
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 10, OCTOBER 2013 1795

Interactive Stereoscopic Video Conversion
Zhebin Zhang, Chen Zhou, Yizhou Wang, and Wen Gao, Fellow, IEEE

Abstract—This paper presents a system of converting
conventional monocular videos to stereoscopic ones. In the
system, an input monocular video is firstly segmented into shots
so as to reduce operations on similar frames. An automatic
depth estimation method is proposed to compute the depth
maps of the video frames utilizing three monocular depth
cues—depth-from-defocus, aerial perspective, and motion.
Foreground/background objects can be interactively segmented
on selected key frames and their depth values can be adjusted
by users. Such results are propagated from key frames to
nonkey frames within each video shot. Equipped with a
depth-to-disparity conversion module, the system synthesizes the
counterpart (either left or right) view for stereoscopic display by
warping the original frames according to their disparity maps.
The quality of converted videos is evaluated by human mean
opinion scores, and experiment results demonstrate that the
proposed conversion method achieves encouraging performance.

Index Terms—2-D-to-3-D (stereoscopic) video conversion,
depth estimation, stereoscopic video quality evaluation.

I. Introduction

DUE TO THE amazing development of the 3-D tele-
vision (3DTV) industry (e.g., broadcasting of many

3-D channels), the number of available stereoscopic videos
is largely inadequate to satisfy the great demand of the
market even with the new-make of such videos using stereo
cameras. Converting conventional 2-D videos into stereo ones
is definitely a complimentary solution. However, automatic
2-D-to-3-D video conversion remains a challenging prob-
lem. This is mainly because the core problem—depth from
monocular view—has not been solved. Although there exist
techniques to estimate depth from 2-D image sequences,
such as structure from motion (SfM) [36], it requires special
conditions such as constrained camera motion, foreground
stillness, and rigidity assumptions. These constraints make a
large proportion of real videos falls beyond its regime. In
addition, in order to obtain a good estimate, these algorithms
always require high quality intermediate results such as good
feature matching and motion estimation. Whereas, in real
videos, such requirement may be too demanding due to all
kinds of variations, degradations, and occlusions.
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Fig. 1. Interfaces of the stereoscopic conversion system.

A. System Overview

In this paper, an interactive system is proposed to convert
monocular videos into stereoscopic ones (Fig. 1). We introduce
human in the loop only to rescue the deficiency of the state-
of-the-art automatic algorithms. The proposed system includes
the following main parts:

1) Before the conversion, the system segments an input
monocular video into shots so that the depth and the
labeled information such as foreground object contours
can be propagated efficiently and reliably within each
shot.

2) A novel multicue depth estimation method is proposed.
It integrates a few robust monocular depth perception
cues adopted by human beings, such as depth from
defocus, depth from aerial perspective, and depth from
motion. Considering each cue has its own algorithmic
flaw in depth estimation (e.g., motion estimation can
be unreliable in textureless regions), we compute the
confidence of each cue at every superpixel and set the
superpixels of high confidence as depth anchors. Then
the depth values from different cues are aligned to the
same depth range, and the depth values of the anchor
superpixels are propagated to the rest through a Markov
random field (MRF). In addition, we propose to use
occlusion boundaries (OB) derived from the motion cue
to resolve the defocus ambiguity problem [28]. These
cues largely improve the depth estimation performance
by mitigating the constraints of the SfM method and
its extensions (e.g., [22] and [36]). Using the proposed
method, the range of the estimated depth becomes much
wider than SfM-based methods.

3) To improve the stereoscopic visual quality, we adopt in-
teractive methods to segment foreground objects, and es-
timate their 3-D shape and depth positions in particular.

4) We propose to integrate depth information in a tracking
algorithm so as to improve the foreground object
tracking accuracy.
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5) A depth-to-disparity conversion model based on
supervised learning is proposed, which predicts object
disparity according to its motion, screen location, and
the background motion. It automatically generates
inward-/on-/outward-screen stereo visual effects learned
from stereoscopic movies.

In summary, the proposed interactive 2-D-to-3-D conversion
system is easy to operate. The conversion method is robust and
efficient, and it adapts to a wide range of depth estimation from
monocular videos.

