
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 5, MAY 2010 673

Deinterlacing Using Hierarchical Motion Analysis
Qian Huang, Debin Zhao, Siwei Ma, Wen Gao, Fellow, IEEE,

and Huifang Sun, Fellow, IEEE

Abstract—A motion-compensated deinterlacing scheme based
on hierarchical motion analysis is presented. According to dein-
terlacing steps, our contribution can be divided into four parts:
motion estimation, motion state analysis, motion consistency
analysis, and finer-grained interpolation. In motion estimation,
we introduce a Gaussian noise model for choosing the best motion
vector for each block, and make a tradeoff between utilizing
previous de-interlaced frames and avoiding error propagation.
A directional interpolation method is also introduced in this
part for backward fields. In motion state analysis, we define two
motion states for each pixel, thus achieve a compromise between
traditional block-based strategies and the extreme pixel-based
case. In motion consistency analysis, we propose to measure both
the motion vector consistency and the motion state consistency
in order to determine whether the previous two parts should
be performed again with a different block size. In finer-grained
interpolation, we utilize a combination of recursive median filters
to generate the final results. Experimental results show that all
of the proposed techniques are effective, either objectively or
subjectively. As a result, we can achieve much higher image
quality, with an average gain of about 1.83 dB in terms of
peak signal-to-noise ratio. Moreover, the increased computation
complexity is marginal.

Index Terms—Deinterlacing, hierarchical motion analysis, mo-
tion consistency, noise model.

I. Introduction

DEINTERLACING is a kind of format conversion that
converts conventional interlaced signals such as those for

broadcasting in TV due to bandwidth limitations to progressive
signals such as those for computers. Nowadays, the demand
for video deinterlacing grows day by day since we have piled
up hundreds of thousands of valuable interlaced videos. In
the past three decades, most researchers consider deinterlacing

Manuscript received October 19, 2008; revised February 2, 2009 and
September 4, 2009. First version published March 15, 2010; current version
published May 5, 2010. This work was supported in part by the National Basic
Research Program of China (973 Program 2009CB320904) and the National
Science Foundation of China (60833013). This paper was recommended by
Associate Editor M. Comer.

Q. Huang is with the Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences (CAS),
Beijing 100190, China and with the Graduate University of the Chinese
Academy of Sciences, Beijing 100049, China (e-mail: qhuang@jdl.ac.cn).

D. Zhao is with the Department of Computer Science, Harbin Institute of
Technology, Harbin 150001, China (e-mail: dbzhao@vilab.hit.edu.cn).

S. Ma and W. Gao are with the Institute of Digital Media, School of
Electronics Engineering and Computer Science, Peking University, Beijing
100871, China (e-mail: swma@pku.edu.cn; wgao@pku.edu.cn).

H. Sun is with the Mitsubishi Electric Research Laboratories (MERL),
Cambridge, MA 02139 USA (e-mail: hsun@merl.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2010.2045807

as the reverse process of the most common 2:1 interlacing
[1] and aim at converting interlaced videos at 50/60 fields
per second to progressive ones at 50/60 frames per second.
The progressive format at 25/30 frames per second is usually
not preferable because the display refresh rate should not be
lower than 50 times per second in order to achieve continuous
flicker-free motion [2]. We sort this kind of research into
the first category. Recently, some other research perspectives
have come into being. For example, R. Castagno et al. [3]
focus on 50 Hz-to-75 Hz interlaced-to-progressive conver-
sion. S. Muramatsu et al. [4] study invertible deinterlacing.
M. Biswas et al. [5] stick to the performance analysis of
deinterlacing system. C. Ballester et al. [6] propose to perform
deinterlacing with inpainting. Since it is very difficult to
categorize these researches, we simply classify them into the
second category. As for the first category, motion compensa-
tion based deinterlacing algorithms have been developed as
the most widely adopted ones [7]–[10], which comprise three
typical stages: motion estimation, motion state analysis, and
motion-compensated interpolation.

Motion estimation (ME) is one of the most important and
computation-intensive parts of video codecs, thus it has been
studied for years. However, ME algorithms used in video
codecs usually estimate average motion over several field
periods rather than motion between adjacent fields, e.g., the
case when B pictures are used. Therefore, even the most
efficient ME algorithms in video compression are not directly
applicable to deinterlacing, since deinterlacing algorithms
typically require only one single motion vector for each
pixel, otherwise blurring might be introduced. Considering that
pixel-based ME [11] is too complicated, most deinterlacing
algorithms employ block-based ME algorithms, between either
opposite-parity fields [12] or same-parity fields [13]. Opposite-
parity ME outperforms same-parity ME when the vertical
component of a motion vector is odd; however, it suffers
from latent error propagation. Both the two kinds of ME
are taken into account in [14]; however, the block sizes are
fixed as most other algorithms do, which is not appropriate to
predict or compensate various kinds of motion due to noise
and the aperture problem. To tackle these problems, several
methods are proposed to use variable block sizes [15]–[17];
however, all the available block sizes are still fixed (e.g.,
16 × 16 → 8 × 8 → 4 × 4) hence the inherent problem
cannot be solved radically.

Motion state analysis (MSA) is performed immediately after
motion estimation. In this stage, motion vectors and texture
information are typically utilized to determine whether and

1051-8215/$26.00 c© 2010 IEEE

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

674 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 5, MAY 2010

Fig. 1. Proposed deinterlacing scheme.

how a given region (typically a block) is moving. To achieve
these goals, the sum of absolute difference (SAD) is usually
used to measure the similarity along motion trajectories, with
the help of other criteria such as the standard deviation
(STD). The most intuitive motion states as indicated in [18]
are stationary and moving. Some researchers proposed to
define more motion states to make a finer-grained process-
ing [19]–[21]. However, these approaches cannot work well
for motions such as rotation, zoom, and occlusion. Chang
et al. [22] and Huang et al. [23] tried to make the occlu-
sion problem less suffering by using more reference fields,
but the performance is still unsatisfactory for rotation and
zoom cases (e.g., the Mobile sequence in [22]). Moreover,
existing block-based MSA methods typically have only one
single state for each motion-compensated block, which is
not suitable for finer-grained interpolation. Pixel-based MSA
[24] can be used to address these problems; however, the
computation complexity is too high. Thus, a balance be-
tween conventional block-based MSA and pixel-based MSA is
needed.

Motion-compensated interpolation (MCI) is the last stage
of video deinterlacing. It should be performed based on the
results of MSA, with the assistance of motion information
and texture information of each region. Generally speaking,
MCI methods can be divided into three categories: motion
adaptive MCI [8], recursive MCI [25], [26], and general-
ized sampling theorem (GST)-based MCI [27], [28]. Motion
adaptive MCI algorithms take noise into account; however,
the typical assumption that an obtained image equals to
the sum of original image and noise is not valid in many
practical cases [29]. Recursive MCI algorithms show the best
performance; however, they are threatened by latent error
propagation. GST-based MCI algorithms never suffer from
error propagation; however, artifacts might be introduced
when the motion vectors are erroneous. Adaptive deinter-
lacing algorithms [23], [30] achieve better results by apply-
ing different methods to different regions; however, as for
video sequences with motions such as rotation, zoom, and
occlusion, finer-grained interpolation is required for better

visual perception and lower probability of error propaga-
tion.

