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Abstract—The recently revitalized uncoded transmission has
shown great potential in handling channel variations and user
heterogeneities for wireless video communications. In this paper,
we propose to adopt motion-compensated temporal filtering
(MCTF) at the sender and denoising techniques at the receiver to
fully exploit the temporal and spatial redundancy in video signals
and therefore significantly improve the efficiency of uncoded video
transmission. Although there are readily applicable MCTF and
denoising techniques, integrating them into the uncoded video
transmission framework is nontrivial, especially in the case of
denoising. To address these challenges, we first propose spatial-do-
main transmission and cascaded denoising to harness the potential
of denoising techniques. Second, we develop novel resource allo-
cation algorithms based on variable-size L-shaped chunk division,
which are not only compatible with spatial-domain transmission,
but also achieves better energy efficiency than existing schemes
based on fixed-size rectangular chunks. Our experimental results
show that when transmitting 720p videos, our scheme achieves up
to a 3.3 dB gain in video PSNR over the state-of-the-art uncoded
transmission scheme SoftCast and up to a 5.3 dB gain over a
digital scheme based on robust rate adaptation and H.264 scalable
video coding (SVC).
Index Terms—Image/video processing, multimedia communica-

tion, cross layer design.

I. INTRODUCTION

T ODAY'S video communication framework is designed
according to Shannon's separation theorem, which sug-

gests that source coding and channel coding can be separately
designed and optimized. In the past decades, the source coding
camp has made great effort to remove source redundancy
through prediction, transformation, quantization and entropy
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coding in order to represent the video with the minimum
number of bits. As a result, every bit in the encoded stream is
critical for successful decoding. Therefore, during transmis-
sion, channel coding needs to be introduced to protect every
single bit and to correct any possible errors. This framework
has achieved great success for digital video communications.
However, with the prevalence of wireless networks and the

emergence of various mobile devices, the inherent problem of
the conventional framework emerges, that is the lack of flexi-
bility in handling channel and user heterogeneity. Actually, the
source coding camp realized this problem and started to in-
vestigate scalable video coding (SVC) since the 1990s, from
early MPEG-4 FGS [1] and MCTF (Motion Compensated Tem-
poral Filtering) [2], [3] to H.264 SVC [4]. Scalability in terms
of quality, frame rate and resolution have all been examined.
Unfortunately, SVC still has not been widely adopted in prac-
tical systems. The main obstacle is that SVC suffers from a
non-negligible performance loss compared with its non-scalable
counterpart.
Recently, uncoded transmission has received increasing

attention. The theoretical work by Gastpar et al. in [5] pointed
out that coding was not necessary in some cases. Subse-
quently, Gastpar et al. in [6] and Kochman et al. in [7] proved
that uncoded transmission was optimal in a simple Gaussian
sensor network and for a matched colored source/channel,
respectively. The first concrete scheme for uncoded video
transmission is SoftCast [8], which skips motion estimation,
quantization, entropy coding and channel coding, and simply
uses 3D-DCT to de-correlate the video source. The DCT
coefficients are then power-scaled and directly transmitted in
analog. Such uncoded transmission no longer requires channel
estimation, and the quality of the received video signal nat-
urally varies with the channel condition. Evaluations in real
wireless environments have shown that SoftCast achieves
significant gains over H.264 and H.264 SVC in serving hetero-
geneous users. The root cause of such gain is that the uncoded
transmission, without compromising performance, provides
finer-grained adaptation in comparison to SVC.
There remains much room for improvement in uncoded video

transmission. Although it has shown outstanding performance
when receivers are highly diverse and/or the channel condi-
tion varies dramatically, its performance under static settings
is still inferior to conventional digital methods. We discover
that SoftCast does not fully exploit the spatial and temporal
correlations in video. In this paper, we improve the efficiency
of uncoded video transmission through two additional mod-
ules, namely MCTF at the sender and denoising at the receiver.
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Although we adopt existing signal processing methods, inte-
grating them, especially the denoising module into the uncoded
video transmission framework, brings non-trivial challenges.
The contributions of this paper are two-fold.
• We propose spatial-domain transmission in order to
leverage denoising methods. In addition, we adopt cas-
caded denoising to deal with different types of channel
impairments.

• We propose novel resource allocation algorithms based on
variable-size L-shaped chunk division which not only are
compatible with spatial-domain transmission but achieve
better energy efficiency than existing schemes based on
fixed-size rectangular chunk division.

While the initial idea was briefly introduced in our conference
paper [9], we present a complete design for denoising-aware
resource allocation and perform extensive evaluations in this
work. In particular, we implemented our system on a software
radio platform called Sora [10] and compared it to SoftCast
[8] and an adaptive digital communication system based on an
H.264 SVC extension. Results show that our system achieves
significant gains up to 3.3 dB over SoftCast and up to 5.3 dB
over an SVC-based scheme for channel SNRs ranging from
4 dB to 20 dB.
The rest of this paper is organized as follows. In Section II,

we review related theoretical work on uncoded transmission and
practical uncoded video transmission systems. Section III pro-
vides an overview of the proposed system, highlighting the
differences from previous systems and explaining the denoising
operations in detail. Section IV presents the bandwidth and
power allocation algorithms for spatial-domain transmission.
Section V details the implementation of our proposed system
named Cactus. Section VI presents an evaluation of our system
and provides performance comparisons against reference
schemes. We finally summarize our work in Section VII.

