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Abstract—In order to compensate the shortcomings of existing
in-loop filters only based on local correlation in video coding
standards, many non-local based loop filters with high coding
performance and computational complexity are proposed. In this
paper, we propose a fast block matching algorithm, adaptive
two-step block matching algorithm, based on our previous
work, structure-driven adaptive non-local filter (SANF) which is
computationally intensive because of the high complexity of block
matching and singular value decomposition (SVD). Our proposed
algorithm based on image spatial statistical characteristics utilizes
fixed template to select adaptive number of similar blocks
according to image content, which can reduce up to 75.2%
search candidates compared to exhaustive search in SANF and
the adaptive determination strategy can remove blocks with less
relation to reference block in similar block group which have
little help for compression performance, and the remove of them
can reduce the computational complexity of SVD. Our proposed
optimization algorithm can save encoding and decoding time
significantly with negligible performance loss, which achieves
70.7%, 84.4%, 80.82% and 81.95% decoding time saving with
only 0.13%, 0.05%, 0.13% and 0.15% increases of BD-rate for
AI, RA, LDB and LDP configurations, respectively compared to
original SANF in JEM-7.0.

I. INTRODUCTION

The state-of-the-art video coding standard, High Efficiency
Video Coding (HEVC), developed by the Joint Collaborative
Team on Video Coding (JCT-VC) with ITU-T Video Coding
Experts Group (VCEG) and the ISO/IEC Moving Picture
Experts Group (MPEG), has been released in Jan. 2013 [1].
HEVC can achieve about 50% bit-rate saving with equivalent
perceptual quality compared to H.264/AVC. To further im-
prove the compression efficiency, the two groups, i.e., VCEG
and MPEG, are working together on the exploration activity
in the Joint Video Exploration Team (JVET) [2]. The JVET
was found in Oct. 2015, and released the reference software,
Joint Exploration Model (JEM), which is based on the HEVC
Model (HM) [3]. Until now, JEM-7.0 has achieved 19.85%,
28.51%, 22.33% and 25.99% bit rate saving for All Intra Main
10 (AI), Random Access Main 10 (RA), Low-Delay B Main
10 (LDB) and Low-Delay P Main 10 (LDP) configurations,
respectively compared to HM-16.16 [4].

In the above video coding standards, in-loop filters play
an important role in improving coding efficiency by reducing
compression artifacts, such as blocking, ringing and blurring
artifacts. There are two kinds of in-loop filters in HEVC,
i.e., Deblocking Filter (DF) [5] and Sample Adaptive Offset

(SAO) [6]. In JEM, besides DF and SAO, another two kinds
of in-loop filters have been adopted, i.e., Bilateral Filter [7]
and Adaptive In-Loop Filter (ALF) [8]. Bilateral Filter is the
first in-loop filter in JEM located before DF, and ALF is
the last one after SAO. However, these in-loop filters only
focus on local correlation within image patches without fully
considering image nonlocal self-similarities, which limits the
filtering performance. To solve this problem, researchers have
proposed many filtering methods based on image nonlocal
similarities [9]–[16].

In [9], Buades et al. proposed the famous nonlocal means
filter (NLM) to reduce compression artifacts by predicting
each pixel with weighted average of nonlocal pixels. The
weights are determined by the similarity between image patch-
es located at the source and target coordinates. Considering
the high efficiency of NLM in denoising problem, Matsumura
et al. first introduced NLM into HEVC to compensate short-
comings of the existing in-loop filters only based on local
correlation within image patches [10].

