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ABSTRACT
With the recent booming of 3DTV industry, more and more
stereoscopic videos are demanded by the market. This pa-
per presents a system of converting conventional monocular
videos to stereoscopic ones. In this system, an input video
is firstly segmented into shots to reduce operations on sim-
ilar frames. Then, automatic depth estimation and inter-
active image segmentation are integrated to obtain depth
maps and foreground/background segments on selected key
frames. Within each video shot, such results are propagated
from key frames to non-key frames. Combined with a depth-
to-disparity conversion method, the system synthesizes the
counterpart (either left or right) view for stereoscopic display
by warping the original frame according to disparity maps.
For evaluation, we use human labeled depth map as the ref-
erence and compute both the mean opinion score (MOS) and
Peak signal-to-noise ratio (PSNR) to evaluate the converted
video quality. Experiment results demonstrate that the pro-
posed conversion system and methods achieves encouraging
performance.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Sensor fusion, Depth cues

Keywords
3DTV, 2D-to-3D conversion, depth estimation, depth to dis-
parity, foreground segmentation

1. INTRODUCTION
Due to the amazing development speed of 3DTV indus-

try, e.g. broadcasting of many 3D channels, the number of
available stereoscopic videos is largely inadequate to satisfy
the great demand of the market even with the new-make of
such videos using stereoscopic cameras. Converting conven-
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Figure 1: The interfaces of the stereoscopic conver-
sion system.

tional monocular videos into stereoscopic ones is definitely
a complimentary solution.

However, automatic 2D-to-3D video conversion still re-
mains a challenging problem. This is mainly because that
the core problem – depth from monocular view – has not
been solved. Although there exist techniques to estimate
depth from monocular image sequences, such as structure
from motion (SfM) [28], it requires such a constrained cam-
era motion and foreground stillness and rigidity assumptions
that a large proportion of real videos falls beyond its regime.
In addition, in order to obtain good estimate, these algo-
rithms always require high quality intermediate results such
as good correspondence matching and motion estimation.
Whereas, in real videos, such requirement may be too de-
manding due to all kinds of variations and occlusions.

In this paper, an interactive system is proposed to con-
vert monocular videos into stereoscopic ones (shown in Fig-
ure 1). We introduce human in the loop only to rescue
the deficiency of the state-of-the-art algorithms. In the sys-
tem, advanced video processing techniques are embedded
so as to increase the conversion efficiency. Specifically, be-
fore the conversion, the system segments an input monocu-
lar video into shots so that the labeled information such as
foreground object contours and depths can be propagated
efficiently and reliably within each shot. We propose a new
multi-cue depth estimation method by integrating a few ro-
bust monocular depth perception cues adopted by human
beings, such as depth from defocus, depth from aerial per-
spective, depth from motion. These cues largely improve the
depth estimation performance by freeing the constraints of
the structure from motion (SfM) method and its extensions
(e.g. [16],[28]). Using the proposed method, the estimated
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depth is continuous and its range is much wider than SfM
based methods. To improve the stereoscopic visual quality,
we adopt interactive methods to segment foreground objects,
and estimate their shape and depth position in particular.
We propose to integrate depth information in tracking al-
gorithms so as to improve the foreground object tracking
accuracy within each shot. Moreover, a depth-to-disparity
conversion model based on supervised learning is proposed,
which predicts foreground disparity according to its motion,
screen location and the background motion. The disparities
of the rest pixels are computed according the their relative
depth w.r.t. the foreground object. This method automatic
generates inside/on/outside screen visual effect learned from
stereoscopic movies.

In summary the proposed interactive 2D-to-3D conversion
system is easy to operate, and the conversion is robust and
efficient, it adapts to a wide range of depth estimation from
monocular videos.

Another contribution of the paper is that, due to the lack
of evaluation methods in this field (especially on conven-
tional movies), we propose one using human labeled depth
maps as reference so as to assess the visual quality of con-
verted stereoscopic videos both subjectively and objectively.
Specifically, we compute both the mean opinion score (MOS)
and Peak signal-to-noise ratio (PSNR) to evaluate the con-
verted video quality. The experiment results demonstrate
the advantage of the proposed system.

The rest of the paper is organized as follows: some closely
related work is introduced in Section 2. In Section 3, we de-
scribe the work flow and architecture of the system, followed
by expatiations of important functions and methods in Sec-
tion 4. In section 5, evaluation and experimental results are
provided. Finally, Section 6 concludes the paper.

