
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Signal Processing: Image Communication

Signal Processing: Image Communication 24 (2009) 287–299
0923-59

doi:10.1

$ Thi

of Chin

Develop

2009CB
� Cor

E-m
journal homepage: www.elsevier.com/locate/image
Reconfigurable video coding framework and decoder reconfiguration
instantiation of AVS$
Dandan Ding a,�, Honggang Qi b, Lu Yu a, Tiejun Huang c, Wen Gao c

a Institute of Information and Communication Engineering, Zhejiang University, Hangzhou 310027, China
b School of Information Science and Engineering, Graduate University of Chinese Academy of Sciences, Beijing, China
c School of Electronics Engineering and Computer Science, Peiking University, Beijing, China
a r t i c l e i n f o

Article history:

Received 31 May 2008

Received in revised form

10 November 2008

Accepted 19 December 2008

Keywords:

RVC

Decoder configuration

AVS

VTL

BSDL
65/$ - see front matter & 2009 Elsevier B.V. A

016/j.image.2008.12.002

s work was supported in part by the National

a under Grants 90207005 and the Major St

ment Program of China (973 Program

320900.

responding author.

ail address: dandan2036@163.com (D. Ding).
a b s t r a c t

In 2004, a new standardization activity called reconfigurable video coding (RVC) was

started by MPEG with the purpose of offering a framework which provides

reconfiguration capabilities for standard video coding technology. The essential idea

of RVC framework is a dynamic dataflow mechanism of constructing new video codecs

by a collection of video coding tools from video tool libraries. With this objective, RVC

framework is not restricted to specific coding standard, but defined at coding tools level

with interoperability to achieve high flexibility and reusability. Three elements are

normative in RVC framework: decoder description (DD), video tool library (VTL) and

abstract decoder model (ADM). With these elements, a standard or new decoder is able

to be reconfigured in RVC framework. This paper presents the procedure of describing a

reconfigured decoder in DD, reusing and exchanging tools from VTLs and initializing

ADM in the dataflow formalism of RVC framework. A decoder configuration which can

be instantiated as AVS intra decoder configuration or other new decoder configurations

in RVC framework is described as an example by using coding tools from China audio

video coding standard (AVS) and MPEG series. It is shown that the process mechanism

offered by RVC framework is versatile and flexible to achieve high reusability and

exchangeability in decoder configurations.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

New video coding technologies have been developed
rapidly over the past two decades. Many standards have
been explored to provide different video coding solutions
for the market. For instance, H.264/AVC was standardized
in May 2003 and audio video coding standard (AVS) was
published as Chinese national standard in February 2006.
Variety of the coding standards pushes multimedia
ll rights reserved.

Science Foundation

ate Basic Research

) under Grants
devices to support multiple codecs, such as MPEG-2,
H.264/AVC and AVS, in order to satisfy different needs of
industry. However, it is complicated for multimedia
devices to support all kinds of codecs. Moreover, with
the development of video coding, more coding technolo-
gies will be adopted in the future. Those new technologies
can be new coding standards or specific coding methods
such as interpolation, inverse transform, and so on. It is
difficult for multimedia devices which conform to some
certain standards to adapt themselves to the new
technologies. An obvious case is from IPTV, there clearly
exists the transition from one codec to another in a single
channel. As the size of video resolution evolves from SD to
HD (and may be HD to SHD, in the future), this transition
from one codec to another will be a common phenomenon
in IPTV. The current usage of multi-codec-in-a-channel is

www.sciencedirect.com/science/journal/image
www.elsevier.com/locate/image
dx.doi.org/10.1016/j.image.2008.12.002
mailto:dandan2036@163.com

ARTICLE IN PRESS

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299288
limited in that the transition of one codec to another is
strictly scheduled [1]. A simple and robust solution is
required to allow more flexible usage of codecs transmis-
sion in a single channel.

At the same time, multimedia applications are growing
much faster than the standardization of new coding
strategies. New requirements from applications challenge
the traditional video coding standards. For example, in the
present video market, as the video coding standards are
defined at codec level and there is no negotiation between
them, compressed data conforming to one video coding
standard cannot be decoded by decoders of other
standards. Thus, as is often the case, video resources from
different video coding standards cannot be adequately
shared. Potential applications in video coding market
should also be cared. A typical example is that, some tools
and syntax elements from some standards such as H.264/
AVC are not so useful in some actual applications but the
decoder has to support them in order to keep itself as a
‘‘legal’’ one. The encoder is also obliged to produce
bitstreams conforming to a standard even some syntax
elements are never used. If the encoder discards those
unnecessary syntax elements to produce a compact
bitstream, currently, this bitstream cannot be decoded
correctly because the decoder does not know what
happens to it unless a dedicated decoder for this encoder
is designed. Ref. [4] shows another example which is for
low-complexity or high-performance reason, the encoder
is possible to employ some new coding tools and needs to
communicate with the decoder to guarantee a consistent
decoding process. Obviously, negotiation between the
encoder and decoder is expected to serve this kind of
applications flexibly and dynamically.

For solving those problems, MPEG developed reconfi-
gurable video coding (RVC) based on coding tool level not
only to support multiple video codecs but also to allow
the interoperability between different video codecs to
include improvements and innovations. The essential idea
of RVC is to introduce an interoperable model at coding
tool level and allow flexible reconfiguration of those
coding tools. Current codec level definition of video
coding standards restricts the implementations to some
profiles of a specific standard which lacks flexibility and
does not allow interoperability between different codecs.
Additionally, as many of the existing standards share
common or similar coding tools, it is more convenient to
exploit such commonalities in coding tool level [2]. To
achieve this goal, RVC provides a framework allowing a
dynamic development, implementation and adoption
of standardized video coding solutions with features of
higher flexibility and reusability [3]. Reconfiguration of
RVC is no longer kept in codec level of a standard. It could
be a new configuration of coding tools from different
profiles of one standard, a hybrid configuration with
coding tools from different standards, and so on. More-
over, RVC supports the introduction of new coding tools in
order to speed up the standardization of new technologies
and achieve specific design or performance trade-offs to
satisfy application constraints. It allows a completely
novel configuration with newly developed coding meth-
ods or a combination of existing and new coding tools.
The coding tool level definition of RVC framework
allows flexible reconfiguration of coding tools to create
different codec solutions on-the-fly. Video tool library
(VTL) is used in RVC to collect coding tools which is also
called functional units (FUs). To satisfy the increasing
requirements better and explore more potential needs
of industry, RVC framework supports different VTLs,
such as MPEG VTL, AVS VTL and other VTLs to improve
its capability. As a new standard developed in recent
years, AVS can be applied in IPTV, mobile TV and other
related applications in video field. Based on RVC frame-
work, AVS VTL is built which includes a collection of AVS
coding tools and conformance test for those tools.
Participation of AVS in RVC enriches the significance of
RVC framework and brings affirmative impulse for video
coding field. This paper takes coding tools from AVS and
MPEG VTL for example to present the procedure of
reconfiguring a decoder in RVC framework and how to
explore the reusability and exchangeability for decoder
configurations.

