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ABSTRACT

Given the prevalence of JPEG compressed images on the Internet,
image reconstruction from the compressed format remains an impor-
tant and practical problem. Instead of simply reconstructing a pixel
block from the centers of assigned DCT coefficient quantization bins
(hard decoding), we propose to jointly reconstruct a neighborhood
group of pixel patches using two image priors while satisfying the
quantization bin constraints. First, we assume that a pixel patch can
be approximated as a sparse linear combination of atoms from an
offline-learned over-complete dictionary. Second, we assume that a
patch, when interpreted as a graph-signal, is smooth with respect to
an appropriately defined graph that captures the estimated structure
of the target image. Finally, neighboring patches in the optimization
have sufficient overlaps and are forced to be consistent, so that block-
ing artifacts typical in JPEG decoded images are avoided. To find
the optimal group of patches, we formulate a constrained optimiza-
tion problem and propose a fast alternating algorithm to find locally
optimal solutions. Experimental results show that our proposed al-
gorithm outperforms state-of-the-art soft decoding algorithms by up
to 1.47dB in PSNR.

Index Terms— image decoding, sparse signal representation,
graph signal processing

1. INTRODUCTION

In the age of big data, millions of images are captured and viewed on
social networks and photo-sharing sites daily1. The most prevalent
compression format for these images remains JPEG (Joint Photo-
graphics Expert Group): a lossy image compression standard whose
first and most commonly deployed version was finalized more than
two decades ago. JPEG is a block-based transform coding scheme,
where an image is first divided into non-overlapping 8 × 8 pixel
blocks, transformed via discrete cosine transform (DCT) to coeffi-
cients, then quantized and entropy coded. When the quantization is
coarse, the reconstructed image quality can be poor.

More precisely, given encoded quantization bin indices of differ-
ent DCT coefficients in a pixel block, a typical decoding method—
called hard decoding in the sequel—chooses the bin centers as re-
constructed coefficients and performs inverse DCT to recover the
block’s pixels. It is thus inevitable that the reconstruction quality
worsens when the sizes of the quantization bins increase. Instead
of hard decoding, one can instead take a soft decoding approach:
each DCT coefficient is only constrained to be within the indexed
quantization bin, and the reconstruction value is chosen with the
aid of pre-determined signal priors and optimization [1, 2, 3]. As
an example, assuming vertical and horizontal discontinuities along

1It is estimated that 300 million photos are uploaded to Facebook a day.

block boundaries are coding artifacts, [3] performed projection on
convex sets (POCS) between a space spanned by bandlimited ver-
tical and horizontal frequencies and a space with DCT coefficients
within the confine of indexed quantization bins. There are two prob-
lems, however. First, projection onto low-frequency subspace means
high-frequency details in the original image would be eliminated, re-
sulting in an overly smoothed signal. Second, because patches are
optimized individually, inter-patch consistency is not guaranteed.

In this paper, we propose a new soft decoding approach where
a neighborhood group of overlapping pixel patches are optimized
jointly. We employ two priors with different characteristics to aid
in signal reconstruction. First, we assume a sparse signal represen-
tation prior, where a pixel patch can be approximated as a sparse
linear combination of atoms chosen from an over-complete dictio-
nary trained offline from a large set of natural images. It has been
previously shown [4] that sparsity prior can restore high-frequency
details (textural content) in an inverse imaging setting.

Second, we assume a graph-signal smoothness prior, where a
pixel patch—when interpreted as a graph-signal—is smooth with re-
spect to an appropriately defined graph that captures the estimated
structure of the target image. Recent works have shown [5, 6, 7] that
the graph-signal smoothness prior can restore sharp discontinuities
(image structure) in an image if an appropriate underlying graph
can be chosen. The combination of these two priors can thus both
recover high frequencies in areas rich in textural content (e.g. wood
grain on a bookshelf), and restore discontinuities in areas with dis-
tinct structure (e.g. foreground / background boundaries). To be best
of our knowledge, we are the first in the literature to design a soft
decoding scheme to recover explicitly both texture and structure in
JPEG compressed images.