II. RELATED WORK

Although the implementations are different, the proposed
system is closely related to analog joint source-channel coding
(JSCC), which has received extensive theoretical study. In this
section, we will briefly review these theoretical works. In ad-
dition, we also discuss several practical video communication
systems that have emerged recently.

A. Theoretical Work on Uncoded Transmission

Uncoded transmission was investigated as early as in the
1960s. Simple as it is, it has surprisingly been shown to be
optimal in a few practical cases. A famous example is trans-
mitting a uniform-distributed binary source with the Hamming
distance distortion metric over a binary symmetric channel.
Another one is transmitting a memoryless Gaussian source
with a squared-error distortion metric over an AWGN channel.
Recently, there has been a revitalization of uncoded trans-

mission. Gastpar et al. [5] point out that channel coding is not
necessary in some cases, but the source and the channel have
to be matched in a probabilistic sense for optimal communi-
cation. Xiao et al. [11] consider the transmission of a discrete

Fig. 1. Signal processing flowchart of existing uncoded video transmission.

memoryless Gaussian source through a discrete memoryless
fading channel with AWGN. They find that linear scaling
achieves the smallest mean squared error (MSE). Gastpar [6]
shows that uncoded transmission is exactly optimal for a simple
Gaussian “sensor” network, i.e. each sensor's channel input
is merely a scaled version of its noisy observation. Recently,
Kochman and Zamir [7] showed that, by combining prediction
and modulo-lattice arithmetic, one can match any stationary
Gaussian source to any colored-noise Gaussian channel, and
hence achieve Shannon's capacity limit.
The aforementioned review of uncoded transmission shows

that there are many cases where uncoded transmission achieves
optimal or near-optimal performance.Moreover, uncoded trans-
mission is less complex and more robust than digital schemes
based on separate source-channel coding and is not sensitive to
exact channel knowledge at the sender.

B. Practical Schemes

SoftCast [8] is a pioneering uncoded video communication
system. Fig. 1 shows its main processing modules. At the en-
coder, a group of pictures (GOP) are de-correlated through the
3D-DCT transform. The role of transform is thoroughly ana-
lyzed in [12]. Then the DCT coefficients are divided into equal-
sized rectangular chunks, and those in the same chunk are con-
sidered as instances drawn from the same Gaussian distribu-
tion. The source dimension and channel dimension are matched
through discarding chunks with the smallest variation or energy.
Then, coefficients are scaled before amplitude modulation, with
scaling factors set to be inversely proportional to the fourth root
of the variance. At the decoder, those DCT coefficients are de-
coded using a linear least squares estimator (LLSE). Finally,
video frames are reconstructed by an inverse DCT (IDCT).
It has been shown that SoftCast is robust to channel variations

and is capable of achieving graceful degradation in a wide range
of channel conditions. Its advantages over conventional dig-
ital transmission become significant in wireless multicast when
different receivers have varying channel conditions. However,
there still exists much room to improve the efficiency of Soft-
Cast. First, 3D-DCT without motion alignment cannot fully ex-
ploit the temporal correlations in video. Second, spatial decor-
relation based on the DCT transform does not fully utilize the
local redundancy.
Following SoftCast, ParCast [13] considers uncoded trans-

mission in MIMO-OFDM. Their contributions are on the trans-
mission side. In particular, they propose to match the most im-
portant signal components to the best-quality sub-channels. Par-
Cast adopts almost identical source processing as SoftCast, and
therefore does not fully utilize video redundancy either. Fan et
al. [14], [15] take motion (temporal correlation) into consider-
ation in their design of DCast. They employ distributed source
coding to take advantage of temporal correlation at the decoder.
Later, Zhang et al. [16] improve DCast by using variable block
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Fig. 2. Signal processing flowchart of the proposed system.

size motion estimation. However, in all the three works, spa-
tial correlation is not fully utilized. Yu et al. [17] propose a hy-
brid digital-analog scheme which combines the low bitrate dig-
ital coding (as base layer coding) with the linear analog coding
(as enhancement layer coding). Temporal correlation is only ex-
ploited in the base layer through digital coding.
Different from all the aforementioned systems, we propose

to utilize temporal correlations at the sender through MCTF
and spatial correlations at the receiver through denoising. Al-
though there are existing signal processing methods that can
address these needs, integrating them into the uncoded video
transmission framework is non-trivial, especially in the case of
denoising.