In this paper, the reconfiguration formalism of
RVC framework which is based on the dataflow model
built from coding tools of VTLs is first introduced. It is
shown that the process mechanism and management
strategy adopted in RVC framework provide great
flexibility and reusability for designers to reconfigure
new decoding solutions according to application con-
straints. Then the procedure of constructing decoder
configurations in RVC framework is described. First, based
on the syntax description for AVS intra decoder, it
illustrates how to employ the method defined in RVC
framework to describe a reconfigured bitstream flexibly.
According to the bitstream syntax description, a dedicated
syntax parser for the bitstream can be generated
automatically. Secondly, granularity of coding tools from
VTLs such as AVS and MPEG VTL is analyzed and a
partition method is realized to explore reusability and
exchangeability as much as possible for the proposed
decoder configuration. Finally, the architecture for the
proposed decoder configuration example is constructed
by combining the syntax parser and coding tools from AVS
and MPEG VTL. An instantiated implementation and
simulation of the architecture which serves as an AVS
intra decoder configuration are shown to explain the
dataflow of this decoder model. It shows that RVC
framework is capable of reconfiguring decoders theoreti-
cally and practically.

The remaining of the paper is organized as follows:
RVC framework is described in Section 2. Section 3
introduces the AVS standard and its coding tools. Section 4
proposes an example to show the procedure of reconfi-
guring a decoder in RVC framework which includes the
decoder description (DD) process, the coding tool parti-
tion with flexible reusability and exchangeability, as well
as the final architecture for the decoder configuration
example. Section 5 presents implementation of the
architecture and dataflow model of the decoder config-
uration example which is instantiated as an AVS intra
decoder configuration in RVC simulation environment.
Section 6 concludes the paper. Finally, the future work is
prospected in Section 7.

ARTICLE IN PRESS

Processing
Unit

Context-Control
Unit

Input
tokens

Output
tokens

Context & control [in]
e.g. coding parameters,
mode selection signals

Context & control [out]
e.g. derived parameters

from the video data

Fig. 2. Basic structure of an FU in RVC VTL [7].

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299 289
2. RVC framework

RVC offer a flexible mechanism of combing coding
tools to reconfigure decoding solutions. RVC framework
adopts dataflow process formalism to modular designs
which is different from traditional design methods. In
order to describe the modular configurations in decoder,
as shown in the RVC conceptual diagram (Fig. 1), DD
which contains information of bitstream syntax and FU
Network is transmitted to decoder together with the
encoded video data. In decoder, three elements are
normative in RVC framework, DD, VTL, and abstract
decoder model (ADM) (Fig. 3). The DD, using FU network
language (FNL) to specify connections of coding tools from
VTLs and the profiled bitstream syntax description
language (BSDL) which is called ‘‘RVC-BSDL’’ to describe
the reconfigured bitstream syntax structure, initiates
ADM as a basic model to set up a decoding solution.
Further introduction of those elements is presented
below.

2.1. Video tool library

The VTL collects video coding tools which are named as
FU in RVC. Each FU is a well self-contained modular
element with the specification of its I/O interfaces. A
subset of the dataflow actor-oriental language CAL is
specified in RVC framework (called RVC–CAL) to describe
the algorithm and behavior inside FU. Compared with the
traditional C/C++ programming language, CAL is clearly
portable and can be used on wide variety of different
platforms [6]. In that way, the ability of FUs to perform
computation depends on the availability of sufficient
input tokens. Communication between FUs is implemen-
ted by sending each other input and output tokens, which
leads to high modularity and compliance with the
principle of RVC. Fig. 2 shows the basic structure
of an FU which includes two units. The ‘‘Processing
Unit’’ describes the internal computation of FU and the
‘‘Context-Control Unit’’ processes the context signal which
is intermediate variable of decoding and the control signal
which is directly decoded from the input bitstream.

2.2. Decoder description

2.2.1. FU network description

As described above, FUs communicate with each other
through input and output tokens. However, for FU itself, it
Encoder

Encoded Video

1. Bitstream syntax De
2. FU Network Descrip

Decoder Descrip

Fig. 1. Conceptual diag
does not know whether it is involved in the reconfigura-
tion process or not. Also, it knows neither the source of its
input tokens nor the destination of its output tokens. FNL
is exactly the language used for FU network description
(FND) to specify FUs involved in the decoder configuration
as well as connections between them. In RVC framework,
FNL is a XML dialect and packaged in the DD bitstream.
When it is received, a DD decoder procedure is called
immediately to initialize the interconnection of assigned
FUs. An example in sub-clause 4.2 explains how FNL is
used to describe network of FUs.

2.2.2. Bitstream syntax description

Bitstream syntax description (BSD) is the description
for syntax structure of a bitstream that is supposed to be
decoded by a decoder composed from an FND. It is used to
generate or instantiate a syntax parser FU from generic
syntax parser mechanism [8]. The BSDL from MPEG-21 [9]
is used to describe the BSD and the bitstream syntax
schema described in BSDL is defined as bitstream syntax
schema (BS schema).