Finally, neighboring patches in the optimization have sufficient
overlaps and are forced to be consistent, so that typical blocking ar-
tifacts in JPEG decoded images are avoided. To find the optimal
group of patches, we formulate a constrained optimization problem
and propose a fast alternating algorithm to find locally optimal so-
lutions. Experimental results show that our proposed algorithm out-
performs state-of-the-art soft decoding algorithm by up to 1.47dB in
PSNR.

2. RELATED WORK

There exist many JPEG image soft decoding methods in the litera-
ture [2]-[8], following the assumption that natural images are smooth
in some pre-defined notions. Bredies et al. [9] proposed a variational
model for JPEG decompression, which is based on the minimization
of the total variation (TV) given available compressed JPEG data.
Zhai et al. [10] utilized the assumption that natural images are local
smooth, and proposed a block-shift filtering-based algorithm. How-



ever, over-smoothing is unavoidable in many cases, which we avoid
by using an image-dependent graph-signal smoothness prior.

Some works focused on the reduction of compression artifacts in
the transform domain. Lee et al. [11] proposed to reduce artifacts by
first low-pass filtering the decoded image and then predicting the im-
age by a linear regression model in transform domain. Foi et al. [12]
utilized a point-wise shape-adaptive DCT for denoising. Zhang et al.
[13] proposed to restore compressed image by using the non-local
self-similarity of DCT coefficients. In contrast, we avoid blocking
artifacts by jointly and efficiently optimizing a neighborhood group
of patches that overlap, and enforcing inter-patch consistency.

There also are sparsity-based compressed image restoration al-
gorithms, such as [14, 8, 15]. Farinella et al. [14] employed the
Structure Sparse Coding Model Selection (SSMS) to reduce block-
ing artifacts. Jung et al. [8] proposed a deblocking method based on
sparse representation using a dictionary learned from a set of train-
ing images by K-SVD. In [15], Chang et al. proposed to learn the
dictionary from the input compressed image, and use total variation
regularization for decompressed images. In contrast, we combine a
sparsity prior with a graph-signal smoothness prior, which can re-
cover both high-frequency texture and structure defined by disconti-
nuities in an image.

3. PROBLEM FORMULATION

Fig. 1. A patch being optimized encloses a smaller code block. Overlapped
patches in a local neighborhood are optimized jointly.

3.1. Overview
JPEG images are coded as non-overlapping 8 × 8 blocks indepen-
dently via transform coding. More precisely, each 8×8 pixel block y
is transformed via DCT to 64 transform coefficients Y = T y. The
i-th coefficient Yi is quantized using quantization parameter (QP)
Qi—assigned a quantization index qi ∈ I (called q-index in the se-
quel) as:

qi = round (Yi/Qi) . (1)
Thus, at the decoder, having received only q-index qi there exists an
uncertainty when recovering Yi, in particular:

qiQi ≤ Yi < (qi + 1)Qi. (2)

To help resolve the uncertainty (2) in each DCT coefficient Yi,
we employ two signal priors in the reconstructed image. First, we as-
sume that a pixel patch x enclosing a coded DCT block y, as shown
in Fig. 1, can be approximated as a sparse linear combination of dic-
tionary atoms—sparse signal representation prior [4]. Second, we
assume that the same patch x is smooth with respect to a defined
graph G—graph-signal smoothness prior [16]. Finally, we enforce
consistency among adjacent patches with overlaps. We discuss these
points in order.

3.2. Sparse Signal Representation Prior

Research in image statistics [4] shows that an image patch of di-
mension N , x ∈ RN , can be well approximated by a sparse linear

Fig. 2. Illustration of over-smoothing effect of TV. TV will choose the values
indicated by ×, while MMSE will choose values indicated by red points.

combination of atoms from an appropriately chosen over-complete
dictionary of size D, Φ ∈ RN×D , D � N , i.e.,

x = Φα+ ε, (3)

where ε ∈ RN is a small perturbation term.
Constructing a good dictionary Φ is critical to the above sparse

model. Similarly done in [17], we learn a dictionary as follows. We
first collect training patches from many clean natural images, then
classify them into clusters with similar geometric structures via a
K-means clustering method. Finally, for a given cluster i with ni

image patches, we compute a sub-dictionary Φi by first stacking the
vectors of patches into a matrix Pi, and then performing principal
component analysis (PCA) on Pi: atoms in Φi are the eigenvectors
of the covariance matrix of Pi.