III. OVERVIEW OF THE PROPOSED SYSTEM
We aim to improve the transmission efficiency of the un-

coded system through exploiting the correlations in video sig-
nals. We propose to adopt MCTF at the sender to take advantage
of the temporal correlations and leverage denoising techniques
at the receiver to utilize the spatial correlations. Fig. 2 displays
the signal processing flowchart of the proposed system. The
three dashed-line boxes highlight the differences from previous
work, which contribute to the significantly improved transmis-
sion efficiency.
First, we replace the 3D-DCT module in the existing un-

coded framework with MCTF and 2D-DCT. The reason is that
3D-DCT without motion alignment cannot fully exploit tem-
poral correlations. We adopt MCTF instead of the more popular
motion estimation and compensation techniques in the current
video coding standards because they are based on closed-loop
prediction, i.e. the prediction is based on the reconstruction of
previous frames. In uncoded transmission, however, the encoder
is unable to obtain the exact reconstruction at the decoder. This
situation is similar to that in SVC, where part of the compressed
data may be dropped. Therefore, we adopt the motion-com-
pensated temporal filtering (MCTF) [2], [18], [19] developed
for SVC to remove temporal redundancy. MCTF is based on
an open-loop prediction model, i.e. the prediction is based on
the original pixel values instead of the reconstructed ones. It
has been shown that this leads to drifting errors that are much
smaller than those of its closed-loop counterpart. As MCTF is
a well-developed technique in source coding and is not chal-
lenging to integrate, we do not expand on its technical details
here but instead refer readers to the paper [19].
Second, after 2D-DCT, the frequency-domain coefficients are

truncated in order to match the source and channel bandwidths.
The remaining coefficients are then power-scaled to minimize
the MSE under the given power budget. Of note in the pro-
posed system is that we perform an inverse DCT (IDCT) over
the power-scaled DCT coefficients and convert the signal back

to the spatial domain for uncoded transmission. The reason is
that denoising algorithms generally perform better if the signal
impairments (including loss and additive noise) are presented
in the spatial domain. If a pixel value is lost during transmis-
sion, the receiver can easily conceal the error through median
filtering or interpolation, while in contrast, if a DCT coefficient
is lost, the receiver will not have any clue about the original
value and the best concealment is to set it to zero. However, we
find that spatial domain transmission leads to non-trivial chal-
lenges in the resource allocation steps. In the next section, we
will detail the proposed resource allocation algorithms which
are well-suited for spatial-domain transmission.
Third, we propose to leverage image denoising techniques to

fully exploit the spatial correlations at the receiver. We also em-
phasize that denoising should be immediately performed at the
channel output. We will show in Section VI-C that performing
denoising after power de-scaling or after the inverse MCTF is
less effective than performing it at the channel output. We fur-
ther propose cascaded denoising which adopts two or more de-
noising techniques to handle different unfavorable channel con-
ditions. In particular, we first adopt the classic median filter
[20] to handle losses. Under ideal interleaving, packet loss cre-
ates randomly dispersed pixel “holes” in the frame, as shown
in Fig. 3(a). These holes are filled with the median of the sur-
rounding eight pixel values. In the case of deep fading, the pixel
values which experience deep fade can also be filled using the
median filter. Fig. 3(b) shows the result after median filtering.
The lost pixels become non-obvious. Then the state-of-the-art
denoising algorithm BM3D [21] is adopted to reduce random
noise.
The complete BM3D algorithm has two estimation steps:

basic estimation and final estimation. Each estimation is also
composed of two steps: block-wise estimation and aggregation.
In block-wise estimation, similar blocks in a large neighbor-
hood are found for each block and are stacked in a 3D array.
Then, a 3D transformation, hard thresholding (Weiner filtering
in the final estimation), and an inverse 3D transformation
are consecutively performed to generate estimates for all the
involved pixels. After all the blocks are processed, overlapping
estimates are aggregated through a weighted sum operation.
Fig. 3(c) shows the result after BM3D denoising. It can be seen
that all the frames become smoother.
Note that the combination of median filtering and BM3D is

just one possible choice in this step. Different denoising algo-
rithms may be chosen for different devices according to their
computational capability and end requirements. However, we
discovered that using a more complex and effective algorithm
than median filtering in the first denoising step does not bring
much gain. This may be due to the fact that the subsequent
BM3D algorithm is very powerful.

IV. RESOURCE ALLOCATION FOR SPATIAL-DOMAIN
TRANSMISSION

In wireless communications, bandwidth and power are the
major limiting resources. In the conventional coded framework,
source bandwidth and channel bandwidth are matched through
quantization. Transmission power is almost evenly distributed
to each information bit. In uncoded transmission, however, the
bandwidth expenditure is decided by the number of coefficients
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Fig. 3. Denoising processing at the receiver in the proposed framework. (a) Channel output; (b) After median filtering; (c) After BM3D; (d) Recovered frame.

or pixels no matter whether they are quantized or not. Therefore,
quantization becomes unnecessary and bandwidth matching has
to be achieved through data truncation. In addition, the power
used to transmit a symbol is proportional to the square of its
value. When the total power is given, we shall fairly allocate
the power to different variables in order to minimize the MSE.