There are two kinds of bitstreams in RVC: one is
bitstreams exactly conforming to an existing standard,
and the other is reconfigured bitstreams which are
different from any existing standard. For the first case,
the syntax parser for current bitstream can be modular-
ized as generic bitstream syntax parser FU in VTLs and the
BSD may be optional. However, for the latter case, the
bitstream syntax parser FU is not fixed because bitstream
syntax structure of the reconfigured bitstream is in a new
format which is different from any existing standards.
Thus for this kind of situations, the syntax parser should
be generated according to BSD. To facilitate the synthesis
of parsers from a BS schema, RVC framework profiles a
Data

scription
tion

tion
Decoder

ram of RVC [8].

ARTICLE IN PRESS

FU Network
Description

(FNL)

Bitstream Syntax
Description

(RVC-BSDL)

Decoder Description

Model Instantiation:
Selection of FUs and

Parameter Assignment

Abstract Decoder Model
(FNL + RVC-CAL)

Video Tool
Libraries

Decoder
Implementation

Decoding SolutionEncoded Video Data Decoded Video Data

Video Tool
Libraries

Implementations

RVC Framework

RVC Decoder Implementation

Fig. 3. Components and instantiation process for ADM and the platform-dependent decoder implementation in RVC framework.

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299290
version of BSDL called RVC–BSDL which includes exten-
sion and usage restrictions based on BSDL. RVC–BSDL
provides all necessary information for the complete
parsing of any bitstream. According to RVC BS schema
for a reconfigured bitstream, corresponding syntax parser
FU can be generated automatically so as to build a
complete decoder configuration.

2.3. Abstract decoder model

With those elements mentioned above, RVC frame-
work initiates the ADM which is a behavioral model of
decoder configuration composed by FUs and their relative
connections. The ADM will be used to implement the
decoder using proprietary tools and mechanisms. As
shown in Fig. 3 [8], the decoder implementation is
platform-dependent and regarded as non-normative part
of RVC framework. It can be generated by substituting
any implementation of proprietary VTLs which own
identical I/O behavior of the FUs in standard VTLs, or also
obtained directly from the ADM by generating SW or
HW implementations by means of appropriate synthesis
tools [22,23].

3. China audio video coding standard

China audio video coding standard which is referred as
AVS [13] is a digital audio and video coding standard
developed by AVS Workgroup of China, whose video part
(AVS part 2) has been adopted as the national standard of
China in February 2006. AVS has been developed for
several years and can be applied in many video coding
applications.
Similar with MPEG-x and H.26x series of standards,
AVS also owns a block-based hybrid coding framework. It
adopts the spatial and temporal predictions to eliminate
the spatial and temporal data redundancy, and the
prediction residuals are transformed, quantized and
entropy encoded. However, the internal technologies are
different from those of previous standards.

The major coding tools of AVS are 8�8 integer
transform, 8�8 spatial prediction, 8�8 motion compen-
sation, in-loop deblocking filter and context-based adap-
tive 2-dimensional variable length coding (CA-2D-VLC)
[14]. The pre-scaled integer transform (PIT) technique is
used for providing a unique specification for the finite
precision implementations and yielding significant saving
in processing complexity [15]. AVS adopts 8�8 block-
based intra prediction which has 5 luminance prediction
modes and 4 chrominance prediction modes. The recon-
structed pixels of neighboring blocks before deblocking
filter are used as reference pixels for the intra prediction
of current block. For the motion compensation of AVS, a
16�16 pixel macroblock can be partitioned into 16� 8,
8�16 or 8�8 block. Symmetric mode is introduced to
exploit motion continuity in sequential pictures and this
mode can efficiently save bits in coding motion vector. For
the sub-pixel interpolation, compared with H.264/AVC,
the data bandwidth requirement of AVS is reduced by 11%,
whereas the computation complexity remains similar
[16]. In the deblocking filter, the block boundaries are
8�8 aligned and the number of block boundaries,
boundary strength levels and pixels in the deblocking
filter are reduced for simplicity. In the entropy coding, the
code words for all syntax elements are constructed based
on Exponential–Golomb codes or fixed-length codes
and an efficient context-based adaptive 2D-VLC entropy

ARTICLE IN PRESS

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299 291
coding method is designed for coding 8�8 block-size
transform coefficients. These coding tools are harmonized
optimally in AVS to achieve a reasonable trade-off
between high performance and low complexity.

4. Procedure of decoder configuration in RVC framework

The process mechanism of RVC framework introduced
in Section 2 owns high flexibility and interoperability for
general decoder configurations. In this section, the
decoder configuration procedure in RVC framework is
described. For the bitstream syntax description, it explains
how to simply define a BS schema for a reconfigured
bitstream by taking bitstream syntax description of AVS
for example. It also depicts how to validate BS schema by
BSDL parsers to ensure that the automatically generated
syntax parser is correct. For the FUs of VTLs, with the
reasonable FU partition and input and output token
specifications, high reusability and exchangeability can
be achieved for the reconfigured decoders. That is shown
by analyzing FU partition granularity of AVS VTL which
collects coding tools from AVS and MPEG VTL which
collects coding tools from MPEG series of standards.
Finally, by combining syntax parser and FUs from VTLs,
concrete architecture of the proposed decoder configura-
tion example is constructed with flexible reusability,
exchangeability and extension ability.

4.1. BS schema definition and validation

RVC–BSDL provides a way to create schema for a
bitstream and instantiate new parser FU that cannot be
presented in VTLs. In this section, based on the example of
BS schema for AVS intra decoder configuration, it explains
how to fully describe the syntax structure of a reconfi-
gured bitstream. Then the BS schema is validated to
ensure a consistent description of input bitstream.

Fig. 4 shows a segment from AVS bitstream syntax
specification. It is flexible in BS schema to specify the
structure of a reconfigured bitstream depending on
different conditions. In Fig. 5, [a] is a dedicated description
of AVS intra decoder configuration, whereas, for the
intra_luma_pred_mode
}
intra_chroma_pred_mode
[…]

macroblock() {
if (PictureType != 0 || (PictureStructure == 0 && MbI

mb_type
 {) 'pikS_B' =! epyTbM && 'pikS_P' =! epyTbM (fi

 {) '8x8_B' == epyTbM (fi
)++i ;4<i ;0=i(rof

mb_part_type
}

 {) '8x8_I' == epyTbM (fi
 {) ++i ;4<i ;0=i (rof

pred_mode_flag
) galf_edom_derp ! (fi

Fig. 4. A segment taken from AVS bits
reconfigured bitstream, the encoder is autonomous
enough to rearrange the bitstream syntax structure as
long as this is reflected in the BS schema. For example, in
Fig. 5[b], if the encoder believes that syntax element
‘‘pred_mode_flag’’ is not useful, it can be ignored in the BS
schema. Even the data types of syntax elements can be
changed depending on different implementations, such
as the syntax element ‘‘intra_chroma_pred_mode’’ in
Fig. 5[b]. The simple and direct approach to reconfigure
a bitstream offered by BS schema allows the encoder to
devise its own specific products according to applications.