2. RELATED WORK
In the literature, the 2D-to-3D conversion methods can

be roughly categorized into two classes, the automatic con-
version and interactive conversion. Automatic conversion
methods (e.g. [12][13][20][22]) exploit motion cues to predict
the depth/disparity of pixels. Some commercial softwares,
such as DDD’s TriDef 3D player and Samsung’s 3DTV,
leverage both motion and image location priors to gener-
ate stereoscopic views from monocular videos. However, the
motion cues, e.g. optical flows, can be unreliable to extract
in real image sequences, and motion parallax can be am-
biguous in estimating relative depth between objects in a
complex dynamic system (i.e. multiple objects moving with
different velocities at different depths). In addition, specific
image location assumptions can be too strong to be true,
e.g. the bottom region of an image is closer to view point
compared to the upper part. In conclusion, fully automatic
conversion methods usually are incompetent to give an ac-
curate estimation of depth/disparities of a scene given the
current state of the art computer vision algorithms.

The other category of conversion methods exploit user in-
teractions. For example, in [6] and [16], at key frames, user
scribbles are used to initialize depth values and depth lay-
ers of objects in a scene respectively, and then the depth
information is automatically propagated to non-key-frames.
Compared with these methods, the proposed model inte-
grates more monocular cues in depth estimation, so that
it adapts to more variety real videos and generate a wider
estimation of continuous depth range. IMAX developed a

Figure 2: The work flow of the conversion system.

sophisticated interactive conversion commercial system [11],
which requires intensive manual work and can generate im-
pressive stereoscopic visual effect.

Estimating pixel disparities/depth from monocular videos
is the key step in 2D-to-3D video conversion and it is an ac-
tive yet challenging research topic in computer vision. Re-
searchers took advantage of various cues for this task, such as
photometry cues, e.g. [8][21][29], geometry cues, e.g. [4][5],
motion cues, e.g. [12][13][20][22] and appearance cues, e.g.
[6][24]. In the following we review these work even though
some of them has not been applied to stereoscopic video
conversion yet.

Photometry cues Objects in an image usually are not
all in focus [21]. Valencia et. al. [29] used wavelet anal-
ysis and edge de-focus estimation to obtain relative depth.
Besides, scene atmospheric light also facilitates depth per-
ception. Atmospheric radiance images of outdoor scenes are
usually degraded by the turbid medium in the atmosphere.
Irradiance received by a camera from a scene point is atten-
uated along the line of sight. He et. al. [8] proposed a dark
channel prior to remove haze and also provided estimated
depth map of a scene.

Geometry cues Parallel edge lines converging at infinity
due to perspective projection provide us a convenient geom-
etry formulation to reconstruct the relative distance between
objects [4][5][7].

Motion cues Under the condition of constrained camera
motion and assuming that scenes are static, there are two
ways to estimate disparity maps, using (i) Structure from
Motion (SfM), e.g. [28], and (ii) motion parallax [12]. How-
ever, in real scenario such as movies, the constrained camera
motion condition and static scene assumption are often vio-
lated, which leads to the failure of applying the two methods
in disparity estimation.

Appearance cues By using appearance features from su-
perpixels (e.g. color, texture and shape), Hoiem et. al. [9]
casted the depth estimation from single images to a multi-
label classification problem. Saxena et. al. [24] employed
Markov random field (MRF) to model the unstructured scene
and directly learned the relation between the planar 3D
structures and the superpixel’s texture and color features.
Both methods adopted supervised learning strategy, which
requires training data to learn the model; this makes them
difficult to be generalized to real data beyond the distribu-
tion of the training data sets.

3. SYSTEM OVERVIEW
As shown in Figure 2, the whole system starts with split-

ting video and audio apart, followed by video decoding, and
then it converts the video into a stereoscopic one. After this,
it compresses the video by the same codec, and finally the
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Figure 3: The flowchart of the 2D-to-3D conversion module in Figure 2.

system merges the coded video with the original audio into a
required video file format. The system is designed to reduce
interactive operations as far as possible. Hence, before a
video is sent to the 2D-to-3D conversion module, the whole
video is segmented into shots so that the labeled information
can be reliably propagated within a shot (Figure 5).