Based on the above discussions, a new block strategy is
indispensable for more efficient ME, MSA, and MCI. As the
experimental results have shown that two fixed-size block
levels are generally good for video coding [31] and video
deinterlacing [16], we propose a three-leveled block strategy
that has two fixed-size block levels and one variable-size block
level to achieve better prediction and motion compensation.
In this paper, a motion-compensated deinterlacing scheme is
presented based on hierarchical motion analysis, which is
incarnated by the novel three-leveled block strategy. First, mo-
tion estimation and motion state analysis are performed suc-
cessively for first-level blocks. Then motion vector consistency
and motion state consistency are analyzed to decide whether to
perform the second-level motion estimation and second-level
motion state analysis. Finally, a finer-grained interpolation is
proposed at the variable-size block level, which is introduced
to better solve the aperture problem than the previous methods.
The rest of this paper is organized as follows. The proposed
deinterlacing scheme is described in Section II, where the first
three subsections give the hierarchical motion analysis model
and the last subsection deals with finer-grained interpolation.
Experimental results are presented in Section III. Section IV
draws our conclusion.

II. Proposed Deinterlacing Scheme

The proposed motion-compensated deinterlacing scheme is
sketched in Fig. 1, which consists of four main modules, i.e.,
five-field motion estimation, three-field motion state analysis,
motion consistency analysis for switching between the two
fixed-size block levels, and finer-grained MCI at the third
block level. Among them, the first three modules (five-field
motion estimation, three-field motion state analysis, and mo-
tion consistency analysis) constitute the hierarchical motion
analysis model.

In Fig. 1, the first-level motion estimation and motion state
analysis differ from second-level ones only in block sizes.

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEINTERLACING USING HIERARCHICAL MOTION ANALYSIS 675

Fig. 2. Proposed three-leveled block strategy for deinterlacing.

The quadtree decomposition module equally divides a first-
level block into four second-level blocks, each of which has
the same motion vector and motion state with the first-level
block. To interpret the third block level, we illustrate our block
strategy in Fig. 2, where the first and second fixed-size block
levels are represented by gray and black blocks, respectively.
As can be seen from the third level, for each second-level
fixed-size block in the current field, each of its reference
blocks overlies at most four adjacent second-level fixed-size
blocks that might have different motion vectors and motion
states. Therefore, it might be better to subdivide the second-
level fixed-size blocks according to motion vectors, rather than
simply performing quadtree decomposition again.

Before discussing the individual modules in Fig. 1, we
would like to introduce some background information at first.
In [16], we have proposed an improved 3-D recursive search
(3-DRS) block matching algorithm [32], which measures the
matching error by

ε =
∑

IB(x, y)

|fn+1(x + dx, y + dy) − Fn−1(x − dx, y − dy)| (1)

where (x, y) designates the spatial position in the current
field fn and (dx, dy) is the motion vector. IB(x, y) is the
interlaced block that contains (x, y), whereas fn+1 and
Fn−1 are the backward reference field and the previously
interpolated frame, respectively. Since Fn−1 is a full frame
and there is no vertical restriction on Fn−1(x − dx, y − dy),
we add a restriction that dy should be even in order to avoid
error propagation. Unfortunately, it is not effective when the
vertical component of a motion vector is odd. Moreover,
noise is not considered. To address these problems, we further
proposed a probabilistic motion estimation model in [23].
However, the block size for motion estimation was fixed
so that it was not suitable for predicting different kinds of
motion. Therefore, in this paper we propose to utilize two
fixed-size block levels for better performance.

Now the relationships within Fig. 1 are clear. We first
perform first-level motion estimation to get the motion vectors
and then determine whether the first-level blocks are mov-
ing. After that, motion consistency is analyzed to determine
whether motion estimation and motion state analysis should
be performed again at the second-level; if not, quadtree
decomposition is used to directly assign the motion vector and
motion state of a large block to its sub-blocks. When all these
are finished, a finer-grained interpolation is then applied. In the
following subsections, the four main modules are introduced in
sequence.

A. Five-Field Motion Estimation

In image/video processing, the following equation is typ-
ically assumed, taking additive white Gaussian noise into
account

Fn(x, y) = Gn(x, y) + Vn(x, y) (2)

where Fn(x, y), Gn(x, y), and Vn(x, y) are the obtained image,
original image, and Gaussian noise of the current nth picture,
respectively. However, considering factors such as the ununi-
formity of camera sensitivity and uneven object illumination,
a multiplicative error coefficient en(x, y) is usually necessary
to suppress the systematic degradation [29]

Fn(x, y) = en(x, y) · Gn(x, y) + Vn(x, y). (3)

Assuming the forward and backward reference positions of
(x, y) are (x′, y′) and (x′′, y′′), respectively, then we have

Fn(x, y)−Fn−1(x′, y′)

= [en(x, y) − en−1(x′, y′)]·Gn(x, y)

+[Vn(x, y) − Vn−1(x′, y′)]Fn+1(x′′, y′′) − Fn(x, y)

= [en+1(x′′, y′′) − en(x, y)] · Gn(x, y)

+[Vn+1(x′′, y′′) − Vn(x, y)]. (4)

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

676 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 5, MAY 2010

Fig. 3. Five-field motion estimation.

Fig. 4. Five directions for interpolation.

From the above two equations we can get the following:

Fn+1(x′′, y′′) − en+1(x′′, y′′) − en−1(x′, y′)
en(x, y) − en−1(x′, y′)

Fn(x, y)

+
en+1(x′′, y′′) − en(x, y)

en(x, y) − en−1(x′, y′)
Fn−1(x′, y′)

=
[
Vn+1(x′′, y′′) − Vn(x, y)

]−en+1(x′′, y′′) − en(x, y)

en(x, y) − en−1(x′, y′)[
Vn(x, y) − Vn−1(x′, y′)

]
. (5)

In general, it is not easy to get an accurate estimation of
en(x, y). Taking into account the self-correction ability (e.g.,
self-calibration) of modern cameras, we can make another
assumption that {en} is a decreasing arithmetical series along
the motion trajectory, then we can obtain

Fn+1(x′′, y′′) − 2Fn(x, y) + Fn−1(x′, y′)
= Vn+1(x′′, y′′) − 2Vn(x, y) + Vn−1(x′, y′). (6)

Since Vn+1(x′′, y′′), Vn(x, y), and Vn−1(x′, y′) are Gaussian
noises, the left-hand side of (6) also obeys a Gaussian distribu-
tion. Therefore, based on the discussion in [23], the conditional
probability that measures how well the current nth frame can
be described by reference frames and motion vectors grows
with the decrease of the following equation:

(∑
B(x, y)

[Fn+1(x′′, y′′) − 2Fn(x, y) + Fn−1(x′, y′)]

)2

+ delta

∑
B(x, y)

(Fn+1(x′′, y′′) − 2Fn(x, y) + Fn−1(x′, y′))2 + delta

(7)
where B(x, y) is the block that contains (x, y), and delta is a
very small positive constant used to avoid division by zero.

This criterion can be interpreted as follows. Let

Zn(x, y) = Fn+1(x′′, y′′) − 2Fn(x, y) + Fn−1(x′, y′).

Then we can assume that Zn(x, y) ∼ N(µ(x, y), σ2(x, y)),

which deduces X =

∑
B(x, y)

Zn(x, y) − µ(x, y)

σ(x, y)√
Num

∼ N(0, 1). On

the other hand, Y =
∑

B(x, y)

[
Zn(x, y) − µ(x, y)

σ(x, y)

]2

obeys

the χ2(Num) distribution. If we consider X and Y as
independent, then T = X/

√
Y/Num obeys the t distribution,

whose probability density function curve is very similar to
that of N(0, 1). Therefore, the probability grows with the
decrease of T ’s absolute value, which is exactly the square
root of (7) when µ(x, y) equals 0 and σ(x, y) equals 1.

