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ABSTRACT

Compressing a query image’s signature via vocabulary coding is an
effective approach to low bit rate mobile visual search. State-of-
the-art methods concentrate on offline learning a codebook from
an initial large vocabulary. Over a large heterogeneous reference
database, learning a single codebook may not suffice for maximal-
ly removing redundant codewords for vocabulary based compact
descriptor. In this paper, we propose to learn multiple codebook-
s (m-Codebooks) for extremely compressing image signatures. A
query-specific codebook (q-Codebook) is online generated at both
client and server sides by adaptively weighting the off-line learned
multiple codebooks. The q-Codebook is subsequently employed to
quantize the query image for producing compact, discriminative, and
scalable descriptors. As q-Codebook may be simultaneously gener-
ated at both sides, without transmitting the entire vocabulary, only
small overhead (e.g. codebook ID and codeword 0/1 index) is in-
curred to reconstruct the query signature at the server end. To fulfill
m-Codebooks and g-Codebook, we adopt a Bi-layer Sparse Coding
method to learn the sparse relationships of codewords vs. codebooks
as well as codebooks vs. query images via [1 regularization. Exper-
iments on benchmarking datasets have demonstrated the extremely
small descriptor’s supervior performance in image retrieval.

Index Terms— Mobile visual search, visual vocabulary, univer-
sal quantization, compact descriptor

1. INTRODUCTION

With the increasing popularity of phone camera devices, mobile
visual search becomes more and more attractive, such as mobile
landmark search, mobile product search, and mobile CD/book cover
search. In general, most existing mobile visual search systems fol-
low a client-server architecture. In the server end, a visual search
system is maintained, typically based on a Bag-of-Words (BoW)
model [1] as well as a scalable inverted indexing on a visual vocab-
ulary. In online search, a query is sent through the wireless network
to the server end, where near-duplicated search is conducted to find
out the best matched images.

Over a bandwidth constrained (3G) wireless network, sending
an entire image may suffer from serious latency. Research effort-
s have been devoted to directly extracting visual descriptors on a
mobile device for low bit rate query transmission. Beyond exist-
ing local descriptors (e.g. SIFT [2], SURF [3], PCA-SIFT [4]), re-
cent works put more emphasis on the compactness of descriptors.
The first group comes from direct compression of local descriptors
[S]6l. The second group attempts to compress the BoW based sig-
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nature [7][8][91[10] rather than local descriptors, which gains high
compression rate without any serious loss of discriminability.

More recent vocabulary coding approaches [9][10] have report-
ed promising search performance at extremely low bit rate, say hun-
dreds of bits. Side information (e.g. GPS, RFID tags) associated
with images are employed to define a channel (i.e. data partition
over reference database), in which machine learning techniques (e.g.
Boosting) are adopted to learn a codebook (a subset of initial Bow
vocabulary) within each channel. The query image’s compact signa-
ture is obtained by quantizing local descriptors with a single code-
book (channel dependent). However, the codewords redundancy is-
sue arises from learning a single codebook. That is, there would
exist seriously redundant codewords in a single codebook for repre-
senting a query in its channel, especially when a channel involves
heterogeneous images. Redundant codewords could degenerate the
query descriptor’s compactness and discriminative power. Further-
more, the codebook is often of fixed size, yielding less scalability.

In this paper, we formulate the issue of removing the codeword-
s redundancy from learning a single codebook (s-Codebook) as a
problem of learning multiple codebooks (m-Codebooks). Based on
m-Codebooks, a query-specific codebook (q-Codebook) is online
generated by adapting codebook weights to each incoming query
image, and the compact descriptor is subsequently yielded by the re-
sulting g-Codebook. To fulfill the compactness and discriminability,
we adopt a Bi-layer Sparse Coding method to learn the sparse char-
acteristics of codewords vs. codebooks and codebooks vs. images.
Figure 1 illustrates the process with m-Codebooks and g-Codebook.

Our contributions are two-fold. First, we propose a novel m-
Codebooks learning to further reduce the redundant codewords in
generating vocabulary based descriptors [9][10]. Second, we in-
troduce a bi-layer sparse coding method to learn the sparsity priors
effectively, yielding more compact, discriminative and scalable de-
scriptors to fulfill desirable image retrieval performance.

The remaining of this paper is organized as follows. Section
2 formulates the m-Codebooks learning problem. In Section 3, we
introduce bi-layer sparse coding to tackle the m-Codebooks learning
process. Experimental evaluation is given in Section 4. Finally, we
conclude this paper in Section 5.