However, the pixel-independent filtering does not fully
utilize the correlation within patches, some more complex al-
gorithms based on image nonlocal similarities are proposed by
collaboratively utilizing image similarity both insides patches
and among similar patches. The well-known block-matching
and 3D filtering (BM3D) [11] stacks nonlocal similar patches
into 3D matrices and shrinks 3D transform coefficients of
similar patches based on the image-sparse prior model to
remove noise. In video coding area, Zhang et al. [12]–[14] pro-
posed a nonlocal adaptive loop filter (NALF) utilizing image
nonlocal prior knowledge, which improves the traditional low-
rank based filters by adaptively estimating compression noise
for every similar patch group. Our previous work, structure-
driven adaptive non-local filter (SANF) [15] is a simplification
version of NALF using global noise level for all similar patch
groups. Although these methods significantly improve coding
efficiency, they also bring in high computation burdens, e.g.,
the encoding time increase of NALF is up to 447% for AI and
about 206% for LDB and RA configurations with 8 internal bit
depth and the encoding time increase of SANF is 289%, 126%,
148% for AI, LDB and RA configurations with 8 internal
bit depth, respectively. The decoding time increase of SANF
is 10718%, 9219%, 7764% for the three configurations re-
spectively against the anchor decoder. Recently, deep learning
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based in-loop filters are also investigated [16]. However, the
complexity is even higher than SANF.

In this paper, in order to reduce the complexity of SANF
without sacrificing its performance, we propose a fast block
matching algorithm, adaptive two-step block matching algo-
rithm, to search various number of similar blocks based on
fixed template according to the spatial statistical characteristics
of image, which can reduce the complexity of block matching
process significantly compared with exhaustive search. In
addition, the adaptive determination strategy for the number
of similar blocks can remove less similar blocks which are of
little benefit to filtering performance. The reduction of similar
block number can directly decrease the number of iterations
during singular value decomposition (SVD) and further reduce
the complexity of filtering process. Our proposed optimized
SANF achieves up to 70.7%, 84.4%, 80.82% and 81.95% de-
coding time saving with only 0.13%, 0.05%, 0.13% and 0.15%
BD-rate increasing for AI, RA, LDB and LDP configurations,
respectively compared to original SANF in JEM-7.0 [17].

The rest of the paper is organized as follows. Section II
briefly reviews SANF algorithm in video coding. In Section
III, the proposed adaptive two-step block matching algorithm
and its implementation details are elaborated. Section IV
shows experimental results of the proposed method. Finally,
conclusions are drawn in section V.

II. REVIEW OF STRUCTURE-DRIVEN ADAPTIVE
NON-LOCAL FILTER

SANF is proposed to enhance the quality of the recon-
structed frames by simultaneously enforcing the intrinsic local
sparsity and the nonlocal self-similarity of each frame in
video. There are mainly three sub-modules, block matching
and group construction by means of exhaustive search, group-
based filtering by applying SVD to similar block groups and
image reconstruction according to the filtered group after SVD.
The details are given below.

A. Block Matching and Group Construction

As illustrated in Fig.1, the input reconstructed frame is
firstly divided into K overlapped blocks of size

√
Bs×

√
Bs,

and each block is denoted by the vector xk ∈ RBs , k =
1, 2, ...,K. Then, for each block xk, denoted by small red
square in Fig.1, c best matched blocks are collected by means
of exhaustive search within the corresponding search window
(big blue square), which comprise the set Sxk

. Herein, sum of
squared differences (SSD) is selected as the similarity criterion
between search candidate block and reference block, and the
c blocks with minimum SSD are selected as similar blocks.
The similar block selection for each reference block utilizes
exhaustive search manner according to the raster scan order in
the given search window. After that, all the similar blocks in
Sxk

are stacked into a matrix of size Bs×c, denoted by XGk
,

where each column of the matrix corresponds to one block,
i.e. XGk

= [xGk⊗1, xGk⊗2, ..., xGk⊗c].

Fig. 1. Illustrations for Structure-driven adaptive non-local filter(SANF) [15]

B. Group-based Collaborative Filtering

For each group XGk
= [xGk⊗1, xGk⊗2, ..., xGk⊗c], k =

1, 2, ...,K, it is decomposed by SVD as follows,

XGk
= UGk

ΣGk
V T
Gk

=

m∑
i=1

γxGk⊗i
(uGk⊗iv

T
Gk⊗i), (1)

where γxGk
= [γxGk⊗1

; γxGk⊗2
; ...; γxGk⊗m

] is a column
vector, ΣGk

= diag(γxGk
) is a diagonal matrix with the

elements of γxGk
on its main diagonal, and uGk⊗i, vGk⊗i

are the columns of UGk
and VGk

, separately [15].
To suppress the compression noise, the hard thresholding

operation is applied to the singular values, γxGk

αGk
= hard(γxGk

, τ), (2)

where hard(x, a) = x�1(abs(x)−a) denotes the operator of
hard thresholding and � stands for the element-wise product
of two vectors. τ denotes the threshold which is off-line trained
and determined by QP and frame type.