Based on the above discussion, if we have several motion
vector candidates for the current block, the one that minimizes
(7) will be considered as best and extended to the other
direction for further use. For interlaced sequences, the general
three-frame case turns into the five-field case in Fig. 3, where
four motion vector candidates for the current block can be
calculated, including two between opposite-parity fields and
two between same-parity fields. Note that the dotted blocks
are co-located with the block in the current nth field.

The motion estimation process can avoid error propagation
by referencing only original pixels. But in this case we cannot
make full use of the previously de-interlaced frame. In the
implementation, we make a tradeoff that the best motion
vector for each block will be mapped to the previously
interpolated frame Fn−1. Thus, the vertical component of the
mapped motion vector can be either odd or even. In order
to successfully extend it to the backward direction, we can
temporarily de-interlace the backward field by an intra-field
interpolation method (e.g., line averaging [7] or directional
interpolations [33], [34]). In this way, we can not only benefit
from the previous interpolation results when the motion vector
is considered to be reliable but also have a great chance of
avoiding error propagation. The latter can be interpreted as
follows. First, we should assume that all the selected motion
vectors before mapping to Fn−1 are reliable, and that about
50% of the motion vectors have odd vertical components. Then
the probability of making mistakes is no more than 50% in
fn. Now if we take Fn−1 into account, we can find that the

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEINTERLACING USING HIERARCHICAL MOTION ANALYSIS 677

Fig. 5. Sketch map for motion state analysis.

interpolated pixels also have a chance of no more than 50%
to be incorrect because half of the motion vectors calculated
in fn−1 tend to be vertically even. So the error propagation
probability in fn is restricted to be no more than 25% when
considering one more reference. By analogy we know that
this phenomenon actually weakens with time. In Section II-D,
we will also use some interpolating strategies to restrain error
propagation.

For better performance, each to-be-interpolated pixel (i, j)
in the backward field is interpolated using a directional in-
terpolation method modified from [33], as described by the
following steps.

1) Step 1: Calculate five directional averages and five
absolute directional differences as⎧⎪⎨
⎪⎩

average(k) =
f0(i−1, j−2 + k) +f0(i +1, j +2−k)

2
difference(k) = |f0(i − 1, j − 2 + k)

− f0(i + 1, j + 2 − k)|
(8)

where k ranges from 0 to 4, representing the five
directions in Fig. 4 from left to right.

2) Step 2: If the following equations hold, go to Step 3;
otherwise average(2) is used as the final result⎧⎪⎪⎨
⎪⎪⎩

|average(2) − average(1)| ≤ 25
|average(2) − average(3)| ≤ 25
MAX(|average(2) − average(0)| ,

|average(2) − average(4)|) > 25.

(9)

3) Step 3: Remove unnecessary directions by determining
the starting direction start and the ending direction end:

start = end = 2;
if, (|difference (1) − difference (3) |≥ 40)
{

start = 1;
end = 3;

}
if (|difference (0) − difference (3) |≥ 40

&& |difference (0) − difference (2) |≥ 40)
start = 0;

if (|difference (4) − difference (1) |≥ 40
&& |difference (4) − difference (2) |≥ 40)

end = 4;
4) Step 4: Find the direction with minimal absolute differ-

ence from k = start to k = end, and use the corres-
ponding average as the interpolation result.

B. Three-Field Motion State Analysis

In Section I, we have mentioned that motion state analysis is
generally a procedure after motion estimation. But we would
like to emphasize that although motion vectors are available at
this stage, we should not think motion estimation has already
been finished. This is because the results of first-level motion
state analysis will be used in the next subsection to decide
whether the second-level motion estimation and subsequent
second-level motion state analysis should be performed, as
depicted in Fig. 1.

For each block in the current field, its forward reference
might overlie one, two, or four adjacent blocks, depend-
ing on the motion vector. Fig. 5 gives an example when
a current block is split into four sub-blocks. These sub-
blocks may require different deinterlacing methods since their
references belong to different blocks in the forward field. If
only one motion state is defined for each block as existing
algorithms do, we will take the risk of discarding all the
previously computed motion state information. Therefore, in
this subsection we propose to use both the currently detected
motion state and the forwardly detected motion states for
deinterlacing. This strategy is actually a tradeoff between
traditional block-based cases and the extreme pixel-based case.
Here are some explanations. Take the white sub-block in the
current field for example when one more forward reference
is considered, i.e., the forward-forward field. Depending on
the motion vector in the forward field, the reference of its
reference sub-block might also overlie at most four blocks in
the forward-forward field. This means that the current block
can be divided into more than four parts for processing if
one more reference field is added. By this token, we can
approach the extreme case of pixel-based motion state analysis
if there are enough references and enough motion states are
defined.

For clarity, only two motion states are defined in this
subsection, i.e., stationary (0) and moving (1). For each pixel
in the current field, we use fullState to denote the motion
state detected in the current field, and subState to denote the
motion state of its reference pixel detected in the forward
field

⎧⎪⎨
⎪⎩

subStaten(x, y) = fullStaten−1(x′, y′)

fullStaten(x, y) = sgn{1 − Pn(x, y) + Pn(x, y)
· [1 − Qn(x, y)] · |Rn(x, y)|)}

(10)

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

678 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 5, MAY 2010

where the sgn function is defined as

sgn (x) =

⎧⎨
⎩

1, if x > 0
0, if x = 0
−1, if x < 0.

(11)

Pn(x, y), Qn(x, y) and Rn(x, y) are formulated as⎧⎨
⎩

Pn(x, y) = sgn[1 + sgn(SADmot(x, y) − SADcol(x, y))]
Qn(x, y) = sgn[1 + sgn(2 × STD(x, y) − SADcol(x, y))]
Rn(x, y) = sgn(x − x′) · sgn(y − y′)

(12)

where SADmot(x, y) and SADcol(x, y) are the average sums
of absolute difference along motion trajectory and among co-
located pixels, respectively; and STD(x, y) is the standard
deviation of the current block, as defined below. It is obvious
that {Pn(x, y), Qn(x, y), |Rn(x, y)|} ⊆ {0, 1}, hence (10)
will not generate values other than 0 or 1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SADmot (x, y) =
1

2

∑
IB(x, y)

[|fn(x, y)−fn−1(x′, y′)|

+ |fn(x, y) − fn+1(x′′, y′′) |]

SADcol (x, y) =
1

2

∑
IB(x, y)

[|fn(x, y) − fn−1(x, y)|

+ |fn(x, y) − fn+1(x, y) |]

STD2(x, y) = N
∑

IB(x, y)

f 2
n (x, y)−

⎡
⎣ ∑

IB(x, y)

fn(x, y)

⎤
⎦

2

.

(13)

Note that the first field should be specially treated since
subState0 (x, y) is meaningless. The modified directional in-
terpolation method described in Section II-A can be applied.
For even better performance, we can assume a virtual previous
field that equals the first field, and then perform intra-field in-
terpolations on the first field to make it different. Thus, regular
motion estimation and motion state analysis can be applied.

In the above computation, exactly three successive fields
are used for the calculation of fullState due to the following
facts. First, both fields of one interlaced frame are needed to
theoretically ensure the quality while deinterlacing each field
of the frame, as analyzed in [35]. So if the to-be-interpolated
is a bottom field, the forward field is indispensable; otherwise,
the backward field is required. Second, the experiments in [36]
show that if only these two fields are used, the performance
is often worse than the simplest one-field case. To do better,
the number of fields should not be less than three; intuitively
three successive fields can be used. Third, it can be seen from
[37] that motion state analysis with three fields is generally
better than that with two-fields, but it is usually unhelpful to
use more than three fields.