A. Bandwidth Allocation
The source bandwidth of a video signal can be computed by

, where and are the width and height of a
video frame and is the frame rate. Without source compres-
sion, the source bandwidth is very large, especially for high-
definition videos. The available channel bandwidth is usually
smaller. Therefore, it is necessary to truncate the video data
in a manner that fits the important information into the limited
channel bandwidth.
It is known that data truncation should be performed in the

frequency domain after the data are properly de-correlated. In a
conventional digital video encoder, a video frame (either orig-
inal or residual) is divided into blocks, and block-DCT is per-
formed to transform pixel values into frequency coefficients.
Then the coefficients are quantized. Using a larger quantiza-
tion parameter (QP) will allow coefficients to be represented by
fewer bits. In particular, small coefficients, usually appearing in
the high frequency bands, may be quantized to zeros and ex-
empted from subsequent encoding operations. In the uncoded
transmission system SoftCast, frame-DCT is performed and the
frequency coefficients are then divided into equal-sized chunks.
The chunks with the minimal energy are discarded and the co-
efficients in the remaining chunks are kept completely intact.
Unfortunately, neither of the previous approaches can be

adopted in our system. This is because we will transmit the
video signal in the spatial domain. In order to reduce source
bandwidth, we have to reduce the number of pixels. However,
neither quantization nor truncation of frequency-domain coef-
ficients will change the number of pixels after the IDCT.
We tackle this problem through a novel L-shaped data trun-

cation. In particular, we perform 2D-DCT for each frame in a
GOP after MCTF. The high frequency bands, containing more
low-energy coefficients, reside on the right and the bottom of
each frame. Therefore, we truncate the L-shaped coefficients
as shown in Fig. 4. Let be the resolution of the re-
maining coefficients. Then the IDCT could use a
transform matrix. The resulting image is actually a down-sam-
pled image of the original one. Transmitting the down-sampled
image achieves bandwidth reduction.

Fig. 4. L-shaped data truncation.

Algorithm 1: L-shaped data truncation

Data:
Result:

1 Initialization: ,
, ;

2 Define
;

3 for to do
4 ;
5 end
6 while do
7 ;
8 ;
9 ;
10 ;
11 end

Algorithm 1 gives the L-shaped data truncation algorithm.
Since the wavelet transform is performed along the temporal
axis, the low-pass and high-pass frames in a GOP have imbal-
anced energy. Therefore, bandwidth allocation should be per-
formed per GOP basis. The input of the algorithm is the avail-
able bandwidth per GOP , the video resolution
and the coefficients within each frame of a GOP, denoted by

, where is the GOP size and (
, , ). The output is the new

widths of each frame, denoted by , in the GOP. For
simplicity, we fix the aspect ratio of the remaining coefficients
in each frame, so it is not necessary to output the heights. The
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parameters and are the horizontal and vertical trunca-
tion steps respectively.
In this algorithm, lines 3–5 compute the variance of the

bottom-right L-shaped chunk for each frame. Lines 6–10
repeatedly discard L-shaped chunks that have the minimal
variance (or energy) until the bandwidth requirement is met.
Fig. 4 gives an example of the data truncation process when only
two frames are considered. The numbers above the L-shaped
chunks indicate the order that each chunk is discarded. Nor-
mally, more chunks will be discarded among high-frequency
frames than from low-frequency frames.

B. Power Allocation
In wireless communications research, it has been shown that

in order to optimally transmit a signal under the MSE crite-
rion in a power-constrained system, the signal should first be
de-correlated and then each coefficient should be scaled by a
factor which is inversely proportional to the fourth root of its
variance [22]. In our proposed video transmission system, the
video signal is de-correlated by MCTF and 2D-DCT. Ideally,
each transform coefficient is scaled individually according to
its variance. However, as the scaling factors are required at the
receiver for signal recovery, there is a tradeoff between power
scaling efficiency and overhead. In our design, we adopt a com-
promise similar to SoftCast [8] that groups nearby coefficients
into chunks andmodels the values in each chunk as random vari-
ables (RVs) from the same distribution. Then the coefficients in
the same chunk will be scaled by the same factor and the over-
head is only one scaling factor per chunk.
In contrast to SoftCast which divides coefficients into

equal-sized rectangular chunks, we propose a new variable-size
L-shaped chunk division method. The motivation for L-shaped
chunk division is that transform coefficients decay rapidly from
low-frequency to high-frequency and those belonging to a sim-
ilar frequency band (constituting an L-shape) are more likely
to have similar values. Grouping similar values in a chunk
would allow an uncoded communication system to achieve
higher power efficiency with a small overhead. An additional
reason for using variable-size chunks is that the distribution of
DCT coefficients differs frame by frame and video by video.
While the initial idea of L-shaped chunk division has been
mentioned in our earlier work [23], we present an algorithm
with significantly reduced complexity in this paper.
Similar to bandwidth allocation, power allocation should also

be performed on a GOP basis. Suppose that a GOP has been di-
vided into L-shaped chunks, then the scaling factors for each
chunk are given in the following Lemma. Proof of optimality is
not given here as it can be easily derived from the conclusions
drawn in [22] and [8].
Lemma 1: Given variable-size chunks, denoted by

, each with size , assume that the coeffi-
cients in the th chunk are drawn from the same distribution

with zero mean and variance . Given unit average trans-
mission power, the scaling factor for each chunk, denoted by

, that minimizes MSE is:

(1)

where is the total number of coefficients or equiv-
alently the total power budget for a GOP.