C. Image Reconstruction

The filtered image can be reconstructed from the shrunk
singular values αGk

, and the reconstruction for group X̂Gk

can be formulated as,

X̂Gk
=

m∑
i=1

αGk⊗i(uGk⊗iv
T
Gk⊗i), (3)

Finally, the whole frame can be reconstructed by real-
locating the blocks in all the reconstructed groups to its
corresponding position in frame X̂ .

Moreover, SANF is located between DF and SAO with
frame level on/off control. For each frame, there is only one
flag signaled in frame header. At the encoder side, the frame
level flag is determined according to the rate-distortion costs
w/o SANF. If the frame level flag is on, the corresponding
frame will be filtered at both encoder and decoder. Otherwise,
SANF is switched off at both sides. This strategy can ensure
the positive effect of SANF and avoid the useless filtering
computation. However, the computational complexity of SAN-
F is too expensive to apply to video coding standards. In
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order to solve this problem, we propose a fast block matching
algorithm, adaptive two-step block matching algorithm.

III. PROPOSED FAST BLOCK MATCHING ALGORITHM

A. Motivation

Fig. 2. Percentage of running time for main sub-modules in SANF

(a) Block matching process (b) Similar blocks selected

Fig. 3. Block matching algorithm of original SANF (exhaustive search)

In Fig.2, we provide the running time distribution of differ-
ent sub-modules in SANF. The running time is obtained by fil-
tering the test sequence BQTerrance, which is compressed by
JEM-7.0 under RA configuration with quantization parameter
(QP) 32, 37, 42, 47. We can see that block matching and SVD
take up most of the running time of SANF. Specifically, block
matching sub-module takes up to 54% running time of SANF
when QP is 47. In this paper, we mainly focus on the block
matching sub-module to reduce its computation complexity.

As shown in Fig.3 (a), in block matching sub-module,
SANF uses exhaustive search to find c (c = 30) most similar
blocks (including reference block itself) for reference block
(small red square) in the search window (big green square)
with size Ws × Ws(Ws = 33) pixel by pixel. The block
matching process starts from the top-left block (small yellow
square) and ends up with the bottom-right one in search
window according to raster scan order (yellow arrow). For
each candidate block in the search window, the SSD should

be calculated between it and its reference block. Then, all the
SSD values should be sorted in ascending order and the first c
blocks with smallest SSD values are selected as similar ones.

Quantitatively, if we use the method of exhaustive search to
find 30 nearest blocks from a 33×33 search window, the num-
ber of candidate blocks is 1089. On the one hand, the number
of candidate blocks in search window is much more than that
used in SANF, and most of them are not utilized in sequent
filtering operation. Hence, there is much room for speeding up
on block matching sub-module by reducing candidate blocks
in search window. On the other hand, original SANF selects
fixed c most similar blocks for all reference blocks without
considering the diversity of image content, where there may
not be c similar blocks for some specific reference blocks. In
other words, if we choose c most similar blocks according
to SSD, some blocks may not be related to the reference
block as shown in Fig.3 (b). The blocks labelled by small
blue square have little relation to the reference block. These
blocks make little contributions for collaborative filtering.
Therefore, we can further reduce computational complexity
of block matching sub-module by removing these blocks with
less relation and decreasing the size of similar block groups,
which can directly reduce computational complexity of SVD.