C. Motion Consistency Analysis

At this point, the specific motion estimation and motion
state analysis techniques have already been introduced for
fixed-size block levels. The remaining problem before interpo-
lation is how to dynamically switch between these two fixed-
size block levels, (see Fig. 1). In this subsection, this problem
is tackled by performing the motion consistency analysis,
which includes the analysis on motion vector consistency and
motion state consistency.

Fig. 6. 3 × 3 neighborhood for analysis on motion vector consistency.

Motion vector consistency is analyzed within the current
field. For lower computation complexity, a 3×3 neighborhood
is considered for each block, as shown in Fig. 6, where the
bold arrow MV9 refers to the motion vector of the current
block. Intuitively, a consistent motion vector should act similar
to its neighbors, in terms of both the motion vector value and
the motion trajectory similarity. Therefore, MV9 is considered
to be consistent if the following equations are satisfied:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

8∑
i=1

[
sgn (|MVi − MV9|)

] ≤ 2

9∑
i=1

sgn

[
1 + sgn

(
STDi + delta

SADi + delta
− 2

)]
≥ 6

(14)

where delta is a very small positive constant and the thresholds
are experimentally set. The first equation means that the
current motion vector should be equal to most of its neighbors,
whereas the second equation is used to ensure whether most
of these motion vectors are reliable. Here STDi is the standard
deviation defined as

STD2
i = Ni

∑
IB(xi, yi)

f 2
n (xi, yi) −

⎡
⎣ ∑

IB(xi, yi)

fn(xi, yi)

⎤
⎦

2

(15)

where Ni and (xi, yi) are the number of pixels and an arbitrary
pixel in the ith interlaced block, respectively. SADi is the
average sum of absolute difference along motion trajectory

SADi =
1

2

∑
IB(xi, yi)

[|fn(xi, yi) − fn−1((xi, yi) + MVi)|

+ |fn(xi, yi) − fn+1((xi, yi) − MVi)|
]
.

(16)

As can be seen above, motion vector consistency is mea-
sured within the current field. On the contrary, the analysis
on motion state consistency considers motion states in both
the current field and the forward field, i.e., subState from the
forward field and fullState in the current field. For a given
pixel (x, y), its motion state is considered to be consistent if
the following equations hold:{

fullStaten(x, y) = fullStaten−1(x′, y′)
subStaten(x, y) = subStaten−1(x′, y′) (17)

where (x′, y′) is the forward reference pixel. These two
equations can be easily understood and intuitively interpreted
as: since each pixel has only two kinds of motion state, the
motion state consistency should be acknowledged if these two
kinds of motion state both remain the same along motion
trajectory. Substituting the first equation of (10) into (17), the
decision-making strategy can be equivalently rewritten as

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEINTERLACING USING HIERARCHICAL MOTION ANALYSIS 679

{
subStaten(x, y) = fullStaten(x, y)
subStaten−1(x′, y′) = fullStaten−1(x′, y′). (18)

These two equations are more compatible with the proposed
idea. We can see clearly that for each pixel (x, y), the two
kinds of motion state should be the same. Moreover, since the
right-hand side of the first equation equals the left-hand side
of the second equation according to (10), we actually mean
that both of the two kinds of motion states should be kept the
same along motion trajectory in at least three successive fields.

Finally, the motion consistency is defined as

MConsistn(x, y) = MVConsistn(x, y) · MSConsistn(x, y)
(19)

where MVConsistn(x, y) and MSConsistn(x, y) indicate the
motion vector consistency and motion state consistency of
pixel (x, y) in the current field n, respectively. Note that
MVConsistn(x, y)∈{0, 1} and MSConsistn(x, y)∈{0, 1}.

D. Finer-Grained Interpolation

From Fig. 1 we can see that all the first-level blocks are
divided into four second-level blocks before interpolation.
However, for a second-level block at this stage, the results of
motion estimation and motion state analysis can be from either
block levels. For example, if the first-level motion is consid-
ered as consistent, we will not do the second-level motion
estimation and second-level motion state analysis, therefore
we simply copy these information for the corresponding sub-
blocks during quadtree decomposition; if the first-level motion
is considered as inconsistent, the motion vector and motion
state are calculated at the second-level. To differentiate the
two fixed-size block levels, an additional superscript is used
in the following interpolation.

The finer-grained interpolation strategy is defined as

In(x, y) = In
(1)(x, y) · MConsistn

(1)(x, y)

+ In
(2)(x, y) · [1 − MConsistn

(1)(x, y)
] (20)

where MConsistn
(l)(x, y) and In

(l)(x, y) (l = 1, 2) are the
motion consistency and interpolation algorithm for the current
field n at the l-th fixed size block level, respectively. Note
that the superscript l for MConsist(l)

n (x, y) is fixed to be
one, as depicted in Fig. 1. As for the motion-compensated
interpolation algorithm I(l)

n (x, y), several motion-compensated
median filtering (MCMF) methods are selected

In
(l)(x, y)=fullStaten

(l)(x, y) · nonStationaryMFn
(l)(x, y)

+
[
1−fullStaten

(l)(x, y)
] · stationaryMFn

(l)(x, y)
(21)

where fullStaten
(l)(x, y) ∈ {0, 1} is the motion state cal-

culated in current field n at the lth fixed size block
level, as shown in Section II-B. stationaryMFn

(l)(x, y) and
nonStationaryMFn

(l)(x, y) are the median filters for the sta-
tionary state and the moving state, respectively, as defined
in (22), where Fn−1 and Fn+1 are the previously interpolated
frame and the temporarily de-interlaced backward frame, re-
spectively. The functions will be explained in (23) and (24)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

stationaryMFn
(l)(x, y) = Medians

[
Fn−1

(l)(x′, y′),

Fn+1
(l)(x′′, y′′), fn(x, y − 1),

fn(x, y + 1),
fn(x, y − 1) + fn(x, y + 1)

2

]
.

nonStationaryMFn
(l)(x, y)

= smoothn
(l)(x, y) · smoothMFn

(l)(x, y)
+
[
1− smoothn

(l)(x, y)
] · nonSmoothMFn

(l)(x, y)

(22)

Some explanations are necessary here before further discus-
sions. First, we would like to point out that motion acceleration
and scene changes will have hardly any influence on the
proposed motion estimation. This is because we have selected
only one motion vector for each block out of many candi-
dates (forward/backward, same-parity/opposite-parity) during
the motion estimation procedure. For example, if there is a
scene change at the current field, then a backward motion vec-
tor will be selected as the most reliable one. Second, although
the unique motion vector is extended to another direction in
Section II-A, the specific interpolation algorithms used in this
subsection are relatively safe. For example, the definition of
stationaryMFn

(l) (x, y) shows that “intra”-pixels have larger
weights than “inter”-pixels. Even if one of the references is
bad, the final result will generally not be influenced if the
“intra”-pixels are similar.