Algorithm 2: Variable-size L-shaped chunk division

Data: , ,
Result:

1 Initialization: , ;
2 if then
3
4 end
5 Greedy chunk division:
6 for each chunk in each frame do
7 Find which minimizes ;
8 Record ;
9 end
10 while do
11 Find among all the ;
12 Add corresponding position to ;
13 Sort the boundary positions for frame in ;
14 For the two new chunks, find and
that minimizes within the respective chunk and record

and ;
15 end

Now the problem is how to divide a GOP into a given number
of chunks. For simplicity and without loss of generality, we

use linear decoding and assume an AWGN channel with noise
power . Then the squared error at the decoder is:

(2)

Minimizing the squared error is equivalent to minimizing

(3)

Based on this analysis, we propose a greedy algorithm for chunk
division. In each iteration, the algorithm will split an existing
chunk into two. Let be an existing chunk in a particular frame.
For clarity, we temporarily ignore the frame and chunk indices.
If chunk is to be divided into two L-shaped chunks denoted
by and , the change of , denoted by , is computed as:

where , and . The dividing
position should be selected among all possible positions
such that is minimized.
Algorithm 2 presents the proposed variable-size L-shaped

chunk division algorithm. It is performed on a per GOP basis.
The inputs are the dimensions of each frame after bandwidth al-
location, all the remaining coefficients and the desired number
of chunks . The outputs are the chunk boundaries in each
frame. indicates the number of chunks in frame . Again,
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Fig. 5. Illustration of the greedy chunk division algorithm.

Fig. 6. Implementation of the Cactus sender is comprised of application-layer signal processing and PHY data transmission.

we fix the aspect ratio of the horizontal and vertical coordinates
of each L-shaped chunk boundary. Thus it is not necessary to
include the vertical coordinates in the outputs.
Fig. 5 illustrates the greedy chunk division algorithm with a

simple example. The shadowed areas indicate the coefficients
dropped in the bandwidth allocation process. As frame 4 is en-
tirely dropped, the initialization step between lines 2 to 4 only
adds three boundaries to , indicating three initial chunks. In the
first round of greedy chunk division, frame 1 is divided into two
chunks: the new is added to and the previous becomes
after sorting. Now, the dotted lines in Fig. 5 show four possible
positions in the second round of greedy chunk division. These
four positions are selected according to lines 10 to 15. The posi-
tion corresponding to the minimum among the four will be
added to in line 12. Note that in each round of greedy selection
between lines 10 to 15, we only need to find the minimum
for the two new chunks. The worst case complexity is .

V. IMPLEMENTATION

We implement the proposed uncoded video transmission
system, named Cactus, through a compound approach. The
application layer signal processing is implemented in Matlab
Compiler Runtime (MCR) and the PHY data transmission is
built on a software radio platform called SORA [10].

A. Sender

Fig. 6 depicts the Cactus sender implementation. The GOP
size is set to 16. We use a reference C code to implement the
barbell-lifting based MCTF [19]. The motion information, in-
cluding motion vectors and modes, is entropy coded and its
coded size can be calculated. The bandwidth occupied by mo-
tion information will be deducted from the overall bandwidth
provisioning. The bandwidth allocation module computes the
remaining frame sizes, denoted by . Then, we
divide the GOP into 160 L-shaped chunks (10 chunks per frame
on average) and compute the variation for each chunk. We use

a fixed number of bits (32 bits) to record chunk boundaries and
variations. These metadata are also entropy coded. The power
scaling module computes the scaling factors from each chunk,
denoted by assuming unit power for each
symbol. Then variable-size IDCT is performed on each frame
to generate spatial-domain pixel values.
Two application layer signal processing steps generate meta-

data, which should be faithfully received by receivers. They are
transmitted using a robust digital scheme. We adopt the combi-
nation of 1/2-rate channel coding and binary phase shift keying
(BPSK) modulation for transmitting metadata.
The scaled pixel values are transmitted through amplitude

modulation (AM). Specifically, every two pixel values are
mapped to the I and Q components of one wireless symbol.
Note that AM can be implemented over digital hardware using
a very dense discrete modulation constellation (the precision
of today's A/D converter is about 12 bits per axis). This digital
implementation allows our design to be easily integrated into
an existing network stack. To resist packet loss, the adjacent
symbols from a frame are pseudo-randomly shuffled across
different physical layer convergence procedure (PLCP) frames.
We further perform inter-frame shuffling to combat fading.
We limit the shuffling within a GOP to reduce the decoding
delay. The shuffled symbols are sequentially placed on each
orthogonal frequency division multiplexing (OFDM) symbol.
Therefore, when a PLCP frame is lost, it creates randomly
dispersed “holes” in the video frame, which can be easily
processed by median filtering.

