as well as the 
geometric proximity, namely 

( ) ( )

2
, , 2 , , 2

2
1, exp

, 2
k l R t u v R t K

w u v
S k l σ

− −
⎧ ⎫⎡ ⎤Ψ − Ψ •⎪ ⎪⎣ ⎦= −⎨ ⎬
⎪ ⎪
⎩ ⎭

β
X X

, ( ) , , 1, k l M tu v −∈ Ψ X  (21) 

where •  represents the inner product of two vectors, and 2σ  is a constant to control the decay 
of the exponential function. Here, the element of K  is computed as 

( ) ( ) ( ){ }2 21, expK m n m k n l
γ

= − − + − , (22) 
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and  

( )
( ) , , 1

2
, , 2 , , 2

2
,

, exp
2

k l M t

k l R t u v R t

u v

K
S k l

σ
−

− −

∈Ψ

⎧ ⎫⎡ ⎤Ψ − Ψ •⎪ ⎪⎣ ⎦= −⎨ ⎬
⎪ ⎪
⎩ ⎭

∑
X

X X
. (23) 

It is noted that γ  is a normalizing constant and ( ),K m n  is a weight value for each sample in 
similarity window, which decreases with the distance from the center of similarity window. 

After have obtained the AR coefficients α  and β , the ultimate restored pixel is merged as  

( ) ( ), , 1 , , 1ˆ , 1T T
t i j R t i j R tx i j τ τ− −= • Ψ + − • ΨX α X β . (24) 

where 0 1τ≤ ≤  is the merging factor. In this paper, τ  is set to be 0.5.  

4. Simulation results 
In this section, various experiments are conducted to verify the superior performance of the 

proposed EC scheme. Three different EC algorithms, including the EC method of JM (JM), 
our previous work in [13], and the proposed scheme, are simulated on the H.264 reference 
software JM 10.0. It is noted that the method in [13] is equivalent to our method under spatial 
continuity when the probabilistic confidences of all the training samples are set to be the 
same. The first 100 frames of CIF sequences Foreman, Mobile and Flower at 30 fps are 
encoded under the quantization parameters (QPs) of 24 and 28. Group of Picture (GOP) of 
IPPP…structure with one I frame inserted every 16 frames are considered. Two reference 
frames and CABAC are used during encoding. The de-compressed streams are dropped at the 
packet loss rates (PLRs) of 5%, 10%, and 20% respectively. The size of missing blocks is set 
to be 16x16 to coincide with the standard’s macroblock (MB). Each row of MB is grouped as 
a slice and when one slice is lost, all the MBs within the same row are corrupted. In the 
experiments, parameters of R and M are set to be 1 and 3, respectively. 

PSNR Comparesion

26
27
28
29
30
31
32
33
34
35
36
37
38
39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
frame no

PS
N

R
 (d

B
)

JM
method in [13]
spatial
merged

 
Fig. 5. PSNR (dB) comparison for Foreman with PLR=10% 

The peak signal-to-noise ratio (PSNR) is used to quantitatively evaluate the recovered 
video quality. The average PSNR values of each compared method are shown in Table 1, 
where spatial represents the proposed method only under spatial continuity constraint, and 
merged represents the proposed method under spatial continuity constraint and temporal 
continuity. Spatial has a 0.49~2.74dB improvement than JM and 0~0.23dB improvement than 
[13], except that there is about 0.09dB loss for Flower when the PLR is 10%. When 
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combining the spatial and temporal continuity constraints, the merged result has a 
0.76~3.36dB improvement than JM and 0.14~0.9dB improvement than [13].  

Fig. 5 represents the PSNR performance of the first 20 frames for Foreman with 
PLR=10%. Since I frames are not corrupted in the simulation, the 1st and 17th frame have the 
same PSNR values. It reports that the proposed method significantly outperforms JM and the 
method in [13]. 

Table 1 Average PSNR performance comparison of different EC methods 
Video 

sequences QP Method PLR 
5% 10% 20% 

Foreman 

24 

JM 36.18 30.52 27.05 
[13] 36.56 31.47 27.77 

spatial 36.79 31.65 27.87 
merged 37.46 32.25 27.91 

28 

JM 34.76 29.93 26.90 
[13] 35.25 30.75 27.45 

spatial 35.25 30.97 27.51 
merged 35.73 31.59 27.66 

Mobile 

24 

JM 32.56 25.96 22.99 
 [13] 35.00 28.58 25.03 

spatial 35.01 28.70 25.08 
merged 35.29 29.32 25.48 

28 

JM 31.11 25.54 22.81 
[13] 32.64 27.78 24.66 

spatial 32.66 27.91 24.72 
merged 32.88 28.47 25.10 

Flower 

24 

JM 34.04 26.13 22.95 
[13] 35.56 28.32 24.39 

spatial 35.63 28.42 24.48 
merged 36.11 29.25 25.13 

28 

JM 32.23 26.04 22.75 
[13] 33.33 27.93 24.26 

spatial 33.37 27.84 24.29 
merged 33.71 28.69 24.89 

 
5. Conclusion 

This paper presents a novel error concealment scheme utilizing auto regressive 
model, where each corrupted pixel is restored as a weighted summation of 
corresponding pixels within the previous frame in a linear regression manner. Two 
algorithms utilizing weighted least squares method under the spatial continuity and 
temporal continuity constraints are proposed to derive the AR coefficients. Simulation 
results suggest that the proposed error concealment method is able to provide much 
better performance than other methods. 
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