The rest of the paper is organized as follows: related
work is introduced in Section II. In Section III, we describe
the workflow and architecture of the system, followed by
expatiations of important functions and methods in Section IV.
In Section V, evaluation and experimental results are provided.
Finally, Section VI concludes the paper.

II. Related Work

In the literature, the methods of 2-D-to-3-D conversion can
be roughly categorized into two classes, the automatic conver-
sion and interactive conversion. Automatic conversion methods
(see [17], [18], [26], [30], [41], and [42]) exploit motion
cues to predict the depth/disparity of pixels. Commercial soft-
ware, such as DDD-TriDef 3-D player and Samsung’s 3DTV,
leverage both motion and scene geometric priors to generate
stereoscopic views from monocular videos. However, motion
cues such as optical flows can be unreliable to extract in real-
image sequences, and motion parallax can be ambiguous in es-
timating relative depth between objects in a complex dynamic
system (i.e., multiple objects moving with different velocities
at different depths). In addition, assumptions of specific scene
geometry can be too strong to be true, e.g., the bottom region
of an image is closer to view point compared to the upper part.
In conclusion, fully automatic conversion methods usually are
incompetent to estimate scene depth accurately given the state-
of-the-art computer vision algorithms.

The other category of conversion methods exploit user
interactions [10], [22], [43] . For example, in [10] and [22], at
key frames, user scribbles are used to initialize depth values
and depth layers of objects in a scene, and then the depth infor-
mation is automatically propagated to nonkey-frames. IMAX
developed a sophisticated commercial interactive conversion
system [16], which requires intensive manual work and can
generate impressive stereoscopic visual effects. Compared to
these methods, the proposed model integrates more monocular
cues in depth estimation, so that it adapts to a more variety
of real videos and generates a wider estimation of depth
range.

Single view depth estimation is a crucial step in
2-D-to-3-D video conversion and it is yet an active challenging
research topic in computer vision. Researchers took advantage
of various cues for this task, such as photometry cues (e.g.,
[13], [28], [38]), geometry cues (e.g., [7], [9]), motion cues
(see [17], [18], [26], and [30]), and appearance cues (e.g., [10],
[32]). However, to our best knowledge, a robust and integrated
framework that ingeniously combines different depth cues are
expected to be proposed. In the following, we review these

works even though some of them has not been applied to
stereo video conversion yet.

Photometry cues: Objects in an image usually are not
all in focus [28], especially when they are captured by pro-
fessional camera lens, e.g., prime lens. Valencia et al. [38]
used wavelet analysis and edge defocus estimation to obtain
the relative depth of the pixels in an image. However, such
methods can only be applied to the case when the focused
object is frontmost . If the focused object is in the middle, the
other objects in front of and behind it are all blurred in the
captured image. The degree of blur only indicates the relative
distance to the focused object but not to the camera [as shown
in Fig. 8(a)]. This phenomenon is called ambiguity of defocus
in depth estimation. In this paper, we use OB to resolve the
ambiguity (see Section IV-B3).

Besides, scene atmospheric light also facilitates depth per-
ception. Atmospheric radiance images of outdoor scenes are
usually degraded by the turbid medium in the atmosphere. Ir-
radiance received by a camera from a scene point is attenuated
along the line of sight. He et al. [13] proposed a dark channel
prior to remove haze and also provided estimated scene depth
maps as a by-product.

Geometry cues: Parallel edge lines converging at infinity
due to perspective projection provide us a convenient geom-
etry formulation to reconstruct the relative distance between
objects, e.g., [7], [9], [12].

Motion cues: Under the condition of constrained camera
motion and assuming that scenes are static, there are two ways
to estimate disparity maps, using 1) SfM (e.g., [36]), and
2) motion parallax (e.g., [17]). However, in real scenarios such
as movies, the constrained camera motion condition and static
scene assumption are often violated, which leads to the failure
of applying the two methods.

Appearance cues: By using appearance features from
superpixels (e.g., color, texture), Hoiem et al. [14] casted
the depth estimation from single images to a multilabel
classification problem. Saxena et al. [32] employed MRF to
model unstructured scenes and directly learned the relationship
between 3-D structures and texture and color features. Both
methods adopted supervised learning, which requires training
data to learn the model; this makes their models heavily
dependent on the training data sets.