As shown in Fig. 1, let x ∈ RN be a larger patch enclosing a
smaller DCT block y ∈ RM , i.e., y = Mx, where binary matrix
M ∈ {0, 1}M×N extracts pixels in x corresponding to the smaller
coded block y. Using the sparsity prior, we can formulate the soft
decoding problem for a single patch x as follows:

min
{x,α}

‖x−Φα‖22 + λ1‖α‖1, (4)

where each DCT coefficient Yi in Y = TMx must satisfy the i-th
q-bin constraint in (2). λ1 is a parameter trading off the importance
of the fidelity term with the sparsity prior.

3.3. Graph-Signal Smoothness Prior

Note that both quantities in the fidelity term in (4)—target signal x
and sparse code α—are unknown variables. When quantization is
coarse, QPs Qi are large and q-bins are wide, and any sparse solu-
tion to (4) within the large q-bins is equally good. Thus, more prior
information is required to further regularize the problem.

Given the observation that natural images tend to be smooth, one
can use the popular total-variation (TV) prior [18] for regularization.
However, employing TV for our soft decoding problem would en-
courage the smoothest signal possible within the q-bin constraints,
potentially resulting in over-smoothing. As an illustrative example,
consider the q-bins for AC frequencies of a 1D 8-sample signal in
Fig. 2. Regardless of the q-bin sizes, TV norm would promote coef-
ficient reconstructions closest to the zero q-bin boundaries, resulting
in an almost DC signal. Assuming that each DCT coefficient takes
on a Laplacian probability distribution (common in the image / video
coding literature [19]), the TV-reconstructed DC signal can be arbi-
trarily far from the minimum mean square error (MMSE) solution
closer to the q-bin centers as the q-bin sizes increase.

Instead, we propose to employ a graph-signal smoothness prior
for appropriate smoothing, similarly done in [20, 6, 7, 21] for image
interpolation, denoising and bit-depth enhancement. The key to an
effective graph-based regularizer is to capture the estimated structure



of the target image patch as edge weights in a graph G. Assuming a
4-connected graph G for a given pixel patch, edge weight Wi,j be-
tween two neighboring pixels xi and xj is conventionally computed
using a Gaussian kernel:

Wi,j = exp
{
−‖xi − xj‖22/σ

2} . (5)

Wi,j = 0 if xi and xj are not connected.
Given edge weightsWi,j , one can define an adjacency matrix A

where Ai,j = Wi,j , and a diagonal degree matrix D where Di,i =∑
j Ai,j . A combinatorial or unnormalized graph Laplacian L is

defined as: L = D − A. Given L, one can describe the squared
variations of the signal x with respect to the graph G using the graph
Laplacian regularizer xTLx [22, 23]:

xTLx =
1

2

∑
i,j
(xi − xj)2Wi,j . (6)

(6) states that the graph Laplacian regularizer is small if the signal
variation at connected pair (xi, xj) is small, or the modulating edge
weight Wi,j is small. Thus, if a discontinuity is expected at pixel
pair (xi, xj), one can pre-set a small edge weight Wi,j in graph
G, so that employing the graph Laplacian regularizer as smoothness
prior for optimization will not result in over-smoothing at this pair.

With both sparsity and graph-signal smoothness priors, we can
write the objective function for a patch x as follows:

min
{x,α}

‖x−Φα‖22 + λ1‖α‖1 + λ2x
TLx (7)

where λ2 is another parameter that values the importance of the
graph-signal smoothness term relative to the others.

Given x is an unknown variable in (7), we need a good initial
estimation of x so that edge weights computed using (5) can capture
the underlying image structure. (7) will then be solved iteratively,
where the edge weights used to define Laplacian L will be updated
using the obtained solution x in the previous iteration. In this paper,
given q-bin constraints we compute a minimum mean square error
(MMSE) solution xo as the initial estimate of x. More precisely,
each MMSE coefficient Y o

i is computed as:

Y o
i = argmin

Y oi

∫ (qi+1)Qi

qiQi

(Y o
i − Yi)

2 Pr(Yi) dYi, (8)

where we assume that the pdf Pr(Yi) of coefficient Yi is a Laplacian
distribution with parameter µ. By taking the derivative of (8) with
respect to Y o

i and setting it to zero, we obtain a closed-form solution:

Y o
i =

(qiQi + µ) e

{
− qiQi

µ

}
− ((qi + 1)Qi + µ) e

{
− (qi+1)Qi

µ

}

e

{
− qiQi

µ

}
− e

{
− (qi+1)Qi

µ

} .