A BS schema should be validated to make sure it is
consistent with the corresponding bitstream. In RVC, BSDL
parsers, including BintoBSD and BSDtoBin are used to
validate BS schema. The BintoBSD parser is a generic
processor using a BS schema to parse a bitstream and
generate the corresponding BS Description. Inversely, the
BSDtoBin parser is a generic processor using a BS schema
to parse BS description and generate the corresponding
bitstream [9].

Fig. 6 shows an example of AVS intra BS schema to
illustrate the validation procedure. A fragment of AVS
intra BS schema is shown in Fig. 7 which presents part of
bitstream syntax description for AVS. The BintoBSD parser
inputs the AVS BS schema and the bitstream generated by
AVS reference software, and produces the BS description
of AVS in XML format. The BSDtoBin progressively parses
the BS description with BS schema of AVS and generates
the output bitstream by encoding the element values
according to their data types and appending them in to
bitstream.

For a correct BS schema, two possibilities are used to
check the consistency [8]:
(1)
ndex

tream
The ‘‘Input Bitstream’’ is compared with the ‘‘Gener-
ated Bitstream’’ produced by the operation ‘‘BintoBSD-
BSDtoBin’’ to make sure it is the same as the latter
one.
(2)
 The ‘‘BS Description’’ created after the first ‘‘BintoBSD’’
operation is compared with the ‘‘Generated BS
Description’’ created by the operation ‘‘BSDtoBin–
BintoBSD’’ to make sure it is the same as the latter
one.
u(2)

ue(v)

Description
>= MbWidth × MbHeight / 2))

ue(v)

u(2)

)1(u

syntax specification [13].

ARTICLE IN PRESS

 <xsd:element name="macroblock">
 <xsd:complexType>
 <xsd:sequence>

<!-- element "mb_type" is ignored because it is not used! -->
 <!-- element "mb_part_type" is ignored because it is not used! -->
 <xsd:sequence minOccurs="0" bs2:if="$MbType = 0">
 <xsd:sequence bs2:nOccurs="4">
 <xsd:element name="pred_mode_flag" type="bs1:b1" bs0:variable="true"/>
 <xsd:sequence minOccurs="0" bs2:if="$avs:pred_mode_flag = 0">
 <xsd:element name="intra_luma_pred_mode" type="bs1:b2"/>
 </xsd:sequence>
 </xsd:sequence>
 <xsd:element name="intra_chroma_pred_mode" type="avs:expGolomb"/>
[...]

 <xsd:element name="macroblock">
 <xsd:complexType>
 <xsd:sequence>

<!-- element "mb_type" is ignored because it is not used! -->
 <!-- element "mb_part_type" is ignored because it is not used! -->
 <xsd:sequence minOccurs="0" bs2:if="$MbType = 0">
 <xsd:sequence bs2:nOccurs="4">

<!-- element "pred_mode_flag" is ignored -->
 <xsd:element name="intra_luma_pred_mode" type="bs1:b2" fixed="0"/>
 </xsd:sequence>
 <xsd:element name="intra_chroma_pred_mode" type="bs1:b2"/>
[...]

Fig. 5. An example of defining different BS schemas for different reconfigured bitstreams used for different application scenarios.

AVS BS schema BSDtoBin

Compare

no difference

Compare

no difference

<!-- Generated BS
Description of AVS -->
[...]

<!-- BS Description of AVS -->
[...]
<pref0:AVS_video_sequence>
 <pref0:stuffing_byte>128</pref0:stuffing_byte>
 <pref0:pu>
 <pref0:sequence_header>

 <pref0:video_sequence_start_code>000001B0</pref
0:video_sequence_start_code>
 <pref0:profile_id>32</pref0:profile_id>
 <pref0:level_id>64</pref0:level_id>
 [...]

Generated Bitstream

Input Bitstream
1000000000000000000
0000000000001101100
000010000001000000...

BintoBSDBintoBSD

Fig. 6. An example of validating AVS intra BS schema to illustrate the validation procedure of BS schema by BSDL parsers: BintoBSD and BSDtoBin.

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299292
Both items above are used to check the BS schema and
Fig. 6 shows the obtained results. According to the correct
BS schema, syntax parser FU such as the syntax parser for
AVS intra decoder configuration in this example can be
generated automatically. A possible systematic procedure
for the automatic synthesis of RVC parsers can be found in
Refs. [17–19], which will not be specified in this paper any
more.

ARTICLE IN PRESS

<xsd:element name="bitstream">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="AVS_video_sequence" minOccurs="0" maxOccurs="unbounded">
 [...]
 <xsd:choice>
 <xsd:element ref="avs:sequence_header" bs2:ifNext="000001B0"/>

 [...]
 </xsd:choice>
 [...]
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute ref="bs1:bitstreamURI"/>
 </xsd:complexType>

</xsd:element>

<xsd:element name="sequence_header">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="video_sequence_start_code" type="avs:StartCodeType"/>
 <xsd:element name="profile_id" type="xsd:unsignedByte"/>
 <xsd:element name="level_id" type="xsd:unsignedByte"/>
 [...]
 </xsd:sequence>
 </xsd:complexType>

</xsd:element>

Fig. 7. A fragment from AVS BS schema which describes the syntax structure of AVS intra bitstream.

Algo_Addr_Three
LeftTop
(FU [a])

Algo_IntraMode
Prediction
(FU [b])

addr_topleft

addr_left

addr_top
Context
signal

BTYPE

Control
signal

INTRA_INFO

Intra
Mode

Fig. 8. An example of FU partition for intra mode prediction to reuse FU among H.264/AVC, MPEG-4 and AVS.