III. Proposed System

A. Workflow

The system starts with video-audio splitting followed by
video decoding. Then it converts the video to stereo. The
converted video is compressed by a stereo video encoder—
the stereo high profile in the H.264/AVC reference software
of JM-18.0 [1]. Finally the system merges the coded video
with the original audio into a demanded format. The key part
of the system is the 2-D-to-3-D conversion module, which
consists of the following parts as shown in Fig. 2.

1) The multicue depth estimation module predicts depth
value of each pixel using multicue depth inference and
generates scene depth maps.
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Fig. 2. Flowchart of the 2-D-to-3-D conversion module.

2) The foreground/background segmentation module seg-
ments foreground objects and background regions on
key frames using user scribbles.

3) The foreground depth update module updates the depth
values of foreground pixels according to the relative
positions of the objects w.r.t. the background.

4) The foreground propagation module tracks foreground
objects in nonkey-frames and propagates the depth of
the foreground pixels.

5) The depth-to-disparity conversion module adopts a
trained model to automatically predict pixel disparities
based on their motion and depth.

6) The stereo-view synthesis module generates another
view of the video so as to render the stereoscopic visual
effects.

The system is designed to reduce user interaction as much
as possible. Hence, before a video is sent to the 2-D-to-3-D
conversion module, the video is segmented into shots so that
the labeled information can be reliably propagated within a
shot as shown in Fig. 4.

B. Interfaces and Interactions

The proposed system interacts with users through the fol-
lowing three interfaces (shown in Fig. 1).

The shot segmentation interface (shown in Fig. 4) Users
can use it to select certain shots to process.

The 3-D labeling interface [shown in Fig. 3(a)] It con-
sists of four windows. In Window 1, the user scribbles on
foreground objects and their vicinity regions of background
in a video frame, so that foreground objects are segmented
semiautomatically. Window 2 displays the estimated depth
map of a frame. In Window 3, both foreground objects and
background are displayed in a 3-D grid, so that users can
clearly see their relative depth relationship in 3-D space. In
addition, a virtual screen (the green plane) is provided to
demonstrate their relative position w.r.t. to the display (i.e.,
whether an object is inward, on or outward the screen). The
depth value of each pixel as well as the virtual screen are
manually adjustable. Hence, users can easily correct depth
estimation errors and render desired stereoscopic effect. Win-
dow 4 shows a color map, which demonstrates the inward-
/on-/outward-screen distribution of the objects. Green areas
indicate that the regions are on the screen, read ones are
outward, and blue ones are inward.

The stereoscopic monitor Users can examine the rendered
stereoscopic effects of converted frames. If the results are

Fig. 3. Interactive segmentation of foreground objects.

Fig. 4. Video shot segmentation interface.

not satisfactory, users can refine them by adjusting the labels
through the 3-D labeling interface in Window 3.

IV. 2-D-to-3-D Conversion Methods

As mentioned above, the proposed system first segments an
input video into shots, then converts each shot to stereo by
following the steps shown in Fig. 2. In the rest of the section,
we introduce the details.

A. Shot Segmentation

Video shots are defined as a set of meaningful and manage-
able segments, which share the same background setting [21].
Consequently, information can be easily propagated within a
shot. Our video segmentation algorithm consists of the follow-
ing steps: 1) feature extraction; 2) dissimilarity computation
between frames; and 3) shot boundary detection.
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Fig. 5. Depth estimation by multicue fusion. (a) and (b) Two consecutive
frames from a source video. (c)–(e) Depth maps by three depth cues. The
darker the color of a pixel, the closer it is to the camera. (c) Algorithmic
error: it predicts white/gray regions farther away than the object’s actual depth.
(f) Fused depth map. (g) Predicted pixels rendered in 3-D grid.

Feature extraction Both the color histograms of the
original frame[35] and of the tiny image [37] are used as
features. (A tiny image is an image with a resolution of 24×12
down sampled from its original resolution). Specifically, a
color histogram in RGB space with 16 bins for each channel
is computed from a frame.

Dissimilarity computation In [23], Liu et al. defined a
dissimilarity metric of two images as a combination of L1

norm distance between their color histograms and mutual
information. In this paper, we also consider the contribution
of tiny images.