In (22), smoothn
(l)(x, y) is used to determine whether a

pixel (x, y) in the current field n is in a smooth region when
considered in an lth level fixed-size block

smoothn
(l)(x, y)=1−sgn

(
1+sgn

(
STDn

(l)(x, y) + delta

SADn
(l)(x, y) + delta

−2

))
(23)

smoothMFn
(1)(x, y)

= Median

(
Fn−1

(1)(x′, y′) + Fn+1
(1)(x′′, y′′)

2
, edgen(x, y),

fn(x, y − 1), fn(x, y + 1),
fn(x, y − 1) + fn(x, y + 1)

2

)
smoothMFn

(2)(x, y) = Median(
Fn−1

(2)(x′, y′), Fn+1
(2)(x′′, y′′), fn(x, y−1), fn(x, y+1),

fn(x, y − 1) + fn(x, y + 1)

2

)
nonSmoothMFn

(1)(x, y)=Median(
Fn−1

(1)(x′, y′), Fn+1
(1)(x′′, y′′),

Fn−1
(1)(x′, y′) + Fn+1

(1)(x′′, y′′)
2

,

fn(x, y − 1), fn(x, y + 1),
fn(x, y − 1) + fn(x, y + 1)

2

)
nonSmoothMFn

(2)(x, y) = Median(
Fn−1

(2)(x′, y′), Fn+1
(2)(x′′, y′′), fn(x, y−1), fn(x, y+1),

Fn−1
(2)(x′, y′) + Fn+1

(2)(x′′, y′′)
2

)

.

(24)

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

680 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 5, MAY 2010

Fig. 7. PSNR comparison between original progressive sequences and de-interlaced ones.

with the definitions of STDn
(l)(x, y) and SADn

(l)(x, y) sim-
ilar to (15) and (16), respectively. The remaining median
filters for nonStationaryMFn

(l)(x, y)(l = 1, 2) are defined in
equations (24), where edgen(x, y) is a simple edge-based line
averaging (ELA) function

edgen(x, y) =
fn(x−k, y−1) + fn(x + k, y + 1)

2
,

subject to k = arg MIN
t∈[0, 2]

|fn(x−t, y−1) − fn(x + t, y + 1)|.
(25)

All the four median filters in equations (24) are de-
fined for the moving state. For smooth regions, we intu-
itively assign larger weights to “intra”-pixels and smaller
weights to “inter”-pixels so that cases such as motion ac-
celeration and scene changes are less suffering, as explained
before. However, for regions that are not smooth, “inter”-
pixels along motion trajectory should have relatively larger
weights because the intra neighbors tend to be different
from the to-be-interpolated pixel. Then the definitions for
smoothMFn

(2)(x, y) and nonSmoothMFn
(2)(x, y) can be un-

derstood. Now the remaining untouched issue is why the
interpolation approach differs when using motions at different
fixed-size block levels.

As seen from (23), smooth regions are those who have
relatively small standard deviations compared to SAD. How-
ever, given a true motion vector, the SAD might be too
small to be used to determine the smoothness. To over-
come this deficiency, we make some changes when motion
consistency is acknowledged. Based on the above discus-

sions, smoothMFn
(1)(x, y) and nonSmoothMFn

(1)(x, y) will
be applied if and only if the first fixed-size block level
is considered as consistent. That is to say, the definitions
for smoothMFn

(1)(x, y) and nonSmoothMFn
(1)(x, y) should

consider the case when the result of (23) is incorrect. As
for smoothMFn

(1)(x, y), we give more weights to “intra”-
pixels by adding a simple ELA method. Therefore, it might be
better when a “smooth” region contains some high frequency
information such as edges. As for nonSmoothMFn

(1)(x, y),
we give more weights to “intra”-pixels by adding an intra
parameter in the median filter. In this way, the spatial weights
(in the vertical direction) equal to the temporal weights (along
motion trajectory). Note that there are two results when the
number of parameters for median filtering is even. We simply
take the average.

III. Experimental Results

In the following subsections, the proposed algorithm is
evaluated both objectively and subjectively using various
sequences. (The first-level and second-level block sizes are
16 × 16 and 8 × 8, respectively.) The computation complexity
is also discussed. Note that the proposed motion estimation is
implemented based on 3-DRS.

A. Objective Performance

Fig. 7 compares the objective performance of several
deinterlacing algorithms on seven sequences, including five
common intermediate format (CIF) sequences (News, Bus,

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEINTERLACING USING HIERARCHICAL MOTION ANALYSIS 681

TABLE I

PSNR Comparison for Evaluating the Proposed Motion Estimation

Sequence Foreman News Bus Football Mobile Paris Tempete Average
Forward motion estimation 36.57 42.02 26.92 32.16 26.94 36.44 32.91 33.42
Five-field ME + Motion Vector Reliability [14] 36.46 42.57 27.62 32.72 27.79 36.99 33.54 33.96
Five-field ME + old Gaussian [23] 37.17 42.59 28.18 32.4 28.65 37.3 33.63 34.27
Proposed first-level ME 37.27 42.59 28.4 32.48 28.92 37.43 33.66 34.39

TABLE II

Performance of the Proposed Motion State Analysis and Motion Consistency Analysis

Sequence Foreman News Bus Football Mobile Paris Tempete Average
PSNR gain 0.14 dB 0.55 dB 0.52 dB 1.55 dB 0.05 dB 0.3 dB 0.01 dB 0.45 dB

Fig. 8. Subjective performance on the Horseriding sequence with SD resolution. (a) Original sequence. (b) fiveTapMF. (c) sixTapMF. (d) Proposed.

TABLE III

Computation Complexity Comparison in Second

Sequence Foreman News Bus Football Mobile Paris Tempete Average
Time of fiveTapMF 17.219 17.063 17.297 17.031 17.547 17.422 17.422 17.286
Time of sixTapMF 17.343 17.125 17.282 17.031 17.719 17.562 17.500 17.366
First-level interpolation 19.235 19.094 19.235 18.922 19.641 19.391 19.672 19.313
Second-level interpolation 24.140 24.797 23.063 23.438 24.360 24.234 24.156 24.027
Proposed interpolation 25.373 27.676 22.899 19.414 27.726 28.315 27.916 25.617
Time of AR [22], [26] 21.828 21.375 21.500 21.375 22.297 21.828 22.110 21.759
Time of [23] 22.781 21.985 21.906 21.609 22.750 22.140 22.219 22.199

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

682 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 5, MAY 2010

Fig. 9. Subjective performance on the MobileCalendar sequence with SD resolution. (a) Original sequence. (b) fiveTapMF. (c) sixTapMF. (d) Proposed.

Football, Mobile, and Tempete, 150 frames) and two 720P
sequences (City and Crew, 50 frames). We first perform
interlacing on the progressive sequences and then de-interlace
the resultant interlaced ones. Due to the lack of better substi-
tutes, peak signal-to-noise ratio (PSNR) comparisons are made
between original progressive sequences and the corresponding
de-interlaced ones. The first method, fiveTapMF, is the ob-
jectively best five-tap median filter proposed in Section II-D,
whereas sixTapMF is the six-tap median filter defined in
(24). The method Combination is a simple combination of
fiveTapMF and sixTapMF, without hierarchical motion anal-
ysis. The last two rows are based on our scheme. Note that
the method Our−FDP differs from the proposed method in
that it uses the four directional patterns [34] for backward
interpolation.

From the first three rows in the data table, we can see
that the combination of five-tap filters and the six-tap filter is
objectively much more reliable than each of the components.
Since the same motion estimation, motion state analysis, and
motion consistency analysis are used, we can conclude that
the performance of the proposed finer-grained interpolation
is good. Note that this combination also outperforms adap-
tive recursive (AR) [22], [26] and Mohammadi [38], and is
comparable to robust deinterlacing [23] which is much more
complex. When the proposed hierarchical motion analysis and
the proposed finer-grained interpolation are combined, we
get the Proposed DI method and it achieves more reliable
results, especially on sequences News, Tempete, and Crew.
Therefore, both the hierarchical motion analysis (including

motion estimation, motion state analysis, and motion consis-
tency analysis) and the finer-grained interpolation are objec-
tively effective. The last two rows indicate that the proposed
backward interpolation method also outperforms the one using
four directional patterns.