3.1 The interfaces and interactions
The proposed system interacts with users through the fol-

lowing three interfaces (shown in Figure 1).
A shot segmentation interface (shown in Figure 5), where

users can select certain shots to process.
A 3D labeling interface consists of four windows as shown

in Figure 4 (a). In window 1, user scribbles on foreground
objects and their vicinity regions of background in a video
frame, so that foreground objects are segmented semiau-
tomatically. Window 2 displays estimated depth map of
a frame. In window 3, both foreground objects and back-
ground are displayed in a 3D grid so that the user can clearly
see their relative depth in 3D space. In addition, a virtual
screen (the green plane) is provided to demonstrate their
relative position w.r.t to the display (i.e. whether an ob-
ject is inside, on or outside the screen). The depth value
of every pixel of a scene as well as the virtual screen are
manually adjustable, so the user can easily correct depth es-
timation errors, and acquire desired rendering effect w.r.t.
the screen. Window 4 shows a color map demonstrating
the inside/on/outside screen distribution of the objects in a
scene. Red areas indicate that the regions are outside of the
screen, green is on the screen, and blue is inside the screen.

A stereoscopic monitor, where users can examine the ren-
dered stereoscopic effect of converted key frames and videos.
If the results are not satisfying, users can refine it by adjust-
ing the labels through the 3D labeling interface.

4. 2D-TO-3D CONVERSION METHODS
The proposed system first segments an input video into

shots, then converts each shot into stereoscopic one with
in following steps (shown in Figure 3): (i) An initial depth
map for each frame is automatically predicted by a proposed
multi-cue depth estimation method. (ii) In order to refine
the initial depth map, for key frames, foreground objects are
interactively labeled and segmented out from background.
Consequently, the depth values in the foreground regions
are updated. (iii) The foreground/ background labels are
propagated to other frames and their initial depth maps are

Figure 4: Segmentation of foreground objects.

also updated in the foreground regions; (iv) A disparity map
for each frame is predicted using trained models. (v) The
stereo view of the frame is synthesized based on the original
frame and the disparity map.

In the rest of the section, we introduce the details of each
step.

4.1 Shot segmentation
Video shots are defined as a set of meaningful and man-

ageable segments which share the same background setting
[15]. Consequently, information can be easily propagated
within a shot. Our video segmentation algorithm follows
the following steps: (i) feature extraction, (ii) dissimilarity
computation between frames and (iii) shot boundary detec-
tion.

Feature extraction Both color histogram and tiny image
[27] are used as features. In detail, a color histogram in
RGB space with 16 bins for each channel is computed from
a frame. To better preserve structural information, a frame
is down-sampled by 16 times resulting in a 24×12 pixel tiny
image.
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Figure 5: Video shot segmentation interface.

Dissimilarity computation In [17], Liu et. al. defined
a dissimilarity metric of two images as a combination of L1

norm distance between their color histograms and mutual
information between them. A similar definition of dissimi-
larity metric is proposed in this paper, except that the con-
tribution of tiny image is taken into consideration.

Let Ci(k) and Ti(k) denote the color histogram and tiny
image pixel value for the ith frame respectively, where k is
one of the K∗ possible values (KC = 48 for color histogram
and KT = 24× 12 for tiny image in our case). Then the L1

norm distances between two color histograms and two tiny
images are defined as ΓC(i, j) =

∑KC
k=1 |Ci(k) − Cj(k)| and

ΓT (i, j) =
∑KT
k=1 |Ti(k) − Tj(k)|, respectively. The mutual

information between the ith and the jth frame is computed
based on color, MI(Ci, Cj) = H(Ci) +H(Cj)−H(Ci, Cj).

Finally, the dissimilarity between two frames is

Γ(i, j) = wC ∗
ΓC(i, j)

MI(Ci, Cj)
+ wT ∗ ΓT (i, j), (1)

where wC = wT = 0.5 in our implementation.
Shot boundary detection To decide shot boundaries, an

adaptive segmentation threshold at frame t is proposed as,

T (t) = η ∗
∑t
i=2 Γ(i, i− 1)

t− 1
, (2)

where i indexes the ith frame of one shot. It is an averaged
dissimilarly up to frame t multiplying with a factor η, which
is introduced to avoid under-segmentation (η = 4.0 in our
implementation). A shot boundary is marked at t, when
Γ(t, t− 1) > T (t).