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299 293
4.2. FU reusability and exchangeability of video tool library

In VTL, video tools are in the form of FUs with input
and output token specifications. An important idea for
RVC is to achieve high reusability and exchangeability of
FUs. This principle spirit leads to partition FUs of VTLs in a
reasonable granularity [10]. After analyzing coding tools
from AVS and MPEG, FUs proposed in this decoder
configuration example are partitioned in the similar
granularity to the FUs already implemented to reuse
them as much as possible in order to avoid redundant
implementations. Intra prediction algorithms of H.264/
AVC and AVS are used as an example to demonstrate the
reusability and exchangeability in decoder configuration.

In the example of intra prediction configuration, for
AVS, intra mode of current 8�8 luminance block is
predicted according to syntax elements decoded from
bitstream and information coming from neighboring left
and top block. It can be efficiently implemented if just
input all related information decoded from bitstream and
leave all processes inside one FU. However, problem is
that this way of partition makes little sense in RVC,
because the FU can only be used by AVS. It has been
noticed that 8�8 intra mode prediction process of H.264/
AVC is also related to the neighboring left and top block.
Moreover, inverse DC prediction of MPEG-4 refers to the
left, top and top-left neighboring block of current block
too. The similar processes make it possible to share the
same FUs among AVS, H.264/AVC and MPEG-4 decoder
configuration. Thus, intra mode prediction process is
partitioned into two FUs, one is exactly a common FU
for AVS, H.264/AVC and MPEG-4 (Fig. 8[a]), and the other
is used for intra mode prediction (Fig. 8[b]). As informa-
tion of neighboring blocks, which is used for mode
prediction, is stored in a buffer, the common FU
‘‘Algo_Addr_ThreeLeftTop’’ is designed to calculate the
buffer addresses of neighboring blocks. Considering
address of the top-left block is not used in AVS and
H.264/AVC, token ‘‘addr_topleft’’ is not connected in this
example. When the FU ‘‘Algo_IntraModePrediction’’ re-
ceives the addresses, it reads out related information and
predicts the intra mode of current block. Though this

ARTICLE IN PRESS

Algo_IntraPrediction
(for 8x8 block)

[... , topleft, top, left] AVAIL

[... , topleft, top, left] PIXEL

[..., IntraMode] IntraMode

[63... , 2, 1, 0] IntraPred

Fig. 9. An example of exploring FU exchangeability for intra prediction of H.264/AVC and AVS with consistent token specifications in RVC framework.

Table 1
FUs list for example of AVS intra decoder configuration.

Network name FUs name Reuse/exchange in

MPEG-4

Parser Algo_Synp

BlockExpand R

BTYPESplit R

BlockSplit R

INTRA_INFOSplit R

Decoding Algo_ISzigzagOrAlternative E

Algo_IQ

Algo_IT8�8_1d

Algo_IntraModePred_LUMA

Algo_IntraPred_LUMA_8�8

Algo_IntraModePred_CHROMAZ

Algo_IntraPred_CHROMA_8�8

Algo_transpose8�8 R

Mgnt_IntraPred_LUMA_Addr R

Mgnt_IntraPred_CHROMA_Addr R

Algo_Addr_ThreeLeftTop R

Motion

compensation

Algo_ADD R

Mgnt_FB R

Mgnt_Reconstruct_LUMA_Addr R

Mgnt_Reconstruct_CHROMA_Addr R

Mngt_PixelMerger_420 R

Note:

(1) ‘‘R’’ indicates the proposed decoder configuration example reuses

that FU from MPEG-4 simple profile.

(2) ‘‘R’’ indicates the proposed decoder configuration example reuses

that FU from H.264/AVC.

(3) ‘‘E’’ indicates that these FUs in AVS and H.264/AVC have the same

tokens requirement, and can replace each other in the proposed

decoder configuration.

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299294
partition method requires more tokens (three extra
tokens: ‘‘addr_topleft’’, ‘‘addr_top’’ and ‘‘addr_left’’) in
reconfiguration process, it is more significant to obtain the
reusability and exchangeability between FUs for efficient
reconfiguration.

Exchangeability is also considered in the decoder
configuration for convenience of extending or replacing
FUs to achieve better trade-offs between performance and
complexity. Literature [4,5] shows an example of reconfi-
guring a new decoder by combining inverse quantization
and inverse transform tools from AVS and other tools from
MPEG-4 simple profile. Complexity of the new decoder is
reduced and the performance is improved significantly at
high bitrate. Another typical example about exchange-
ability of decoder configuration is shown in this paper.

In Fig. 8, the reason to design FU ‘‘Algo_IntraModePre-
diction’’ in this way is to reach high exchangeability
between AVS and H.264/AVC [11] because they both have
the same token requirements for intra mode prediction. It
is similar in the intra prediction process shown in Fig. 9, in
which the input tokens of FU ‘‘Algo_IntraPrediction’’ is
strictly specified: if the left neighboring pixels of current
block are available, token ‘‘AVAIL’’ outputs value of ‘‘true’’
for left pixels and 16 left pixels are output to the token
‘‘PIXEL’’ channel. Or else, token ‘‘AVAIL’’ outputs value of
‘‘false’’ to indicate that the left neighboring pixels of
current block is not available, and correspondingly, there
are no left pixels in the token ‘‘PIXEL’’ channel. After the
left token, the same specification is used to the top and
top-left case. Also, the output token ‘‘IntraPred’’ is defined
in horizontal raster order. With the token specifications,
FUs with the same or similar token requirements but
different internal algorithms can be easily invoked to
replace each other in this network. For example, though in
H.264/AVC intra prediction, it only requires 8 left pixels,
the exchangeability of FU ‘‘Algo_IntraPrediction’’ between
H.264/AVC and AVS is not influenced because the second 8
left pixels can be directly ignored in prediction.