B. Receiver
At the receiver, the digital and pseudo-analog transmissions

can be separated from the packet header. The digital BPSK sym-
bols are demodulated and grouped for channel decoding. If all
information bits are correctly decoded, they will be entropy de-
coded to recover the motion information, chunk division bound-
aries and chunk variations. Otherwise, a receiver may request
for a retransmission.
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The PHY at the receiver directly reads the amplitude values of
pseudo-analog symbols and pieces together the 16 variable-size
frames in a GOP. Each frame will be independently denoised.
If packet loss is detected, we use the median function in Matlab
to perform the median filter denoising. Then, we use the Matlab
code published by the authors [24] to perform BM3D denoising.
Then, DCT is performed and power de-scaling is applied over
the frequency coefficients. The de-scaling factors can be com-
puted from the chunk variations. For frames whose resolution
is smaller than the standard resolution, we pad zeros in the
high-frequency band and then perform a fixed-size IDCT. These
recovered frames together with motion information can recon-
struct the original frames through inverse MCTF.

VI. EVALUATION

A. Methodology

Evaluations are carried out using Sora [10] (equipped with a
WARP radio board) over 802.11a/g-based WLAN. The 16 bit
data representation in the Sora Tool Kit is fully utilized for am-
plitude modulation. The carrier frequency is 2.4 GHz. The PHY
is based on OFDM. Specifically, the channel is divided into
64 subcarriers and 48 of them are used to transmit modulation
symbols. To reduce the overhead of the PLCP header, we use
100 OFDM symbols in each PLCP frame for data transmission.
Overall, the channel bandwidth is 12 MHz and the data band-
width is about 11.4 MHz. We have evaluated Cactus both for
an exclusive stream and for two concurrent streams. The corre-
sponding data bandwidth per stream is 11.4 MHz and 5.7 MHz,
respectively. Traces are obtained at varying distances and recep-
tion power resulting in SNRs ranging from about 4 dB to about
20 dB. The SNR within each trace is fairly stable. Trace-driven
evaluations ensure fairness among the comparison schemes.
We created a monochrome high-definition (HD) video se-

quence of resolution of 1280 720 for evaluation. It contains
the first 32 frames (2 GOPs in our implementation) from 10 stan-
dard video test sequences, including Intotree, Shields, Stock-
holm, City, Jets, Panslow, Parkrun, Sheriff, ShuttleStart, Spin-
calendar. With a frame rate of 30 fps, the source bandwidth is
13.8 MHz (assuming 2D source samples). In order to transmit
the video in a 11.4 MHz or 5.7 MHz channel, bandwidth com-
paction is needed and the ratio of channel bandwidth to source
bandwidth is about 0.82 or 0.41.
We evaluate video delivery quality with the standard peak

signal-to-noise ratio (PSNR) in dB. The PSNR is averaged
across frames.

B. System Comparison

We compare our system with two reference systems, namely
SoftCast and RA-SVC. The pioneering uncoded video transmis-
sion system SoftCast is implemented exactly as described in the
original paper [8]. In contrast to our system Cactus, the Soft-
Cast encoder does not generate motion information and does not
need to transmit the chunk boundaries since it adopts fixed-size
rectangular chunks. However, the number of chunks is 64 per
video frame, which is much larger than in Cactus. The metadata
of SoftCast are also transmitted with robust digital methods and

Fig. 7. Performance comparison between our system and reference systems,
with a bandwidth ratio of 0.82.

Fig. 8. Performance comparison between our system and reference systems,
with a bandwidth ratio of 0.41.

can be retransmitted when there are errors. Therefore, a receiver
can always assume error-free metadata.
The other reference scheme, RA-SVC, is based on the Scal-

able Video Coding (SVC) extension of H.264/AVC and robust
rate adaptation [25]. The combined test video sequence is en-
coded by the H.264 reference software JSVM [26] into three
quality layers. The encoding parameters are selected and tuned
for each GOP to ensure the best performance. The selection cri-
terion is that a receiver which can successfully decode (BPSK,
1/2), (QPSK, 3/4) or (16QAM, 3/4) transmissions will obtain
one, two or all three quality layers. These three coding and mod-
ulation choices are as defined in 802.11a/g.We adopt the RRAA
rate adaptation algorithm [25] to handle varying channel condi-
tions. In addition, we allow instantaneous retransmission when
channel decoding fails, and the base layer data are always as-
signed the highest priority.
Overall Performance Under Varying Channel Conditions:

We evaluated the three systems over 36 traces with channel
SNRs ranging from about 4 dB to about 20 dB. The SNR within
each trace is fairly stable. After each transmission, the average
video PSNR is computed at the receiver. We divide the receiver
SNR range into 2 dB bins, and average all the (receiver SNR,
PSNR) pairs whose receiver SNR falls into the same bin.
Fig. 7 compares the performance of the three systems when

the bandwidth ratio is 0.82. Results show that the proposed
uncoded video transmission system significantly outperforms
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Fig. 9. Performance comparison between our system and reference systems, with a bandwidth ratio of 0.82. (a) Channel SNR; (b) PSNR performance.