Fig. 4. Block matching template

B. Proposed Fast Block Matching Algorithm

In order to reduce the number of search candidates and
remove the blocks with less relation in similar block group,
we propose a fast block matching algorithm to search adaptive
number of similar blocks by fixed template according to spatial
statistical characteristics of images. Details are given below,

1) Step one. As shown in Fig.4, an eight-point diamond
template is utilized to search most similar blocks of the
reference block in search window with size Ws ×Ws

according to the characteristic that similar blocks usually
gather in several areas. The center point of eight-point
diamond search is the reference block denoted by point
with label ”0” in Fig.5. Select at most T (T = 5) most
similar blocks (golden points in Fig.5) from all the
blocks searched during the process with SSD smaller
than the threshold ε and record their coordinates. Thus
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Fig. 5. Adaptive two-step block matching process

the number of blocks selected in step one may less than
T . We use m(m < T ) to represent the number of blocks
selected in the end.

2) Step two. As shown in Fig.5, we take the m selected
similar blocks denoted by golden point in step one as
center point, respectively, to search similar blocks by
using eight-point diamond template. The blocks selected
by step two are denoted by red points in Fig.5. The
number of selected blocks in the end is no more than c
and may be different from each other.

C. Parameter ε estimation

According to the above description, the setting of ε is of
great significance in our proposed algorithm. This subsection
presents the details to give an adaptive and robust estimation
of ε according to the characteristics of video.

The similarity criterion between different blocks is SSD.
Thus, the parameter ε is related to the size of reference block
and the bit depth of video. Hence, we propose to estimate the
parameter ε from block size and bit depth.

ε = Bs × (1 << (2× bitDepth))× λ, (4)

where Bs(Bs = 36) is pixel number of each patch, bitDepth
is the bit depth of test sequence, which is usually 8 or 10.
λ(λ = 0.06) represents the parameter we obtain according
to the statistics of SSD between reference block and selected
similar block by exhaustive search.

TABLE I
NUMBER OF SEARCH CANDIDATES

Sequence Proposed SANF Ratio
MarketPlace 273 1072 74.6%
BQTerrace 319 1072 70.3%

BasketballDrive 306 1072 71.5%
RitualDance 266 1072 75.2%

Cactus 291 1072 72.9%
Average 291 1072 72.9%

The search candidate number of the proposed fast block
matching algorithm and exhaustive search in SANF is shown
in TABLE I. We use five sequences in Class B as test
videos, and test Y component of the first frame in each
sequence under AI configuration when QP is 47. The number
of search candidates in TABLE I is the average number of
every reference blocks’ candidates in one frame. The size of
search window is 33 × 33. The search candidate number of
exhaustive search is 1072 rather than 1089 because there is no
padding if search window cross image border. It can be seen
that our proposed method can eliminate 72.9% less similar
search candidates on average, which can save encoding and
decoding time significantly. And the remove of less similar
blocks can make the size of group used for SVD smaller than
original SANF, hence the computation complexity of SVD can
be further reduced.

IV. EXPERIMENTAL RESULTS

In this section, we test the performance of original SANF
and the proposed fast block matching algorithm by imple-
menting them into JEM-7.0. Four configurations used in JVET
were tested: AI, RA, LDB and LDP. Four typical QP values
are 32, 37, 42 and 47. The video sequences in ”Joint Call
for Proposals on Video Compression with Capability beyond
HEVC” [18] are utilized as test sequences in our experiment.
The first two seconds of these sequences are encoded for per-
formance evaluation. And coding performance is measured by
Bjontegaard’s method [19] in terms of BD-rate (Y component).
We also evaluate the computational complexity by comparing
the running time for encoder and decoder respectively. The
executable files are compiled by Microsoft Visual Studio 2013,
64bit. The tests run on Windows 10 operating system with 64
bit and CPU in the test is Intel(R) Core i7-8700 @ 3.20GHz.