4.2 Depth estimation by multi-cue fusion
In this paper, we deliberately select three depth percep-

tion cues to estimate the initial depth map of video frames,
i.e. motion cue, defocus cue and aerial perspective cue, be-
cause each of them governs a different range of depth esti-
mation. Using SfM method is able to accurately estimation
scene depth at near distance; defocus cue is good to predict
mid-range depth; and aerial perspective cue can give rea-
sonable estimate of scene depth at a far distance. Although
each cue alone cannot reliably recover the depth of a scene
due to its algorithmic flaws (for example, motion cue is not
applicable to textureless regions, a bright or gray colored ob-
ject in front will be labeled as a distant object if using the
aerial perspective cue, and the depth ambiguity in defocus
cue), the combination of the three usually is able to robustly

estimate scene depth by compensating the weakness of each
other.

Denote the depth map of a frame I predicted by each cue
as αm(I), αd(I), αa(I), respectively. Let x be the coordi-
nates of a pixel on I, Then, its depth value is fused by

α(x) = wmαm(x) + wdαd(x) + waαa(x), (3)

where wm, wd, wh are the fusing weights for each cue. In this
paper, wm = wd = wa = 1/3. Fig.6(b) shows an example
depth map by the multi-cue estimation.

Next we introduce depth estimation from each cue.
Depth from aerial perspective cue. As described

in [8], the irradiance attenuates along the sight in a scene.
Here we use it as one depth cue.

αh(x) = −ε ln t(x), (4)

where ε is the scattering coefficient of the atmosphere and
t(x) is the medium transmission, which is estimated using
the dark-channel prior proposed in [8],

t(x) = 1− ωmin
c

(min
y∈Ω

Ic(y)

Ac
), (5)

where ω is a constant parameter 0 < ω < 1, y is a pixel
in a local patch centered at x, Ic(y) is the intensity value
in the color channel c (in RGB color space), and Ac is the
atmospheric light intensity (please refer to [8] for the details
of estimating Ac).

Pseudo-depth from motion. Here we make very
simple assumptions that object with smaller motion is fur-
ther away from the viewing point,

αm(x) = 1− m(x)

maxx∈I m(x)
, (6)

where m(x) is the optical flow magnitude at pixel x.
Although the assumption is simple, it is generally true es-

pecially for background, as the foreground objects are treated
particularly in the system at a later stage (see Section 4.3).

Depth from defocus. In movies, cameramen often
take advantage of focus/defocus skills to enhance visual ef-
fect, e.g. closeups. Thus depth from defocus can be applied
to many video shots. In our system, we estimate depth from
defocus as follow,

1. 2D wavelet transform is applied to a frame at three
scales.
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2. The degree factor is defined as

ε(x) =
1

|∂x|
∑
y∈∂x

ω(y)/F (y), (7)

where y is a pixel in the neighbor ∂x of x, F (x) is the
maximum spectral energies of the wavelets at the three
scales. ω(y) is the weight on pixel y’s focus degree.
ω(y) is computed as

ω(y) = e
− ||x−y||

s(f(x),f(y)) (8)

where || · || is the Euclidean norm, f(x) is color fea-
ture vector in RGB, s(f(x), f(y)) is the Cosine dis-
tance function between the two color vectors at pixel
x and y.

3. Then, the depth estimated by defocus cue is computed
as

αd(x) =
ε(x)

maxx∈I ε(x)
. (9)

4.3 Foreground depth refinement
It is important to get accurate depth maps for key frames;

Not only does it ensure the quality of stereo visual effect, but
also provide seeds for depth propagation to the other frames
in a video shot. Although the above multi-cue fusion method
can provide a good depth estimation for background, the
depth values of foreground pixels can be inaccurate if the
foreground is in motion. Moreover, cognitive studies [14]
suggested that human visual system is more sensitive to the
quality of foreground objects. With such concern, we add an
interactive step for foreground depth refinement. The refine-
ment takes the following steps, (i) interactive segmentation
of foreground objects, followed by (ii) foreground depth re-
estimation and interactive adjustment.