Table I measures the effect of the motion estimation stage
in terms of PSNR. As can be seen from (4), two fields are
not enough to remove the factor e, which leads to the fact
that two-field ME being worse than five-field ME. Among the
five-field cases, the proposed algorithm makes full use of pre-
viously interpolated pixels both forwardly and backwardly, as
explained in Section II-A, thus achieves the best performance.
Note that although the PSNR gain between the last two rows is
relatively small, we have successfully made the deinterlacing
results more robust (e.g., on sequences Bus and Mobile) and
set up a better base for the subsequent improvement. Since
the second-level motion estimation has not been carried out at
this stage to make the comparison fair, the actual performance
of the proposed motion estimation should be even better than
listed.

As depicted in Fig. 1, when the second-level motion state
analysis begins, the analysis on motion consistency has already
come to an end. Therefore, it is difficult to tell the accurate
performance of motion state analysis from motion consis-
tency analysis. Fortunately, from another point of view, the
performance of motion consistency analysis actually reflects
the efficiency of the full version of motion state analysis.
Table II shows the overall PSNR gain of motion state analysis
and motion consistency analysis. We are happy to see that

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEINTERLACING USING HIERARCHICAL MOTION ANALYSIS 683

Fig. 10. Subjective performance on the Basketball sequence with SD resolution. (a) Original sequence. (b) Line averaging. (c) Edge-based median filtering
[14]. (d) Adaptive recursive [22], [26]. (e) Method of [23]. (f) Proposed.

significant gain has been achieved on sequence Football which
has tough motions for deinterlacing.

B. Subjective Performance
The proposed deinterlacing scheme is in fact a combination

of median filters. In this subsection, we first give a subjective
evaluation of the finer-grained interpolation by comparing the
proposed scheme to its individual components in Figs. 8 and 9,
and then make an overall evaluation against other algorithms.

Fig. 8 compares the subjective performance on SD sequence
Horseriding. The “Original Sequence” is generated by simply
merge two interlaced fields together hence shows the worst
subjective performance. fiveTapMF and sixTapMF are the
same as those in the previous subsection. Although many
artifacts are removed, the alphanumeric characters and the
horse ears in Fig. 8(b) are still not satisfactory. In Fig. 8(c),
things turn better but it seems that some noise is introduced
around the English letters on the clothes. Fig. 8(d) is actually

generated by the combination of fiveTapMF and sixTapMF. We
are happy to see that although only simple median filtering
methods are used, the picture quality degradation from the
most efficient high-quality deinterlacing algorithms is negligi-
ble (especially when displayed consecutively).

As can be seen from (24), the adopted median filters
consider mainly two directions: motion trajectory direction and
vertical direction. Fig. 8 has shown a scene when the motion
is not vertical. A more extreme case is considered in Fig. 9,
which is one part of the SD sequence MobileCalendar. In
the original interlaced sequence shown in Fig. 9(a), serrations
can be observed. But the numbers are generally correct in
shape. Fig. 9(b) and (c) removes many serrations, but severe
shape distortion is also obtained due to three reasons. First,
the dominant motion direction is vertical, thus the up and
down pixels are approximately on the motion trajectory. Both
fiveTapMF and sixTapMF degrade into variations of line
averaging, without considering the edge information. Second,

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

684 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 5, MAY 2010

the usage of up and down pixels is not very reliable as we do
not know the vertical speed. Therefore, both fiveTapMF and
sixTapMF are fallible. Third, the scene itself has very strong
foreground-background contrast, so even small distortions are
very obvious. In Fig. 9(d), number “9” is de-interlaced much
better as we take edge information into account. As for number
“2,” the background artifacts are gone due to region-based
decision and finer-grained interpolation.

Fig. 10 illustrates the efficiency on the SD sequence
Basketball. Fig. 10(b) indicates that line averaging removes
most of the interlacing artifacts, but tends to fail on non-
horizontal edges even if the moving direction is not vertical.
Edge-based median filtering [14] can be used to restrain this
problem. But as shown in Fig. 10(c), the overall result is gener-
ally not smooth. The result of AR [22], [26] is much smoother;
however, AR is often inferior on diagonal edges, as can be
seen from Fig. 10(d). In Fig. 10(e), the advantages of adaptive
recursive and edge-based median filtering are combined thus
the visual quality is rather good. The proposed deinterlacing
scheme only utilizes simple median filters; nevertheless, the
subjective effect in Fig. 10(f) is quite comparable to that in
Fig. 10(e).

From Figs. 8–10 we can see that advisable decisions can be
made even when all the candidate interpolation methods are
not very reliable. This can to some extent reflect the efficiency
of the proposed hierarchical motion analysis.

C. Computation Complexity

The computation complexity is measured in seconds in
Table III, where each of the seven CIF sequences has
150 frames. In the first five rows, the complexity of the
proposed deinterlacing scheme is evaluated, whereas in the
last two rows, two motion-compensated deinterlacing methods
are also measured for reference. In the experiment, we choose
the first-level block size as 16×16 and the second-level block
size as 8 × 8. Accordingly, the fixed-size methods are also
implemented with block size 16 × 16. Note that for a given
interpolation method, we may have quite different running
time when implementing with different software and hardware
conditions, as well as tricks. In this subsection, an IBM T43
AZ9 laptop (Intel Pentium-M 1.73 GHz, 1 GB) is used to run
the test.

For the first two rows, the running time is relatively short
since finer-grained interpolation is not needed. The next two
rows indicate that block size matters. For a larger block size,
much less motion vector candidates will be computed and
analyzed, therefore much time can be saved. The fifth row
illustrates that the proposed scheme usually takes longer time
than the cases when block sizes are fixed. This is because when
the second-level information is used, the corresponding first-
level information has already been calculated and analyzed.
Statistics show that 19.72%, 39.52%, 8.66%, 2.83%, 25.78%,
37.29%, and 34.23% of the second-level motion information
is used for sequences Foreman, News, Bus, Football, Mobile,
Paris, and Tempete, respectively. Therefore, the running time
on the fifth row is especially small for sequences Bus and
Football, and relatively large for News, Paris, and Tempete.
On average the running time of our proposed scheme is about

6.6% more than that of the second-level case, and about
32.64% more than that of the first-level case.

IV. Concluding Remarks

In this paper, we have proposed a motion-compensated
deinterlacing scheme using hierarchical motion analysis. First,
a hierarchical motion analysis model is presented based on a
novel block strategy, which differs from conventional meth-
ods in that we have a variable-size block level based on
motion vectors and can even approach the extreme of pixel-
based interpolation when sufficient reference fields and motion
states are available. The proposed hierarchical motion analysis
mainly comprises three stages. The first stage is five-field
motion estimation, where a Gaussian noise model is introduced
for choosing the unique motion vector for each fixed-size
block, either between same-parity fields or between opposite-
parity fields. The second stage is three-field motion state
analysis, where two kinds of motion states are defined for each
pixel. The last stage is motion consistency analysis that takes
both motion vector consistency and motion state consistency
into account. Then several recursive median filters are used for
finer-grained interpolation based on the motion consistency
and texture information. Experimental results show that the
objective performance is very good in terms of PSNR, whereas
the subjective loss from existing best methods is negligible.
Moreover, the increased computation complexity is marginal.