4.3. Decoder configuration architecture

The architecture of the proposed decoder configuration
example includes three networks: ‘‘Parser’’, ‘‘Decoding’’
and ‘‘Motion compensation’’. Though there is no motion
compensation in intra configuration, the name ‘‘Motion
compensation’’ is still reserved here because this network
will be expanded to support inter configuration in the
future. Each network consists of related FUs from VTLs.
Table 1 [12] lists detailed contents of the architecture and
networks.
With the partition method mentioned above, FUs used
in the proposed architecture are divided into reasonable
granularity to reuse existing FUs. The FUs listed in Table 1
fall into two categories: FUs oriented to algorithm and FUs
oriented to data management [20]. The proposed decoder
configuration reuses 7 FUs from MPEG-4 simple profile
and 6 FUs from H.264/AVC and avoids duplicate defini-
tions and implementations efficiently.

Result shows that the proposed FUs partition method
in this example not only improves reusability of existing
FU, but also provides sufficient flexibility to exchange FUs
with different algorithms. Still in the case of the proposed
decoder configuration example, it is shown that 7 FUs of
H.264/AVC and AVS characterize the same token require-
ments and can be conveniently and directly replaced by
each other.

ARTICLE IN PRESS

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299 295
5. Implementation and simulation for the proposed
decoder configuration

All FUs used in the proposed decoder configuration
example are specified in RVC–CAL language. In imple-
mentation, the proposed decoder configuration example
can be instantiated as an AVS intra decoder or other
hybrid decoders in RVC framework. In the example shown
below, it is configured as an AVS intra decoder by using
corresponding coding tools from AVS VTL besides reusing
FUs from MPEG VTL. The reconfigured AVS intra decoder is
compiled with RVC simulation tool and result of simula-
tion shows that it can decode AVS intra conformant
bitstreams correctly and elegantly.
5.1. Parallel and serial dataflow model

In implementation, the decoder reconfiguration can be
structured as parallel and serial dataflow model in RVC
simulation environment, separately. Difference between
the parallel and serial version is the content of token
channels. For the parallel version, Y, U and V tokens are
processed in respective channel, whereas for the serial
version, Y, U and V tokens are combined in one channel
sequentially. For example of the 420 colour format, in the
parallel channel, tokens of block Y0, Y1, Y2, Y3 are
sequentially arranged in Y channel, tokens of bock U0
are arranged in U channel, and the same with tokens of
bock V0 in V channel (Fig. 10[a]), whereas in the serial
channel, tokens are in the order of block Y0, Y1, Y2, Y3,
following tokens of block U0 and V0 (Fig. 10[b]). The
reason of constructing parallel and serial version is that it
is useful for providing the SW and HW generator more
efficient synthesis tools for ADM. From the implementa-
tion point of view, depending on which SW or HW the user
want to generate for the decoder, either serial or parallel
version of the FUs can be used for the ADM [21]. For the
proposed configuration, both parallel and serial version of
FUs are available in VTL in order to have the maximum
flexibility in implementation.
0123
Yt

0
Ut

0
Vt

012345

Fig. 10. Difference between parallel [a] and serial [b] dat
5.2. FU network description

FNL is used in the decoder configuration to connect FUs
into a network. How the decoder configuration can be
described in terms of a network of FUs is shown in this
section. The network in Fig. 8 composed of 2 FUs is
taken as an example to illustrate the connection specifica-
tion. By connecting FUs into networks and then connect-
ing those networks, a full decoder configuration is
established.

Fig. 11 describes the network specification of FUs in
Fig. 8. The root element ‘‘XDF’’ is used to identify a FU
network which includes kinds of elements to describe its
structure. The element ‘‘Package’’ contains a structured
representation of a qualified identifier (QID) which
provides the name attribute of the network [8]. The
element ‘‘Port’’ declares I/O tokens of the network.
‘‘Instance 1’’ and ‘‘Instance 2’’ indicate FUs involved in
the network with internal parameters. Directions of
tokens are declared at last to specify the source and
destination to make sure the seamless dataflow between
FUs and networks.
5.3. Decoder configuration

Figs. 12 and 13 show the implementation architecture
of the proposed decoder configuration example which
functions as an AVS intra decoder. The whole decoder
consists of three networks: ‘‘Parser’’, ‘‘Decoding’’ and
‘‘Motion compensation’’. Fig. 12 describes the ‘‘Parser’’
network and Fig. 13 shows the Y component implementa-
tion architecture of ‘‘Decoding’’ and ‘‘Motion compensa-
tion’’. For U and V component, they are processed in the
similar way as Y.

The input bitstream is serialized bit by bit through
FU ‘‘Serialize’’ before decoding process. The ‘‘Parser’’
network decodes the coming bitstream and produces
context-control signal and a sequence of data for each
block which will be used in the following networks. The
syntax parser ‘‘Algo_synp’’ which can be generated
oken

oken

oken

FUs for Y

FUs for U

FUs for V

YUVtoken
FUs for YUV

aflow model for instance of the 420 colour format.

ARTICLE IN PRESS

<XDF name="IntraModePrediction">

 <Package>
 <QID>
 <ID id="AVSIntra"/>
 </QID>
 </Package>

 <Port kind="Input" name="BTYPE"/>
 <Port kind="Input" name="INTRA_INFO"/>
 <Port kind="Output" name="IntraMode"/>

 <Instance id="1">
 <Class name="Algo_Address">
 <QID>
 <ID id="cal"/>
 </QID>
 </Class>
 <Parameter name="BTYPE">
 <Expr kind="Var" name="BTYPE_SZ"/>
 </Parameter>
 […]
 <Note kind="label" value="Algo_Addr_ThreeLeftTop"/>
 </Instance>

 <Instance id="2">
 <Class name="Algo_IntraMode">
 […]
 <Note kind="label" value="Algo_IntraModePrediction"/>
 </Instance>

 <Connection src="" src-port="BTYPE" dst="1" dst-port="BTYPE"/>
 <Connection src="" src-port="BTYPE" dst="2" dst-port="BTYPE"/>
 <Connection src="" src-port="INTRA_INFO" dst="2" dst-port="INTRA_INFO"/>
 <Connection src="1" src-port="addr_top" dst="2" dst-port="addr_top"/>
 <Connection src="1" src-port="addr_left" dst="2" dst-port="addr_left"/>
 <Connection src="2" src-port="IntraMode" dst="" dst-port="IntraMode "/>

</XDF>

[a]

[b]

[c]

[d]

[e]

Fig. 11. A network description for intra prediction to show how the network is described in terms of FUs in decoder configuration procedure.