4.3.1 Foreground segmentation
The interaction for foreground segmentation is shown in

Fig.4 (b), where scribbles are drawn to indicate the fore-
ground region (in red) or background region (in yellow).
To segment an object, we modify the GrabCut method [23]
by adding depth information to the model. In the original
GrabCut method, the segmentation label `n ∈ {0, 1} for
each pixel is obtained by iteratively minimizing an energy
function

E(`, k, θ, I) = U(`, k, θ, I) + V (`, I), (10)

where U(·) is the data term modeled by a Gaussian Mix-
ture Model(GMM) of color with model parameter θ and k
components, V (·) is the smoothness term, I is pixel color
intensity. (Please refer to [23] for the details of the GrabCut
method.) In our system, besides color, the depth values α(I)
obtained from the multi-cue depth estimation module (de-
scribed in Section 4.2) are also considered in both the data
term and smoothness term. Hence, we modify the original
GrabCut data term as

U(`, k, θ, I, α(I)) =
∑
x

D(`x, kx, θ, I(x), α(x)), (11)

where D(·) = −λc log p(I(x))−λα log p(α(x)), λc and λα are
weights for the log probability of color and depth of GMM,
respectively.

Figure 6: Depth estimation and foreground depth
re-estimate.

The modified smoothness term is

V (`, I, α(I)) =
∑

xm∈∂xn

S(xm, xn) (12)

where S(·) = [`m 6= `n]e−γ1||xm−xn||−γ2|α(xm)−α(xn)|, and
[`m 6= `n] is 1 if `m 6= `n; otherwise 0. ||xm − xn|| is Eu-
clidean distance between two pixel coordinates. |α(xm) −
α(xn)| is the absolute difference of the depth, which penal-
izes neighboring pixels of different depth values.

If the GrabCut doesn’t give an accurate segmentation, the
system provide users with interactive interface to adjust ob-
ject contours. We adopt Intelligent Scissors [19] to facilitate
users to refine the segmentation contours efficiently. Figure
4 (c) shows the refinement of the hat contour by just drag-
ging the three blue control points using Intelligent Scissors.

4.3.2 Foreground depth re-estimate
Foreground object depth and structure estimation can be

inaccurate if the objects are in motion or no defocus cue
can be leveraged. If the multi-cue depth estimation result is
not satisfying for an foreground object, the system provides
users to choose different methods to re-estimate the struc-
ture of an foreground object, i.e. (i) If the defocus cue is
strong, user can select to use depth from defocus. An exam-
ple is shown in Fig.6(d). (ii) If the object is static and the
camera motion satisfies SfM constraint, user can use SfM.
(iii) If no good cue to use at all, user can just adopt a plane
surface model to represent the object structure as shown in
Fig.6 (c).

Besides the structure of foreground objects, their loca-
tions in the scene may also need adjustment. Although the
foreground depth by multi-cue fusion may be noisy, we as-
sume that the majority of pixels are accurate; Hence, we
can decide the object location/depth by majority voting the
foreground pixels. Or user can manually adjust foreground
object locations using the 3D labeling interface (shown in
Figure 4 (a) window 4, and Figure 9).

4.4 Foreground propagation
After the foreground depth is updated, the whole depth

map for a key frame is completely generated. In this sec-
tion, we introduce a method which propagates the key frame
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Figure 7: Foreground object tracking and depth up-
date. (a) Labeled foreground object (red curve de-
notes its boundary) at a key frame t−1. (b) Warped
foreground object contour from frame t− 1 to frame
t using KLT [18]. (c) Object boundary refinement
by proposed level set method. (d) Tracked object
at frame t + 1. (e) Initial depth map estimated by
multi-cue fusion at frame t. (f) The updated depth
of foreground object after boundary refinement.

depth to the non-key-frames in the same shot based on ob-
ject tracking and segmentation.

Given an foreground object and the depth map of a key
frame, we first directly warp the object contours to the
non-key-frames according to the object motion, and use the
warped curve as initialization of the object location, and
then evolve the warped contour to the object boundary at
the non-key-frames using an adapted Level set method based
on [3]. We introduce the details in the following.

Let φ : Ω→ <2 be a level set function defined on a domain
Ω. Then the proposed energy functional ξ(φ) is defined as

ξ(φ) = µRp(φ) + Eimg(φ) (13)

where µ is a constant and the level set regularization term
Rp(φ) can be written as:

Rp(φ) =

∫
Ω

p(|Oφ|)dx, (14)

where p is a potential function p : [0,∞)→ <

p(φ) =
1

2

∫
Ω

(|Oφ| − 1)2dx. (15)

It is a metric to characterize how close a function |Oφ| is
to a signed distance function which must satisfy a desirable
property of |Oφ| = 1 in Ω→ <2.
Eimg(φ) is the adapted term of the external energy in [3].