SoftCast and RA-SVC. The gain over SoftCast becomes more
significant as the channel condition gets poorer. When the SNR
is about 4 dB, Cactus achieves a 3.3 dB gain in received video
PSNR. This is due to the fact that denoising is more helpful in
poor channels. When the SNR is about 20 dB, SoftCast starts to
excel. This suggests that our system may turn off the denoising
module when the channel SNR is above a certain threshold.
Comparing the performance of our system and RA-SVC,

we find that the gain of our system increases as the channel
condition improves. When the receiver SNR is between 14 dB
and 20 dB, Cactus achieves about a 5 dB gain in video PSNR
over RA-SVC. This is due to the fact that when more encoding
layers are involved in SVC, the source coding efficiency is
more heavily affected. Even when the source coding is optimal
(when the channel condition is poor, only the base layer will be
transmitted), the performance of RA-SVC is still inferior to our
system by about 2 dB in video PSNR. The performance loss
is due to the mismatched rate selection under varying channel
conditions. We will give more details about this problem in the
following experiment.
Fig. 8 shows the performance of the three systems when the

bandwidth ratio is 0.41. This bandwidth setting is considered
slightly less than adequate. In order to transmit a 120-minute
720p video with robust (BPSK, 1/2) modulation, the video has
to be compressed into less than 2.57 GB. In Fig. 8, the three per-
formance curves show trends similar to Fig. 7. Cactus achieves
up to a 3.3 dB gain over SoftCast and up to a 5.3 dB gain over
RA-SVC.
Performance on a Particular Trace: We next zoom

into a particular trace to compare the system performance.
Fig. 9 shows the per-packet channel SNRs as well as the
per-GOP performance of the three systems. From Fig. 9(a), we
can find that although the channel SNR is about 10 dB most
of the time, there are many sudden drops to 0 to 5 dB. When
the SNR drops dramatically, the selected rate (according to
the previous good channel condition) in RA-SVC would be
too high and the receiver may completely fail in reception.
Then when the channel recovers, the selected rate could be

Fig. 10. Original frame #209 in the test video.

too conservative and the channel capacity is not fully utilized.
On this trace, Cactus achieves an average of 3.1 dB gain over
RA-SVC.
Comparing the performance of Cactus and SoftCast in

Fig. 9(b), we can find that the denoising gain greatly depends on
the video characteristics. It can be seen that the denoising gain
over Shields is significant but that over Panslow is small. We
investigate the denoising gains in more detail in Section VI-C.
On average, Cactus achieves a 2.6 dB gain over SoftCast.
Fig. 11 compares the visual quality of the three schemes for

frame 209, shown in Fig. 10. Frame 209 belongs to GOP 14.
It was transmitted when the channel SNR was slightly above
10 dB. The PSNRs achieved by SoftCast, RA-SVC and our
scheme are 30.05 dB, 31.15 dB and 35.94 dB, respectively.
From the enlarged area, we can clearly see that RA-SVC tends
to lose image details (see the highlighted area) and introduces
some blocking effects, while the SoftCast result contains too
much noise. In contrast, Cactus achieves a very clean image
with details.

C. Micro-Benchmarks

In this subsection, we justify our design choices and provide
insights on uncoded video transmission systems.
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Fig. 11. Comparison of image details among our method, RA-SVC and Soft-
Cast. 11. (a) Original; (b) Ours; (c) RA-SVC; (d) SoftCast.

Fig. 12. Denoising gains and comparing different denoising choices.

Denoising Gains and Importance of Spatial-Domain Trans-
mission: We have proposed to introduce denoising at the re-
ceiver to suppress channel noise. Fig. 12 shows denoising gains
with respect to additive noise under varying channel conditions.
This experiment is carried out without any packet loss. It can
be seen that suppressing the additive noise can bring significant
gains of up to 2.18 dB when the channel condition is poor. The
gain decreases as the channel SNR increases and becomes neg-
ligible when the channel SNR is about 20 dB.
This figure also shows the performance of two other de-

noising choices, namely denoising after power de-scaling and
denoising after inverse MCTF. It is clear that hardly any gain is
obtained if denoising is performed after power de-scaling. This
is because BM3D and most other denoising algorithms perform
best for additive white Gaussian noise. After power de-scaling,
the additive noise on different frequency bands will be scaled
differently, and the noise distribution will be dramatically
different from a Gaussian distribution, which makes denoising
algorithms less effective. Performing denoising as post-pro-
cessing (after inverse MCTF) also does not yield performance
as good as ours. This is because the noise power, which is an
important input parameter for a denoising algorithm, cannot be
correctly estimated after the inverse MCTF.
In the previous subsection, we have observed that the de-

noising gains over different sequences could be quite different.
Fig. 13 shows the denoising gain of each test sequence in a test
run when the average channel SNR is 6.07 dB. While the av-
erage denoising gain is 1.64 dB, the minimal and maximal gain
is 1.17 dB and 2.17 dB respectively.