Serialize
Algo_
Synp

BTYPE

INTRA_INFO

RUN

LEVEL

LAST

BTYPESplit

INTRA_INF
OSplit

Block
Expand BLOCK

Y
U
V

Y
U
V

used in parallel
version

generated automatically or
fixed as one FU in AVS VTL

BITS

BlockSplit
Y
U
V

BIT

Fig. 12. Architecture of ‘‘Parser’’ network in the proposed AVS intra decoder configuration.

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299296
automatically or fixed as an FU in AVS VTL consumes the
binary bitstream and sends out five tokens: ‘‘BTYPE’’,
‘‘INTRA_INFO’’ and ‘‘RUN, VALUE, LAST’’ for each 8�8
block. Token ‘‘BTYPE’’ combines various control signals in
a fixed order and controls the decoding process. Token
‘‘INTRA_INFO’’ collects all necessary information for intra
prediction of current block and allocates a fixed bitwidth
for each kind of information. Tokens ‘‘RUN, LEVEL, LAST’’
are directly decoded from bitstream. FU ‘‘BlockExpand’’
stuffs zeroes according ‘‘RUN, LEVEL, LAST’’ and offers a
sequence of 64 coefficients for each one 8�8 bock. Three
‘‘split’’ FUs are employed to separate tokens into Y, U and
V channel in parallel version whereas in serial case, they
are not invoked.

The ‘‘Decoding’’ network is to decode residuals and
implement prediction. Sixty-four residuals of one 8�8

ARTICLE IN PRESS

Encoded
Data

Mgnt_Recon
struct_Addr

Mgnt_FB

Parser
Decoding

(Y Component)
MotionCompensation

(Y Component)
Y

REC_DONE
PIXEL

Algo_Addr_
ThreeLeftTop

SCAN-1

Mgnt_Intra
Pred_Addr

Algo_
IntraPred

Algo_Intra
ModePred

QUANT-1 IICT-1

Algo_ADD

Decoded
Y

Res
Pred
Addr

BTYPE

INTRA_INFO

Fig. 13. Implementation architecture of the proposed decoder configuration example which can be instantiated as different decoder configurations (for

instance of Y component).

Fig. 14. Complete implementation of the proposed decoder configuration example which is instantiated as an AVS intra decoder and its test model in RVC

simulation environment OpenDF.

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299 297

ARTICLE IN PRESS

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299298
block are output as a sequence of tokens ‘‘Res’’ after the
process of inverse scan (SCAN�1), inverse quantization
(QUANT�1) and inverse transform (IICT�1). The intra
prediction which has been explained above predicts pixels
for current 8�8 block and outputs a sequence of data in
horizontal raster order. The ‘‘Motion compensation’’ net-
work receives the residuals and predicted pixels from
decoding network to reconstruct pictures and stores
reference pixels used for next prediction. A feedback
context signal ‘‘REC_DONE’’ is introduced to negotiate
between the ‘‘Decoding’’ and ‘‘Motion compensation’’
network because intra prediction for current block cannot
be started until the reconstruction of pixels required by
next block intra prediction is finished. In the proposed
implementation, context signal ‘‘REC_DONE’’ is output
every time one block is reconstructed to make sure that
the reference pixels are available. The other feedback
token is a sequence of reference data used for intra
prediction which flows in ‘‘PIXEL’’ channel.

The decoder configuration which acts as an AVS intra
decoder is successfully implemented in RVC simulation
environment OpenDF. A test model is set up to read in AVS
bitstream, decode the bitstream and display the recon-
structed pictures. Fig. 14 gives a snapshot of the test model
network as well as a reconstructed picture from the
reconfigured decoder in OpenDF. Result of the simulation
shows that with the dataflow mechanism and feedback
tokens for communication between networks, multiple
video formats, such as CCIR, CIF and QCIF are supported in
the architecture. The realized configuration architecture
keeps the advantage of dataflow and modular formalism
in RVC framework and allows straightforward exchange
and extension with new FUs.
6. Conclusion

This paper describes the decoder reconfiguration
procedure in RVC framework by showing a decoder
configuration architecture which successfully combines
coding tools from AVS and MPEG VTL to form different
decoding solutions. BS schema of AVS intra decoder
configuration is detailed to explain how to define the BS
schema for a reconfigured bitstream. FUs partition
granularity of AVS and MPEG VTL is analyzed to reach
high reusability in the proposed decoder configuration
architecture. Besides the reasonable granularity, input and
output tokens of each FU are specified in content and
order to guarantee seamless connections between FUs.
Moreover, the FU granularity and token specifications
bring convenient exchangeability and easy extension
ability for reconfiguration in RVC framework. Based upon
the facets mentioned above, the configuration example
shown in this paper can be instantiated as different
decoders through exchanging and reusing FUs from VTLs.
The proposed decoder configuration architecture reuses
FUs from MPEG and AVS VTL efficiently, which reduces
redesigns of FUs. It is also capable of exchanging some FUs
between AVS and H.264/AVC which have the same token
requirements but different algorithms to configure new
decoders. Based on the architecture, an intra configuration
of AVS is implemented by connecting AVS syntax parser
and corresponding tools from AVS and MPEG VTL. It is
obvious that the decoder configuration architecture
shown in this example keeps the dataflow and modular
mechanism of RVC and is flexible enough to be changed
and extended to support other new configurations.

7. The future work

At present, there is still something to be done in RVC
proceeding. In the realization of RVC framework, for the
automatic generation of syntax parser, an optimized
version is in development to deal with more complex
cases in H.264/AVC which contains far more new
technologies to improve performance. How to implement
CABAC is also an emergent issue in RVC to work more
efficiently. With the work of RVC proceeds, more compli-
cated implementations of decoder configuration will be
synchronically progressed. Meanwhile, more reusability
and exchangeability will be explored between different
VTLs to promote the development of RVC.
Acknowledgement

This work was supported in part by the National
Science Foundation of China under Grants 60833013 and
60833006.

References

[1] Euee S. Jang, Chungku Lee, Study of Application Requirements
Related to RVC, ISO/IEC JTC1/WG11 Document M15117, Antalya,
January 2008.