2. M-CODEBOOKS LEARNING

Problem Formulation We aim to (1) reduce redundant codewords
within the learned s-Codebook in state-of-the-art vocabulary cod-
ing approaches [9][10]; and (2) improve the weak scalability in s-
Codebook by yielding g-Codebook over m-Codebooks. Suppose
there are N images and the initial vocabulary V consists of M
codewords, each image I, is represented as V,, € R™ where the
m'" entry of V., denotes the frequency of the m!" codeword in I,.
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Fig. 1. Learning m-Codebooks and generating q-Codebook to yield compact, discriminative, and scalable descriptor: (a) mobile visual search
pipeline, and (b) the generation process of g-Codebook based on m-Codebooks.

Previous vocabulary coding works [9][10] aim to learn a transform
M,, % (M7 is the encoder and M is the decoder) from V to a

much more compact codebook U € H&f (K < M), which trans-
forms V,, into low cost ordinary code U, :

T, =f(V.,) 2MTV, (1)

Towards low bit rate vocabulary coding, s-Codebook is generated by
choosing K codewords from vocabulary V.

To further reduce the codewords redundancy in Equation 1, we
propose to learn m-Codebooks for generating a query-specific code-
book, which is in spirit similar to the idea of universal quantization
[L1]]. Universal quantization originates from running multiple loss-
less codes in parallel and choosing the one producing the fewest bits
for a period of time, sending a small amount of overhead to inform
the decoder which code the encoder was using [11]]. Better perfor-
mance tradeoffs can be achieved by allowing both rate and distortion
to vary. In the scenario of visual search, rate means the descriptor’s
compactness, while distortion means the ranking loss in image re-
trieval. Motivated by universal quantization, codes with smaller di-
mension might be more efficient since separate codebooks can be
used for distinct local behavior (e.g. query-specific behavior).

We formulate the problem of learning K m-Codebooks U =
[Uy, ..., Uk] in parallel and choosing the most relevant codebooks
for query image I,, using its codebook weights C,, € R¥ to pro-
duce as small distortion as possible in search performance. The m"
entry of Uy € RM denotes the weight of the m‘" codeword in
k" codebook. Intuitively, the codewords with larger weights are
more representative in the corresponding codebook. The k'™ entry
of C,, represents the weight of codebook Uy, for image I,,. The
larger codebook weight, the more important role the codebook plays
in representing the query image. Each codebook Uy, actually repre-
sents a different type of local behavior. Ideally, each query should
involve as fewer codebooks as possible; meanwhile each codebook
contains a small number of codewords in the entire vocabulary. This
assumption is subsequently validated by our experiments. There-
fore, we inject sparsity constraints to both m-Codebooks matrix U
(each Uy, should be sparse, i. e. with just a few non-zero entries)
and codebook weights vector C,, for each image I,, as well. The
m-Codebooks based vocabulary coding is then defined as follows:

s. 2uc, )

from the perspective of universal quantization, S,, € R™ may be
considered as a sort of universal code of image I,, in the low bit rate

visual search. Our objective is to use S,, to approximate V,, with
less information loss. As with a small number of non-zero entries,
S,, can be also regarded as the BoW quantization of image I,, based
on tailored q-Codebook with M codewords (M < M).

Learning Goal Given database images I = [V1,..., V]| €
RM*N ' we aim to learn m-Codebooks U = [Uy,...,Uk| €
RM>*E from initial vocabulary V as well as the codebook weights
C =[Cy,...,Cn] € RE*¥ for image sets L.

q-Codebook Generation Given a query I,, we generate a g-
Codebook Q, € R for BoW quantization based on the learned
m-Codebooks U and C, (see Figure 1(b)). We first represent query
I, with codebook weights C, (using Equation 5). As C, tends to be
sparse, we assume there are k non-zero codebook weights. We select
the columns of U corresponding to the k£ codebooks and denote them
as {ﬁi}le, each IAJZ is also sparse. Then we put the codewords with
non-zero weights in {[AL}f:l into a union set and use this union
set as q-Codebook Q. This procedure ensures that the codebook
generation is adaptive to each incoming query. Furthermore, M will
be much smaller than M due to the sparsity of {U;}%_, and C,,.

Compared to [9][10], learning m-Codebooks brings about two
advantages: (1) the codewords in Q, from vocabulary V is tailored
to each query I, with the guidance of m-Codebooks, which not only
produces a more compact descriptor, but promotes discriminability
due to sparsity property; (2) the descriptor is more scalable, rather
than relying on a codebook of fixed size K for all query images.
Moreover, the descriptor size M is adaptive to the query difficulty.
For instance, an image with complex background may involve more
codebooks and codewords than a plain image.