We integrate SANF into JEM-7.0 and apply LCU level
on/off control to it. We also retrain the parameter τ under
configurations in JEM-7.0. Due to the introduction of new
coding tools and higher accuracy of prediction module, the
coding gains of SANF in JEM-7.0 is not as high as HM-
12.0. TABLE II summarizes the results of SANF and pro-
posed method. In the two tests, anchor is generated by JEM-
7.0 with default configuration. EncT JEM7.0/DecT JEM7.0,
EncT SANF/DecT SANF, EncT Pro/DecT Pro represent the
encoding/decoding time of JEM-7.0, SANF and proposed
method respectively. The decoding time of original SANF
is up to 7171.03%, 3103.39%, 3817.04% and 5298.28% for
AI, RA, LDB and LDP respectively, compared with JEM-
7.0 decoder. The decoding time of our proposed optimized
SANF is 2101.04% for AI, 484.18% for RA, 732.29% for
LDB and 956.56% for LDP. Our method achieves 70.70%,
84.40%, 80.82% and 81.95% decoding time saving. Compared
with JEM-7.0 encoder, the encoding time of the original SANF
is 112.9% for AI, 107.8% for RA, 106.8% for LDB and
110.1% for LDP. The encoding time of our proposed optimized
SANF is 104.2%, 101.7%, 101.2% and 102.7%. As shown
in TABLE II, the average bit rate saving of Y component is
1.15%, 0.68%, 1.46% and 1.78% for AI, RA, LDB and LDP,
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TABLE II
EXPERIMENTAL RESULTS OF SANF AND PROPOSED OPTIMIZED SANF, ANCHOR: JEM-7.0

Original SANF Proposed Optimized SANF
Sequence Resolution AI RA LDB LDP AI RA LDB LDP

MarketPlace 1920x1080 -0.61% 0.15% -1.00% -0.69% -0.44% 0.34% -0.76% -0.48%
BQTerrace 1920x1080 -2.14% -2.63% -3.43% -5.09% -1.90% -2.14% -2.74% -4.23%

BasketballDrive 1920x1080 -1.14% -1.11% -1.98% -2.61% -1.11% -1.25% -2.11% -3.00%
RitualDance 1920x1080 -1.19% -1.09% -1.69% -1.91% -1.00% -1.38% -1.77% -1.92%

Cactus 1920x1080 -1.35% -1.29% -1.75% -1.93% -1.15% -1.12% -1.73% -1.73%
Campfire 3840x2160 -1.11% -0.91% -1.03% -1.23% -1.06% -1.17% -1.12% -1.26%

CatRobot1 3840x2160 -1.28% -0.20% -1.42% -1.71% -1.09% 0.05% -1.04% -1.16%
DaylightRoad2 3840x2160 -1.17% -0.23% -1.58% -1.67% -1.04% 0.12% -1.27% -1.18%
FoodMarket4 3840x2160 -0.74% 1.23% 0.41% 0.20% -0.75% 1.05% 0.09% -0.26%
ParkRunning3 3840x2160 -0.77% -0.74% -1.09% -1.19% -0.71% -0.77% -0.90% -1.06%

Average -1.15% -0.68% -1.46% -1.78% -1.02% -0.63% -1.33% -1.63%
EncT SANF / EncT JEM7.0 (%) 112.9% 107.8% 106.8% 110.1% 104.2% 101.7% 101.2% 102.7%
DecT SANF / DecT JEM7.0 (%) 7171.03% 3103.39% 3817.04% 5298.28% 2101.04% 484.18% 732.29% 956.56%

(EncT SANF - EncT Pro) / EncT SANF (%) - - - - 7.71% 5.66% 5.24% 6.72%
(DecT SANF - DecT Pro) / DecT SANF (%) - - - - 70.70% 84.40% 80.82% 81.95%

respectively. The average coding gains of proposed method
are 1.02%, 0.63%, 1.33% and 1.63% for AI, RA, LDB and
LDP, respectively. Note that the proposed method can achieve
significantly time saving with negligible performance loss.

V. CONCLUSION

In this paper, an optimized non-local block matching al-
gorithm is proposed to reduce the computational complexity
of SANF. In the proposed method, block matching process
of SANF is optimized by a template based fast search al-
gorithm according to image spatial statistical characteristics
with adaptive number of similar blocks. Experimental results
demonstrate that our proposed algorithm can save 79.4%
overall decoding time on average with negligible performance
loss, which improves the practicability of SANF for future
video coding standards.
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