Fig. 13. Denoising gain of different sequences under a trace with an average
SNR of 6.07 dB.

Denoising also plays an important role in combating losses,
but only when the video signal is transmitted in the spatial do-
main. Fig. 14 demonstrates the robustness of our system against
packet losses, although we only use a simple median filter. The
results are obtained on a channel trace with 10 dB average SNR
and we emulate packet losses by randomly discarding a cer-
tain percentage of the packets from the channel trace. Actually,
if only additive noise is concerned, transmitting frequency-do-
main coefficients or spatial-domain pixel values does not make
much difference, because IDCT is an orthonormal transform.
However, when loss is concerned, the advantage of transmitting
in the spatial domain becomes obvious. As shown in Fig. 14, our
scheme achieves a 10.5 dB gain over frequency-domain trans-
mission when the loss ratio is 10%.
SoftCast proposed using the Hadamard transform and LLSE

(linear least square estimator) to combat loss. We discover that
once LLSE is performed, BM3D denoising provides little im-
provement in the image quality, which is also due in part to the
change of error distribution. From the figure, we can see that
although this approach could improve the robustness against
packet loss (video PSNR drops by 0.55 dB when the loss ratio
increases from 0.1% to 1%), the overall performance is signifi-
cantly inferior to our solution.
Benefits of L-Shaped Resource Allocation: To reduce spa-

tial-domain bandwidth, we proposed L-shaped data truncation
in the frequency domain. An experiment was conducted to show
that the proposed denoising-aware L-shaped data truncation is
almost as good as data truncation based on equal-chunk divi-
sion, which is not well-suited for spatial-domain transmission.
The evaluation metric is the total energy of the truncated data,
which should be minimized. Fig. 15 shows the comparison over
the first GOP of the Intotree sequence. Results on other test se-
quences are similar. It can be seen that the energy loss of the
proposed L-shaped data truncation is almost identical to the
equal-chunk data truncation when each frame is divided into
16 chunks (EC-16). It is slightly inferior to other cases when
frames are divided into more chunks, but the loss is negligible.
We proposed variable-size L-shaped chunk division for

power allocation. Fig. 16 shows that our solution brings signif-
icant gains over its counterpart based on fixed-size rectangular
chunk division. As mentioned in Section IV, the objective of
power allocation is to minimize MSE as defined in (2). As the
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Fig. 14. Comparing different transmission strategies under packet loss.

Fig. 15. Energy loss of L-shaped and equal-chunk data truncation over the first
GOP of Intotree.

Fig. 16. Comparing power allocation performance of the proposed L-shaped
chunk division and conventional equal chunk division.

absolute value of MSE is proportional to the noise power ,
we use the normalized MSE as the metric for evalu-
ating chunk division methods. From Fig. 16, we can find that
the proposed L-shaped chunk division achieves much better
performance than equal chunk division for the same number
of chunks. When each frame is divided into 256 equal-sized
chunks, the resulting normalized MSE is even larger than that
with only four L-shaped chunks. We also observe that the MSE
performance tends to flatten out when the number of L-shaped
chunks is greater than 10 per frame.

TABLE I
BANDWIDTH PERCENTAGE OF METADATA FOR THE TEN TEST SEQUENCES

Metadata Overhead: In the proposed linear digital commu-
nication, there are some metadata for which there is zero toler-
ance for errors. We proposed to use 1/2-rate channel coding and
BPSKmodulation to transmit this part of the data. Table I lists the
bandwidth consumption of the metadata. The total percentage
includes the motion information and power scaling parameters.
It can be seen that different sequences have varying amounts
of motion information. On average, the metadata overhead is
small, ranging from 0.73% to 4.04% of the total bandwidth.

VII. SUMMARY

We have introduced in this paper a novel uncoded video
transmission system, which has the potential to provide signal
processing flexibilities to wireless video communication. We
show that by enabling denoising at the receiver, the efficiency of
wireless video communication can be greatly improved. Exten-
sive trace-driven experiments show that our system outperforms
the conventional digital system and the state-of-the-art uncoded
video transmission systemSoftCast in typical channel conditions
of 802.11b/g. However, when the channel SNR is extremely low
(such as 0 dB), the digital scheme may outperform the proposed
uncoded scheme because the former could use a high compres-
sion ratio for source coding and a very low rate channel coding
for protection. It is one of our future work to explore the perfor-
mance regimes of the uncoded video transmission system.
In the future, we will also explore other signal processing

possibilities provided by uncoded video transmission. For in-
stance, each receiver in a multicast session may adapt the re-
ceived video resolution to the screen resolution of its mobile de-
vices, or focus only on areas of interest area when its bandwidth
is not sufficient to receive the entire video. We will also look
into possibilities for information retrieval and analysis brought
by this new communication framework.
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