(9)
The initial estimation xo can be finally obtained by performing in-
verse transformation on the estimated DCT coefficients {Y o

i }.

3.4. Inter-Patch Consistency

Since by design neighboring patches {xi} have overlaps, the pixel
values in an overlapping region from two patches should be as simi-
lar as possible. For each patch xi at location i, there are four neigh-
boring patches N (i) that it overlaps. Define Ri,j to be the matrix
that extracts xi’s overlapping pixels with neighboring patch xj . To
enforce inter-patch consistency we can write:∑

j=N (i)
‖Ri,jxi −Rj,ixj‖22 ≤ τ , (10)

where τ is a threshold that determines how strictly inter-patch con-
sistency should be enforced.

4. OPTIMIZATION

We can now write the joint optimization for neighborhood group of
patches {xi} as follows. We assume that the same QP Qk is used
for quantization of coefficient k of all code blocks. Given patch xi,
the k-th DCT coefficient of the enclosed code block yi = Mxi is
computed as 1(k)TTMxi, where 1(k) is a zero vector except for
the k-th entry, which is 1. The corresponding encoded q-bin index is
qk,i. The optimization problem is:

argmin
{xi,αi}

∑
i ‖xi −Φαi‖22 + λ1‖αi‖1 + λ2x

T
i Lixi

s.t., qk,iQk ≤ 1(k)TTMxi < (qk,i + 1)Qk, ∀k∑
j∈N (i) ‖Ri,jxi −Rj,ixj‖22 ≤ τ ∀i.

(11)

We propose to employ an alternating procedure to optimize {xi}
and {αi} iteratively. Each iteration of the optimization procedure is
described as follows:

1) Fix xi and estimate αi:
Estimate xi initially as described in Section 3.3, The optimiza-

tion problem becomes a standard sparse coding:

αi
∗ = argmin

αi

∑
i
‖xi −Φαi‖22 + λ1‖αi‖1, (12)

which can be efficiently solved by a fast `1-minimization algorithm
called Augmented Largrangian Methods (ALM) [24].

2) Fix αi and estimate xi:
Denoting bi = Φiα

∗
i , the objective function can be simplified

to:

min
{xi}

∑
i

‖xi − bi‖22 + λ2x
T
i Lxi + λ3

∑
j∈N (i)

‖Ri,jxi −Rj,ixi‖22
(13)

Because the second-order derivative of J with respect to xi is a
positive definite matrix, the objective function in (13) is convex [25],
and thus admits a closed form solution.

3) Quantization Bin Constraints:
To satisfy the q-bin constraints, we simply clip each k-th coeffi-

cient outside the q-bin to within the q-bin boundaries.
After each iteration, edge weights in the graph Laplacian Li are

updated via (5) using the outputted solution xi in the previous itera-
tion. The algorithm terminates when both {xi} and {αi} converge.

5. EXPERIMENTATION

In this section, experimental results are presented to demonstrate the
superior performance of our proposed soft decoding approach for
restoring compressed images. For the training set, five images are
randomly selected from Kodak Lossless True Color Image Suite,
which do not include any of the test images.

The new approach is compared with: 1) The ANCE algo-
rithm [13], which is a state-of-the-art compressed image restoration
method. 2) Two sparsity-based restoration methods: KSVD [26]
and DicTV [15]. KSVD is a well-known sparse coding frame-
work. Most existing sparsity-based compressed image restoration
algorithms, such as [14, 8], are based on the general framework of
KSVD. KSVD for compressed image restoration can be regarded
as the benchmark algorithm that only utilizes the sparisty prior and
quantization bin constraint. DicTV is a very recent sparsity-based
compressed image restoration algorithm, which exploits both spar-
sity and TV priors. The source codes are all kindly provided by their
authors. For thoroughness of our comparison study, we select five
widely used images in the literature as test images. The images are
all sized of 256× 256.