3. BI-LAYER SPARSE CODING

In this section, we aim to learn U and C. Our objective is to op-
timally approximate V,, using universal code S,,. We choose the
squared [2-norm of the difference between V,, and S,, to measure
the BoW reconstruction error: || V,, — UC,, ||3. Suppose that the
codeword-codebook matrix U and codebook-image matrix C are s-
parse. We use I1 norm regularization on both U and C to fulfill the
sparsity constraint as follows:

N K N
min Z | V., —UC, |3 +>\Z | Uk |1 +/BZ | Cn |1

U.{Cn} n=1 k=1 n=1
3)

where A > 0 and 8 > 0 are the parameters controlling the regular-
ization on U and C respectively. The larger values A or /3, the more



Algorithm 1 Bi-layer Sparse Coding
RMXN

: Input: I €
: Generate random matrix C° € R¥*N
: fort=1:Tdo

U' « UpdateU(I,C*1)

C' «+ UpdateC(I,U")
end for
: Output: U?, C*

I

sparse U and C are. Equation 3 is regarded as a sparse coding tech-
nique [12]. Here we have two layers of sparsity constraints (named
as Bi-layer Sparse Coding in this paper).

Optimization The optimization problem of Equation 3 is non-
convex. But fixing one variable (either U or C), the objective func-
tion with respect to the other is convex. So we alternately minimize
Equation 3 with respect to U or C, as showed in Algorithm 1.

Update U. When C is fixed, the update of U can be decom-
posed into M independent problems, each corresponding to one row
of U:

min || Vi, = UL [ 42 || Up, | )

where V,, and U,, are the mthrow of Land U,m = 1,..., M.
Then we choose coordinate descent technique [[13]] to solve Equation
4, resulting the following update rule:

Wmk < Tmk — E qkliUml
I#£k

(| ik | =5 A)+sign(wmr)
qkk

Umk <

where ¢;; and r;; are the (i5)*" entries of K x K matrix @ = CC”
and M x K matrix R = IC7 respectively, k = 1,..., K.

Update C. Likewise, the update of C with U fixed can be also
decomposed into N independent problems, each corresponding to
one column of C:

min || Vi, = UGy [l 48 || Cn |1 5
which executes the similar procedure as Equation 4.

4. EXPERIMENTAL RESULTS

Datasets (1) The PKU Landmark Benchmark Subset (PKUBench):
The PKUBench subset consists of 5007 scene photos, organized into
170 landmark locations from the Peking University Campus. There
are in total 567 queries from 170 landmarks, and on average 34 refer-
ence images per query. Rich photograph scenarios (e.g. diverse an-
gles, shots, blurring, night, etc.) are involved. (2) Zubud Database:
Zubud contains 1005 color images of 201 buildings or scenes (5
images per object) and 115 queries. (3)UKBench Database: UK-
Bench contains 10,000 images with 2500 objects, including general
indoors objects (CD Covers, books, etc.) or scenes. There are four
images per object involving sufficient variances in viewpoints, rota-
tions, lighting conditions, scales, occlusions and affine transforms.
Note that these datasets have been included in MPEG CDVS bench-
marking datasets.

Parameters and Evaluation We choose m-Codebooks param-
eter K from a set of values {30, 50, 80,100, 150,200}. Regular-
ization parameters A and 3 are adjusted in the interval [0.01, 1] and
[0.01, 1], respectively. In subsequent retrieval experimental results,
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Fig. 2. Compression rate versus ranking distortion of our m-
Codebooks learning and the comparison with the state-of-the-arts
on PKUBench (the most challenging MPEG CDVS dataset).

we select the optimal parameters K = 50, A = 0.5, and 5 = 1.0.
The effects of different parameters are not discussed due to space
limit. How to effective and efficient select multiple parameters is
included in our next work.

We use mean Average Precision (mAP) to evaluate the image
retrieval performance. Given in total () queries, mAP is defined as
follows:

1

mAP = EZ(

>, P(r)

# — of — relevant — images

)

=1

where N, is the number of queries; N the number of relevant images
for the it query; P(r) is the precision at rank r.