Acknowledgment

The authors would like to thank Dr. Q. Wang and the
anonymous reviewers for valuable suggestions and L. Fu for
helpful discussions on directional interpolation.

References

[1] Y. Wang, J. Ostermann, and Y. Zhang, “Video formation, perception, and
representation,” Video Processing and Communications, Upper Saddle
River, NJ: Prentice Hall, 2002, pp. 12–14.

[2] R. Steinmetz and K. Nahrstedt, “Video and animation,” Multimedia:
Computing, Communications and Applications. Upper Saddle River, NJ:
Prentice Hall, 1995, p. 85.

[3] R. Castagno, P. Haavisto, and G. Ramponi, “A method for motion
adaptive frame rate up-conversion,” IEEE Trans. Circuits Syst. Video
Technol., vol. 6, no. 5, pp. 436–446, Oct. 1996.

[4] S. Muramatsu, T. Ishida, and H. Kikuchi, “Invertible deinterlacing with
sampling-density preservation: Theory and design,” IEEE Trans. Signal
Process., vol. 51, no. 9, pp. 2343–2356, Sep. 2003.

[5] M. Biswas, S. Kumar, and T. Q. Nguyen, “Performance analysis of
motion-compensated de-interlacing systems,” IEEE Trans. Image Pro-
cess., vol. 15, no. 9, pp. 2596–2609, Sep. 2006.

[6] C. Ballester, M. Bertalmı′o, V. Caselles, L. Garrido, A. Marques, and
F. Ranchin, “An inpainting-based deinterlacing method,” IEEE Trans.
Image Process., vol. 16, no. 10, pp. 2476–2491, Oct. 2007.

[7] G. de Haan and E. B. Bellers, “Deinterlacing—An overview,” Proc.
IEEE, vol. 86, no. 9, pp. 1839–1857, Sep. 1998.

[8] S. Yang, Y. Y. Jung, Y. H. Lee, and R. H. Park, “Motion compensation
assisted motion adaptive interlaced-to-progressive conversion,” IEEE
Trans. Circuits Syst. Video Technol., vol. 14, no. 9, pp. 1138–1148, Sep.
2004.

[9] G. Jeon and J. Jeong, “Designing Takagi-Sugeno fuzzy model-based
motion adaptive deinterlacing system,” IEEE Trans. Consum. Electron.,
vol. 52, no. 3, pp. 1013–1020, Aug. 2006.

[10] M. Li and T. Nguyen, “A de-interlacing algorithm using Markov random
field model,” IEEE Trans. Image Process., vol. 16, no. 11, pp. 2633–
2648, Nov. 2007.

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DEINTERLACING USING HIERARCHICAL MOTION ANALYSIS 685

[11] J. Deame, “Motion compensated de-interlacing: The key to the digital
video transition,” in Proc. Soc. Motion Picture Television Engineers
Tech. Conf., New York, 1999.

[12] G. de Haan and P. W. A. C. Biezen, “Sub-pixel motion estimation with
3-D recursive search block-matching,” Signal Process. Image Commun.,
vol. 6, no. 3, pp. 229–239, Jun. 1994.

[13] B. D. Choi, J. W. Han, C. S. Kim, and S.-J. Ko, “Motion-compensated
frame interpolation using bilateral motion estimation and adaptive over-
lapped block motion compensation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 17, no. 4, pp. 407–416, Apr. 2007.

[14] Q. Huang, W. Gao, D. Zhao, and Q. M. Huang, “An edge-based median
filtering algorithm with consideration of motion vector reliability for
adaptive video deinterlacing,” in Proc. IEEE Int. Conf. Multimedia Expo,
Toronto, Canada, Jul. 2006, pp. 837–840.

[15] R. A. Braspenning and G. de Haan, “Efficient motion estimation with
content-adaptive resolution,” in Proc. Int. Symp. Consum. Electron.,
Ilmenau, Germany, Sep. 2002, pp. E29–E34.

[16] S. Li, J. Du, D. Zhao, Q. Huang, and W. Gao, “An improved 3-DRS
algorithm for video de-interlacing,” in Proc. Picture Coding Symp.,
Beijing, China, Apr. 2006.

[17] I. Kim, T. Jeong, and C. Lee, “Deinterlacing based on motion compen-
sation with variable block sizes,” in Proc. SPIE, vol. 6312. Aug. 2006,
pp. B1–B8.

[18] Y. Y. Jung, S. Yang, and P. Yu, “An effective de-interlacing technique
using two types of motion information,” IEEE Trans. Consum. Electron.,
vol. 49, no. 3, pp. 493–498, Aug. 2003.

[19] S. G. Lee and D. H. Lee, “A motion-adaptive de-interlacing method
using an efficient spatial and temporal interpolation,” IEEE Trans.
Consum. Electron., vol. 49, no. 4, pp. 1266–1271, Nov. 2003.

[20] S. F. Lin, Y. L. Chang, and L. G. Chen, “Motion adaptive interpola-
tion with horizontal motion detection for deinterlacing,” IEEE Trans.
Consum. Electron., vol. 49, no. 4, pp. 1256–1265, Nov. 2003.

[21] C. C. Lin, M. H. Sheu, H. K. Chiang, and C. Liaw, “Motion adaptive
de-interlacing with horizontal and vertical motions detection,” in Proc.
Pacific-Rim Conf. Multimedia, LNCS 3767. 2005, pp. 291–302.

[22] Y. L. Chang, S. F. Lin, C. Y. Chen, and L. G. Chen, “Video de-interlacing
by adaptive 4-field global/local motion compensated approach,” IEEE
Trans. Circuits Syst. Video Technol., vol. 15, no. 12, pp. 1569–1582,
Dec. 2005.

[23] Q. Huang, W. Gao, D. Zhao, and H. Sun, “An efficient and ro-
bust adaptive deinterlacing technique,” IEEE Trans. Consum. Electron.,
vol. 52, no. 3, pp. 888–895, Aug. 2006.

[24] G. G. Lee, D. W. C. Su, H. Y. Lin, and M. J. Wang, “Multiresolution-
based texture adaptive motion detection for de-interlacing,” in Proc.
IEEE Int. Symp. Circuits Syst., Kos, Greece, 2006, p. 4.

[25] F. M. Wang, D. Anastassiou, and A. N. Netravali, “Time-recursive
deinterlacing for IDTV and pyramid coding,” Signal Process. Image
Commun., vol. 2, no. 3, pp. 365–374, Oct. 1990.

[26] G. de Haan and E. B. Bellers, “Deinterlacing of video data,” IEEE Trans.
Consum. Electron., vol. 43, no. 3, pp. 819–825, Aug. 1997.

[27] L. Vanderdorpe, L. Cuvelier, B. Maison, P. Queluz, and P. Delogne,
“Motion-compensated conversion from interlaced to progressive for-
mats,” Signal Process. Image Commun., vol. 6, no. 3, pp. 193–211,
Jun. 1994.

[28] W. H. A. Bruls and C. Ciuhu, “Bridging the interlace and progressive
controversy using a progressive enhancement stream on top of the
interlace stream and a new de-interlace algorithm,” in Proc. IEEE Int.
Conf. Consum. Electron., 2005, pp. 5–6.

[29] M. Sonka, V. Hlavac, and R. Boyle, “Image preprocessing,” Image Pro-
cessing, Analysis, and Machine Vision, 2nd ed. New York: Brooks/Cole,
1999, pp. 56–57.