It depends upon the image data and depth map:

Eimg(φ) = aLg(φ) + bAg(φ) + c∆κ(φ) (16)

where a, b and c are the coefficients of the energy functionals
Lg(φ), Ag(φ) and Dd(φ), respectively.

Lg(φ) =

∫
Ω

gδ(φ)(|Oφ|)dx (17)

Figure 8: Results for depth propagation in a video
shot.

Ag(φ) =

∫
Ω

gH(−φ)dx (18)

and

∆κ(φ) =

∫
Ω

κH(−φ)dx (19)

where δ and H are the Dirac delta function and the Heavi-
side function, respectively. Function g is defined as an edge
indicator by

g =
1

1 + |OGσ ∗ I|2
(20)

where I denotes for the frame on the domain Ω, and Gσ
is a Gaussian kernel with a standard deviation σ. Lg(φ)
relates to the length of the zero level curve φ and Ag(φ) is
introduced to accelerate the process of curve evolution.

In the proposed propagation method, we integrate depth
map into the level set data term, the function κ is defined
as

κ =
1

1 +
∑
x,y∈N |α(x)− α(y)| (21)

where N is a set of neighborhood pixels x and y in the domain
Ω; α(x) is the depth value of pixel x.

The energy functional ∆κ(φ) is a new added term to the
original formulation proposed in [3]. Assuming that pixels
on an object share similar depths, it is proposed to esti-
mate accurate contours of foreground objects according to
the gradient field of a depth map in addition to the inten-
sity map. ∆κ(φ) is introduced to penalize the case when the
depth values inside the segmented object are quite different
with each other. In experiments, it confirms that the final
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Figure 9: Depth labeling interface for evaluation.

segmentation result is improved greatly by adding this term
and the object’s depth is more reliable after updated based
on the refined segment, as shown in Fig. 7.

To speed up the evolution process and to obtain more
refined result, we initialize the level set function based on
the segmentation result of its previous frame. Given the
segmented foreground object, we extract SURF(Speeded Up
Robust Features) [2] as feature points for feature tracking
and warp contour using KLT tracking [18] method, which is
a fast, efficient, scale- and rotation-invariant interest point
detector. The approximate contour of the foreground object
is propagated from its previous frame and can be used as a
good initialization, which reduces the number of iterations
to move the zero level set to the desired object boundary
compared the general initialization. We apply a standard
method to minimize the energy functional by finding the
steady state of its gradient flow as [1].

More propagation results are shown in Figure 8. The first
row shows the labeling result at frame t−1. The warping re-
sults using KLT [18] are shown in the second row. The direct
warping seems inaccurate, especially when the displacement
of the foreground objects is large, e.g. Figure 8(b). The
third row displays the refined segmentation results by the
proposed method. We can see the contours of the objects
are localized very well. The fourth row shows the depth map
estimated by the multi-cue fusion method described in sec-
tion 4.2). In the fifth row, updated/re-estimated foreground
depth of the objects are presented. The improvement is ev-
ident. The objects at frame T + 1 can be reliably tracked
from T using the same method.

4.5 Stereo view frame synthesis
Before stereo view synthesis, it is necessary to convert

a depth map α(I) to a disparity map d(I). The disparity
value d(x) at pixel x is the horizontal coordinate difference
between the corresponding pixel in the left view and the
right view of a stereo frame pair. When display, a pixel
with negative disparity value is perceived as a point outside
screen by viewers, and vice versa. A larger absolute value of
d(x) indicates a longer distance between the screen and the
point.