Table 1. Objective quality comparison with respect to PSNR (in dB) at QF = 5, QF = 15 and QF = 25

Images QF = 5 QF = 15 QF = 25
JPEG KSVD ANCE DicTV Ours JPEG KSVD ANCE DicTV Ours JPEG KSVD ANCE DicTV Ours

Butterfly 22.65 23.96 24.31 23.54 24.72 26.75 27.97 28.26 28.13 28.44 28.41 29.49 29.84 29.73 30.57
Barbara 23.85 24.93 25.17 24.49 25.46 28.01 29.19 29.79 29.25 30.72 30.41 31.57 32.23 31.67 33.05

Boat 25.23 26.64 26.62 26.31 26.84 29.72 30.71 30.97 30.54 31.24 31.63 32.32 32.90 32.31 33.11
Leaves 22.49 23.76 24.13 23.27 24.65 26.96 28.46 28.91 28.58 29.16 28.89 30.36 30.83 30.61 31.63

Bike 21.72 22.56 22.81 22.28 22.87 25.42 26.15 26.53 26.25 26.62 27.19 27.88 28.46 28.01 28.69
Average 23.18 24.37 24.87 24.09 24.91 27.37 28.49 28.89 28.55 29.24 29.31 30.32 30.85 30.46 31.41

Fig. 3. Comparison of tested methods in visual quality on Butterfly at QF=5. PSNR and SSIM values are also given.

Fig. 4. Comparison of tested methods in visual quality on Leaves at QF=5. PSNR and SSIM values are also given.

Table 1 tabulates the PSNR results of the above algorithms for
eight test images, which are coded by a JPEG coder with quality
factors (QF) 5, 15 and 25. Larger QF value means smaller quanti-
zation bins. Our proposed algorithm has the best objective perfor-
mance for all test images and over all three QFs. Compared with
the ANCE algorithm, our proposed method greatly improves the re-
construction quality. The average PSNR gains is up to 0.46dB. Our
method also works better than state-of-the-art sparse coding based
methods. Compared with KSVD, our method can achieve PSNR
gain up to 1.53dB (Barbara when QF = 15). DicTV is also specially
designed for recovering compressed images. Compared with DicTV,
our method is better for all test images, and the highest average gain
is 0.86dB, and can achieve PSNR gain up to 1.47dB for some test
image (Butterfly when QF = 15).

In addition to its superior performance in objective fidelity met-
ric, our soft decoding algorithm also achieves better perceptual qual-
ity of the restored images. Fig. 3 and Fig. 4 illustrate the perceptual
quality comparison. When QF is 5, the quantization noise is severe,
and the JPEG-compressed images have very poor subjective qual-
ity. The images reproduced by KSVD suffer from highly visible
noises. ANCE can suppress most of blocking artifacts, but there are
still noticeable artifacts along edges. In results produced by DicTV,
there are still strong blocking artifact. This is because, in DicTV,
the dictionary is learnt from the JPEG image. When quantization is
heavy, the structure noise is also learnt as atoms of dictionary. There-
fore, it will enhance but not suppress the quantization noise through
subsequent sparse coding based restoration. The images restored

by our method are much cleaner, in which the structures and sharp-
ness of edges and textures are well preserved. Our proposed method
can also remove DCT blocking artifacts in smooth areas completely,
and is largely free of the staircase and ringing artifacts along edges.
Due to space limitation, here we only show the subjective compar-
isons for low QF, as the superiority can be better visually reflected in
these cases. Our method also achieves better subjective quality for
medium to high QFs as well.

6. CONCLUSION

In this paper, a novel soft decoding approach for the restoration of
JPEG-compressed images is proposed. The main technical contri-
bution is the combined use of two image priors while satisfying
the quantization bin constraints. First, a pixel patch is approxi-
mated as a sparse linear combination of atoms from a learned over-
complete dictionary. Second, a patch is assumed to be smooth with
respect to an appropriately defined graph that captures the struc-
ture of the target signal. Experimental results demonstrate that our
method achieves better objective and subjective restoration quality
compared to state-of-the-art soft decoding algorithms.
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