Baselines (1) Raw Bag-of-Words (Raw-Bow): Transmitting the
entire BoW has the lowest compression rate. However, it provides
an upper bound in mAP with traditional TF-IDF indexing scheme.
(2) Tree Histogram Coding (THC) [7]: Chen et al. applied residual
coding to compress the BoW histogram. (3) Compressed Histogram
of Gradients (CHoG) [5]: CHoG is the state-of-the-art compact local
descriptor. As m-Codebooks and q-Codebook work on the quantized
descriptors, learning multiple codebooks can be applied to CHoG.
The subsequent comparison with CHoG actually presents the com-
parison between pre-quantization and post-quantization compact de-
scriptor scheme. (4) Multiple-Channel Coding based compact Vi-
sual Descriptor (MCVD) [10]: MCVD presents the state-of-the-art
vocabulary coding descriptor, which belongs to post-quantization
methods. (5) Non-Sparse m-Codebooks Learning (NS-MCL): This
is a variant of our model, which relaxes the bi-layer /1 norm regular-
ization. We introduce NS-MCL to investigate the sparsity property
of m-Codebooks. (6) Bi-layer Sparse m-Codebooks Learning (BS-
MCL): BS-MCL is our proposed m-Codebooks learning method.

Rate Distortion Analysis We perform comparison with state-
of-the-art methods over extensive datasets. As illustrated in Fig.2,
over the challenging PKUBench, our method achieves the highest
compression rates subject to a given mAP, and the best retrieval per-
formance at a fixed compression rate. In addition, BS-MCL outper-
forms NS-MCL, which shows that the bi-layer sparsity constraints
over m-Codebooks bring about more discriminative descriptors at
the same bits.

Sparsity Analysis Table 1 shows the sparsity comparison of
codewords vs. codebooks (matrix UU) / codebooks vs. images (ma-
trix C') between NS-MCL and BS-MCL models on PKUBench, us-
ing different m-Codebooks parameters K. We estimate the sparsity
of U or C by computing the average ratio of non-zero entries in each
column of U or C. From Table 1, the non-zero entries of BS-MCL



Table 1. Comparison of codewords vs. codebooks (matrix U) / codebooks vs. images (matrix C') sparsity between the NS-MCL and BS-MCL

models on PKUBench, with different m-Codebooks parameter K.

K 30 50 80 100 150 200
NS-MCL (%) | 15.73/19.49 | 20.51/19.72 | 27.41/20.71 | 38.35/23.12 | 48.46/25.81 | 46.03/26.88
BS-MCL (%) 2.69/1.75 2.34/1.56 3.18/1.44 2.54/1.41 2.76/1.53 2.73/1.57
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Fig. 3. Evaluation of descriptor’s scalability based on our m-
Codebooks learning.(The horizontal axis: image index, 20 images
from PKUBench, Zubud, and UKBench; The vertical axis: upstream
transmission bits per query)
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are much smaller than NS-MCL on both U and C. We argue that
the more sparse U and C' are, the more compactness of descriptors
we may achieve. That is, BS-MCL tends to yield more compact
descriptors than NS-MCL.

Scalability We qualitatively study the descriptor scalability in
length. 20 images are randomly selected from the datasets and we
evaluate their upstream transmission bits, respectively. As illustrated
in Figure 3, the descriptors of different query images vary in coding
length of (0/1) bits, where each bit indicates hit/non-hit of a code-
word. As the size of gq-codebook is adaptive to each query, our m-
Codebooks descriptor yield more flexible scalability while previous
works are only with the codebook of fixed length [9][10].

Case Study We collect a few real-world challenging queries (d-
ifferent scales, illumination changes, occlusions, or blurring). Figure
4 shows that our m-Codebooks method can better preserve the rank-
ing precision over the original Raw-Bow of high dimensions, based
on more compact q-Codebook and m-Codebooks.

5. CONCLUSIONS

We have proposed a novel m-Codebooks learning and q-Codebook
generation approach to reduce redundant codewords in arising vo-
cabulary coding in very low bit rate mobile visual search. With a
bi-layer sparse coding method, we have successfully incorporate
the sparsity priors for generating more compact, discriminative, and
scalable descriptors. Comprehensive experiments have validated
the sparsity assumption and show significant improvements over the
state-of-the-art BoW compression techniques. More investigation
on universal quantization in vocabulary coding will be included in
future work. Based on reference databases, how to better tune per-
formance tradeoffs between rate and distortion need further study.
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Fig. 4. Case Study of queries in challenging photograph scenarios.
In each box, the left photo is the query and the returning results are
listed on the right. The red framed box corresponds to BS-MCL,
while the green framed box corresponds to Raw-Bow. The query
examples are from Top: PKUBench; Middle: Zubud; Bottom: UK-
Bench. The descriptors involved in matching between query and
reference images are shown in red “+” sign. BS-MCL outperforms
Raw-Bow with much fewer local descriptors, derived from the com-
pact g-Codebook based on m-Codebooks, which consequently yield-
s more compact query descriptor with BS-MCL.
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