[30] D. Wang, A. Vincent, and P. Blanchfield, “Hybrid de-interlacing algo-
rithm based on motion vector reliability,” IEEE Trans. Circuits Syst.
Video Technol., vol. 15, no. 8, pp. 1019–1025, Aug. 2005.

[31] Z. Yang, W. Gao, and Y. Liu, “Performance-complexity analysis of
high resolution video encoder and its memory organization for DSP
implementation,” in Proc. IEEE Int. Conf. Multimedia Expo, Toronto,
Canada, 2006, pp. 1261–1264.

[32] G. de Haan, P. W. Biezen, H. Huijgen, and O. A. Ojo, “True-motion
estimation with 3-D recursive search block matching,” IEEE Trans.
Circuits Syst. Video Technol., vol. 3, no. 5, pp. 368–379, Oct. 1993.

[33] H. Y. Lee, J. W. Park, T. M. Bae, S. U. Choi, and Y. H. Ha, “Adaptive
scan rate up-conversion system based on human visual characteristics,”
IEEE Trans. Consum. Electron., vol. 46, no. 4, pp. 999–1006, Nov. 2000.

[34] H. Ku and T. Hou, “An efficient directional interpolated algorithm for
video deinterlacing,” IEICE Electron. Express, vol. 6, no. 5, pp. 211–
217, Mar. 2009.

[35] P. Delogne, L. Cuvelier, B. Maison, B. Van Caillie, and L. Vandendorpe,
“Improved interpolation, motion estimation and compensation for inter-
laced pictures,” IEEE Trans. Image Process., vol. 3, no. 5, pp. 482–491,
Sep. 1994.

[36] T. Koivunen, “Motion detection of an interlaced video signal,” IEEE
Trans. Consum. Electron., vol. 40, no. 3, pp. 753–760, Aug. 1994.

[37] B. Heng, “Application of deinterlacing for the improvement of surveil-
lance video,” M.S. thesis, Dept. Elect. Eng. Comput. Sci., Massachusetts
Instit. Technol., Cambridge, MA, Jun. 2001.

[38] H. Mohammadi, P. Langlois, and Y. Savaria, “A five-field motion
compensated deinterlacing method based on vertical motion,” IEEE
Trans. Consum. Electron., vol. 53, no. 3, pp. 1117–1124, Aug. 2007.

Qian Huang received the B.S. degree in computer
science from Nanjing University, Nanjing, China,
in 2003. He is currently working toward the Ph.D.
degree in computer science, specifically, multime-
dia technology from the Key Laboratory of Intelli-
gent Information Processing, Institute of Computing
Technology, Chinese Academy of Sciences (CAS),
Beijing, China.

From April 2008 to March 2009, he was a Re-
search Intern with the Intel China Research Center,
Beijing, China. His current research interests include

video processing and video surveillance.

Debin Zhao received the B.S., M.S., and Ph.D. de-
grees in computer science from the Harbin Institute
of Technology (HIT), Harbin, China, in 1985, 1988,
and 1998, respectively.

Dr. Zhao was a Lecturer from 1989 to 1993
and an Associate Professor from 1993 to 2000 in
the Department of Computer Science, HIT. He is
currently a Professor with the Department of Com-
puter Science, HIT, and also an Adjunct Professor
with the Institute of Computing Technology, Chi-
nese Academy of Sciences, Beijing, China. He has

published over 200 technical articles in refereed journals and conference
proceedings. His current research interests include image and video coding,
video processing, video streaming and transmission, and pattern recognition.

Dr. Zhao was the recipient of three National Science and Technology
Progress Awards of China (Second Prize).

Siwei Ma received the B.S. degree in computer
science from Shandong Normal University, Jinan,
China, in 1999, and the Ph.D. degree in computer
science from the Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China, in
2005.

From 2005 to 2007, he was a Post-doctorate with
the University of Southern California, Los Angeles.
Then he joined the Institute of Digital Media, School
of Electronics Engineering and Computer Science,
Peking University, Beijing, China, where he is cur-

rently an Associate Professor. He has published over 30 technical articles in
refereed journals and proceedings. His current research interests include image
and video coding, video processing, video streaming, and transmission.

Wen Gao (M’92–SM’05–F’09) received the B.S.
and M.S. degrees in computer science from Harbin
University of Science and Technology and Harbin
Institute of Technology (HIT), China, in 1982 and
1985, respectively, and received the Ph.D. degree in
computer science from HIT, China and in electronics
engineering from the University of Tokyo, Tokyo,
Japan, in 1988 and 1991, respectively.

Before joining Peking University, Beijing, China,
he was a Full Professor of computer science with
the Harbin Institute of Technology, Harbin, China

from 1991 to 1995, and with the Chinese Academy of Sciences (CAS),
Beijing, China, from 1996 to 2005. With CAS, he served as a Professor
(1996–2005), the Managing Director of the Institute of Computing Technology

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

686 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 20, NO. 5, MAY 2010

(1998–1999), the Executive Vice President of the Graduate School of CAS
(2000–2004), and a Vice President (2000–2003) of the University of Science
and Technology of China, Hefei, China. He is currently a Professor of
computer science with Peking University. He has published extensively,
including four books and over 500 technical articles in refereed journals
and conference proceedings. His current research interests include image
processing, video coding and communication, pattern recognition, multimedia
information retrieval, multimodal interface, and bioinformatics.

Dr. Gao is the Editor-in-Chief of the Journal of Computer (a journal of the
China Computer Federation), an Associate Editor of the IEEE Transactions
on Circuits and Systems for Video Technology, an Associate Editor
of the IEEE Transactions on Multimedia, an Associate Editor of the
IEEE Transactions on Autonomous Mental Development, an Area
Editor of the EURASIP Journal of Image Communications, and an Editor of
the Journal of Visual Communication and Image Representation. He chaired
a number of prestigious international conferences on multimedia and video
signal processing, and also served on the advisory and technical committees
of numerous professional organizations.

Huifang Sun (S’83–M’85–SM’93–F’01) received
the B.S. degree from the Harbin Military Engineer-
ing Institute, Harbin, China, in 1967, and the Ph.D.
degree in electrical engineering from the University
of Ottawa, Ottawa, Canada, in 1986.

He was an Associate Professor with Fairleigh
Dickinson University, Madison, NJ, from 1986 to
1990, before joining Sarnoff Research Laboratories,
Princeton, NJ, in 1990, where he was the Technology
Leader of digital video communication. In 1995,
he joined Mitsubishi Electric Research Laboratories

(MERL), Cambridge, MA, as a Senior Principal Technical Staff and was
promoted to the Vice President and Research Fellow of MERL in 2003 and
is currently a Research Fellow. He has coauthored two books and more than
150 journal and conference papers. He holds 59 U.S. patents. His current
research interests include digital video/image compression and digital com-
munication.

Dr. Sun was the recipient of the Technical Achievement Award in 1994 at
Sarnoff Laboratories for Grand Alliance high definition TV development, the
Best Paper Award of the IEEE Transactions on Consumer Electronics
in 1992, the Best Paper Award of the 1996 International Conference on
Consumer Electronics, and the Best Paper Award of the IEEE Transactions
on Circuits and Systems for Video Technology (IEEE TCSVT) in
2003. He is now an Associate Editor of IEEE TCSVT and was the Chair of
the Visual Processing Technical Committee of the IEEE Circuits and System
Society.

Authorized licensed use limited to: Peking University. Downloaded on May 09,2010 at 05:28:29 UTC from IEEE Xplore. Restrictions apply.