In the system, a depth map α(I) is converted to a disparity
map d(I) by

d(x) = s ·WI · (
α(x)− αmin(I)

αmax(I)− αmin(I)
− τ) (22)

Figure 10: (a) Original frame (b) Depth map in our
system (c) Difference between human labeled depth
and the estimated one (d) the converted stereo
frame

where WI is the image width, αmax(I) is the maxima of
depth values. s is a control factor to restrict the maxima
of absolute disparity, which makes the system adaptive to
different screen sizes. Generally speaking, for devices whose
screens are larger than 70 inches, s should be less than 1%.
τ(0 ≤ τ < 1) is a parameter that shifts the disparity to
negative value and produce inside/outside screen effects. In
our system, τ is determined by the stereo effect of a reference
foreground object in the scene. Let xref be the reference
point on a foreground object, and α(xref ) be its depth value.
τ is computed as

τ =
α(xref )− αmin(I)

αmax(I)− αmin(I)
− d(xref )

s ·WI
(23)

d(xref ) is the disparity of the reference point/object, which
is automatically predicted by a trained disparity estimation
model - a multi-label SVM .

We use motion and position of a segmented object as the
features to predict its disparity value. The feature vector is
composed of four components: (i) object motion magnitude
and orientation histograms, (ii) pixel location histogram of
the object region ,(iii) mean and variance of the depth values
(by multi-cue estimation in Section 4.2) of the object points,
and (iv) the motion magnitude and orientation histograms
of the background region, which is an indication of camera
motion.

In the learning phase, given a pair of training stereoscopic
video sequences sampled from commercial 3D movies, dis-
parity maps are first directly computed by state-of-the-art
stereo matching method [25]. Notice that we do not per-
form parallel view rectification before the stereo matching,
hence, the disparity has signed value. Since the disparity
values computed by stereo matching are always quantized
into several disparity layers, we can use them as the la-
bels in the multi-label Support Vector Machines (SVM). Af-
ter extracted the motion and position features, the SVM is
trained in one-vs-all manner. It is expected that the trained
model can capture the correlation between the motion and
the signed disparity. In the testing phase, features are
first extracted from the test 2D video, then object disparity
values are predicted.

During stereo view synthesis, an original 2D frame I is
considered as the middle view between the synthesized left
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view Il and right view Ir of the stereo image pair. So, Il
and Ir can be synthesized by warping I according to the
predicted disparity map d(I).

Ir(x) = I(x+ 0.5× d(x)) (24)

Il(x) = I(x− 0.5× d(x)) (25)

After warping, there appear some “holes” due to the discon-
tinuity of the disparity values. An inpainting method [26]
is utilized to fill these holes, and the system generates the
final stereo views.

5. EVALUATION AND EXPERIMENTS
In experiments, we convert several well-known films into

stereoscopic ones. Figure 11 shows the conversion results of
key frames from six movie. Some propagation results are
shown in Figure 7 and 8.

5.1 Evaluation method
The proposed depth estimation method is particularly

suitable for professional movie, because in such high quality
videos the three monocular cues are prevalent and can be
fully exploited in estimating scene depth. Although he in-
expensive cameras with depth sensors (such as Kinect) and
the Make3D dataset [24] provide videos with corresponding
depth maps, neither of them provides high quality videos.
For this reason, we did not test the proposed depth estima-
tion method using these videos and the corresponding depth
maps as the ground truth data. Since there is lack of depth
data from conventional movies, we propose to use human
labeled depth maps as reference to assess the visual quality
of converted stereoscopic video as follows.

1. Generating human labeled depth maps.
Given an input video, we first use the proposed system
to get the initial estimation of depth maps for every
frame of the video, denoted as α0(t). Then both the
depth maps and the original frames I(t) are given to
a user. With the help of the interactive 3D labeling
interface (Figure 9 shows the interface of the depth
modifier.) and some guidelines, the user is asked to
revise the depth maps according to his/her sense of
depth and produce a refined depth map α1(t), which
is considered as the reference data.

2. Objective evaluation on depth maps.
We use three objective criteria to evaluate the accu-
racy of estimated depth maps, i.e. the Mean Square
Error (MSE), Peak Signal Noise Ratio (PSNR) and
the percentage of pixels been modified.

MSE =
1

mnt

∑
t

m−1∑
i=0

n−1∑
j=0

(α0(t, i, j)− α1(t, i, j))2,

(26)
where m and n are image height and width in pixels,
respectively.

PSNR = 10 log
2552

MSE
(27)

3. Subjective evaluation on stereoscopic videos.
We adopt the Mean Opinion Score (MOS) in the Dou-
ble Stimulus Impairment Scale (DISI) method to eval-
uate the visual effect of converted stereoscopic videos

Table 1: Mean Opinion Score (MOS)
MOS Quality Impairment

5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

generated from the depth maps. Let the stereoscopic
video produced by α1(t) and I(t) be the unimpaired
reference and stereoscopic video produced by α0(t) and
I(t) be the impaired one.