[2] Euee S. Jang, Jens Ohm, Marco Mattavelli, Whitepaper on Reconfi-
gurable Video Coding (RVC), ISO/IEC JTC1/WG11 Document W8485,
Hangzhou, October 2006.

[3] Reconfigurable Video Coding Requirements, ISO/IEC JTC1/WG11
Document W8943, SanJose, April 2007.

[4] Dandan Ding, Lu Yu, Christophe Lucarz, Marco Mattavelli, Video
Decoder Reconfigurations and AVS Extensions in the New MPEG
Reconfigurable Video Coding Framework, 2008 IEEE Workshop on
Signal Processing Systems (SiPS 2008), Washington, October 2008.

[5] Dandan Ding, Honggang Qi, Lu Yu, RVC Exploration Experiments
Report on New 8�8 Inverse Transform and Quantization Tools, ISO/
IEC JTC1/WG11 Document M14756, Lausanne, July 2007.

[6] Johan Eker, Jörn Janneck, CAL Language Report, ERL Technical Memo
UCB/ERL M03/48, 2003.

[7] E.S. Jang, K. Asai, C.-J. Tsai, Study of Video Coding Tool Repository,
ISO/IEC JTC1/WG11 Document W7329, Poznan, July 2005.

[8] Gwo Giun Lee, Euee S. Jang, Marco Mattavelli, Chun-Jen Tsai,
Christophe Lucarz, Mickaël Raulet, Dandan Ding, Study Text of ISO/
IEC FCD 23001-4: Codec Configuration Representation, ISO/IEC
JTC1/WG11 Document N10165, Busan, October 2008.

[9] Information Technology—MPEG systems technologies—Part 5: Bit-
stream Syntax Description Language (BSDL), ISO/IEC FDIS 23001-5:
2007.

[10] C.-J. Tsai, Suggestions on the Direction of VCTR, ISO/IEC JTC1/WG11
Document M12074, Busan, April 2005.

[11] Dandan Ding, Honggang Qi, Lu Yu, Tiejun Huang, Wen Gao, Results
of RVC Explore Experiment: Analysis of Function Units Reusability
between MPEG-4/AVC and AVS for RVC Toolbox, ISO/IEC JTC1/WG11
Document M15415, Archamps, April 2008.

[12] Dandan Ding, Honggang Qi, Lu Yu, Tiejun Huang, Wen Gao, Results
of RVC CE1.3: AVS Intra Configuration of RVC Framework, ISO/IEC
JTC1/WG11 Document M15414, Archamps, April 2008.

[13] China Audio and Video Standard (AVS), Information technology
advanced coding of audio and video part2: Video, GB/T 20090.
2/-2006.

ARTICLE IN PRESS

D. Ding et al. / Signal Processing: Image Communication 24 (2009) 287–299 299
[14] L. Yu, F. Yi, J. Dong, C. Zhang, Overview of AVS-video: tools,
performance and complexity, Society of Photo-Optical Instrumen-
tation Engineers Conference (SPIE 2005) 5960 (2005) 679–690.

[15] Ci-Xun Zhang, Jian Lou, Lu Yu, Jie Dong, Wai-Kuen Cham, The
technique of pre-scaled integer transform, in: Proceedings of 2005
IEEE International Symposium on Circuits and Systems (ISCAS
2005), Vol. 1, pp. 316–319.

[16] Shuo Yao, Hai-Jun Guo, Lu Yu, Ke Zhang, A hardware implementa-
tion for full-search motion estimation of AVS with search center
prediction, IEEE Transactions on Consumer Electronics 52 (4)
(2006) 1356–1361.

[17] Christophe Lucarz, Marco Mattavelli, Joseph Thomas-Kerr, Jörn
Janneck, Reconfigurable media coding: a new specification model
for multimedia coders, IEEE Workshop on Signal Processing
Systems (SiPS 2007), 2007, pp. 481–486.

[18] David Li, Dandan Ding, Christophe Lucarz, Marco Mattavelli,
Efficient data flow variable length decoding implementation for
the MPEG RVC framework, IEEE Workshop on Signal Processing
Systems (SiPS 2008), Washington, October 2008.

[19] Christophe Lucarz, Dandan Ding, Marco Mattavelli, Samuel Keller,
Automatic generation of parsers using XSLT and updated versions of
the VLD FUs, ISO/IEC JTC1/WG11 Document M15384, Archamps,
April 2008.

[20] Sunyoung Lee, Euee S. Jang, Yi-Shin Tung, Kohtaro Asai, Yoshihisa
Yamada, Marco Mattavelli, Gwo-Giun Lee, Study Text of ISO/IEC
23002-4 FCD: Video Tool Library, ISO/IEC JTC1/WG11 Document
N10169, Busan, October 2008.

[21] Christophe Lucarz, Marco Mattavelli, Dave Parlour, Serialized
versions of the MPEG-4 SP FUs, ISO/IEC JTC1/WG11 Document
M14873, Shenzhen, November 2007.

[22] Matthieu Wipliez, Ghislain Roquier, Mickaël Raulet, Jean-Francois
Nezan, Olivier Dèforges, Code generation for the MPEG reconfigur-
able video coding framework: from CAL actions to C functions, 2008
IEEE International Conference on Multimedia and Expo (ICME),
Hannover, June 2008.

[23] Jörn W. Janneck, Ian D. Miller, Dave B. Parlour, Marco Mattavelli,
Christophe Lucarz, Matthieu Wipliez, Mickaël Raulet, Ghislain
Roquier, Translating Dataflow Programs to Efficient Hardware: an
MPEG-4 Simple Profile Decoder Case Study, Design, Automation
and Test in Europe (DATE), Munich, 2008.

	Reconfigurable video coding framework and decoder reconfiguration instantiation of AVS
	Introduction
	RVC framework
	Video tool library
	Decoder description
	FU network description
	Bitstream syntax description

	Abstract decoder model

	China audio video coding standard
	Procedure of decoder configuration in RVC framework
	BS schema definition and validation
	FU reusability and exchangeability of video tool library
	Decoder configuration architecture

	Implementation and simulation for the proposed decoder configuration
	Parallel and serial dataflow model
	FU network description
	Decoder configuration

	Conclusion
	The future work
	Acknowledgement
	References