5.2 Evaluation setup and results
We use 6 clips from 6 different movies in evaluation. Fig-

ure 10 shows some of the key frames we use.
For the objective evaluation we use a 4% soft margin to

simulate the depth of field (Dof) effect and the final results
show that on average 24.5% pixels on the estimated depth
maps are different from the reference data. And on average
the MSE value between α0 and α1 is 1403.29 at 256 depth
scales, and the average PSNR is 21.57dB. From figure 10 we
can see that most of the difference takes place in textureless
regions or on boundaries.

For the subjective evaluation we ask 13 subjects (trained
experts) to report their subjective impression on the stereo-
scopic key frames shown to them. The subjects are pre-
sented with the stereoscopic key frame generated by system
and the one by the human labeled reference depth map side
by side. Then he/she is asked to vote on the first image
using a 5-level impairment scale (from ”impairments are im-
perceptible” to ”impairments are very annoying”). Table 1
is a list of 5 level scores.

Our experiments report an average of 4.28 score of im-
pairment. High score demonstrates the competence of our
system of producing visually pleasing stereoscopic contents.
Also notice that most of the time people could not perceive
the difference in the background even some amount of pixels
are different from the reference one. This implies that while
watch stereoscopic view, people pay much more attention
on the foreground objects and their depth order than that
of the background, which attests our assumption that a bet-
ter foreground will greatly improve visual impression. We
also test these experts with a video shot in the same way
and the average score increases to 4.58. This indicates that
while watching image sequences, the artifacts can be even
less noticeable.

5.3 Efficiency
The system is efficient in both interactive operations and

the automatic modules. For a video with 1280×720 frames,
the average time consumption of video is about 7s to 9s per
frame, among which user interaction costs about 3 − 5s on
a key-frame, and the automatic computation takes about 4s
per frame. We list the details of the time consumption in
Table2.

The IMAX system is a commercial system, its data are un-
available for us to compare. However, from media reports on
the internet, the IMAX system takes about 6 to 10 weeks to
convert a 2-hour 2D film into a stereo one; James Cameron
used about 300 computer artists,60 weeks and 750,000 man
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Table 2: Time consumption table
Item Time(per frame)

Shot segmentation 10ms
Depth propagation 3s

Automatic depth estimation 0.5s
Depth to disparity conversion 0.1s

Foreground segmentation 3s to 5s

Total 7s to 9s

hours to convert the Titanic[10], while our system only takes
about 10 days of PC-hours for automatic computation and
20-50 man-hours for user interaction.

Comparing to fully manual conversion systems, the pro-
posed system is much more efficient due to the following rea-
sons: (1) There are a number of automatic algorithms used
in the system to reduce the labor of user interaction, e.g. the
automatic background depth estimation, label propagation
from key-frames to non-key frames, and disparity estima-
tion; (2) The major user interaction is the foreground ob-
ject segmentation on only key frames, but the segmentation
algorithms are semi-automatic facilitated by a convenient
U.I., i.e. the adapted Graph cut and intelligent scissors.

6. CONCLUSIONS
In this paper, we presented an interactive system of 2D-

to-3D video converting. The system is comprehensive and
it consists of a number of modules ranging from depth es-
timation, depth-to-disparity conversion, stereo view synthe-
sis, video coding/decoding to audio-video splitting/merging.
We also proposed a new evaluation method to assess visual
quality of converted stereoscopic video. Experiment results
demonstrate the advantage of the proposed system.

However, there are still some limitations in this method,
e.g. the integrated monocular cues are still limited, they
prefer high quality videos; and the fusion of depth estima-
tion from different cues is simple (it is using a linear model).
In the future, we shall extend the current system by incorpo-
rating more monocular cues for depth estimation and study
advanced models of multi-cue fusion, so that it is able to ro-
bustly estimate scene depth from regular or even low quality
videos as well. Then we can evaluate the performance of the
proposed system using collected range data, i.e. by Kinect.
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Figure 11: Some results. (a) Original frames. (b) System generated depth maps. (c) Stereoscopic effects
illustration wrt virtual screen. Red, green and blue colors indicate outside, on and inside screen respectively.
(d)Red-cyan anaglyphs.
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