Let Ci(k) and Ti(k) denote the color histogram and tiny
image pixel value for the ith frame respectively, where k is one
of the K∗ possible values (KC = 48 for color histogram and
KT = 24 × 12 for tiny image in our case). Then the L1 norm
distances between two color histograms and two tiny images
are defined as �C(i, j) =

∑KC

k=1 |Ci(k) − Cj(k)| and �T (i, j) =∑KT

k=1 |Ti(k) − Tj(k)|. The mutual information between the ith
and the jth frame is computed based on color, MI(Ci, Cj) =
H(Ci) + H(Cj) − H(Ci, Cj), where H(Ci) is the entropy of
colors in the ith frame and H(Ci, Cj) denotes the joint entropy
of colors in two frames.

Finally, the dissimilarity between two frames is

�(i, j) = wC × �C(i, j)

MI(Ci, Cj)
+ wT × �T (i, j) (1)

where wC = wT = 0.5 in our implementation.
Shot boundary detection To decide shot boundaries, an

adaptive segmentation threshold at frame t is proposed as

T (t) = η ×
∑t

i=2 �(i, i − 1)

t − 1
(2)

where i indexes the ith frame of a shot. The threshold is an
averaged dissimilarly up to frame t multiplying with a factor.
η is introduced to avoid under-segmentation (η = 4.0 in our
implementation). When �(t, t − 1) > T (t), a shot boundary is
marked at t.

B. Depth Estimation by Multicue Fusion

In this paper, we deliberately select three depth perception
cues to estimate the initial depth maps of video frames, namely
the motion cue, defocus cue, and aerial perspective cue (as
shown in Fig. 5). Each of them governs a different range of
depth estimation. SfM method is able to accurately estimate
scene depth at a near distance; defocus cue is good to predict
a mid-range depth; and aerial perspective cue can give a
reasonable estimate of scene depth at a far distance. Although
each cue alone cannot reliably recover the depth of a scene due
to its algorithmic flaws (e.g., motion cue is not applicable to
textureless regions, a white or gray colored object in front will
be labeled as a distant object if using the aerial perspective
cue, and the depth ambiguity in defocus cue), the combination
of the three usually is able to provide a robust depth estimation
by compensating the weakness of each other.

We denote the depth maps of a frame I predicted by the
three cues as αm(I), αd(I), αa(I) (αm(I) is from the motion
cue, αd(I) is from the defocus cue and αa(I) is from the aerial
perspective cue), and let (x, y) be the coordinates of a pixel
p on I. (The coordinate of upper left corner of an image
is (0, 0).) In the following paragraphs, we first introduce the
depth estimation algorithm of each cue, and how to overcome
the algorithmic flaws by selecting high confidence estimation
on superpixels as depth anchors. Then we describe a method
that fuses the depth estimation from the three cues into a final
depth map.

1) Depth from Aerial Perspective Cue: As described in
[13], the irradiance attenuates along the sight in a scene, so
the depth of a pixel p is taken as

αa(p) = −ε ln t(p) (3)

where ε is the scattering coefficient of the atmosphere. t(p) is
the medium transmission, which is estimated using the dark-
channel prior proposed in [13]

t(p) = 1 − ω min
c

(min
p′∈�

Ic(p′)
Ac

) (4)

where ω is a constant parameter 0 < ω < 1, p′ is a pixel
in a local patch centered at p, Ic(p) is the intensity value
in the color channel c (in RGB color space), and Ac is the
atmospheric light intensity (please refer to [13] for the details
of estimating Ac). The depth of a superpixel, αa(s), is just the
mean depth of its inside pixels. (In the paper, the SLIC method
[2] is used to obtain the superpixels of an image.)

Depth Anchors However, this algorithm has inherent
flaws—it assumes that brighter regions are closer to the camera
than white/gray regions. Thus the algorithm predicts correct
depth for white/gray regions when they are at a far distance,
but always over-estimates their depth when they are close
[e.g., the white face of the parrot in Fig. 5 (a) and (c)].
Considering such defect, we introduce a confidence measure
for the estimates of the aerial perspective cue according to
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the color and location of pixels. For a pixel p, the confidence
value is defined as

νa(p) =

⎧⎨
⎩

1, y < h1

max(1 − y

h2
, g(p)), h1 ≤ y < h2

g(p), else
(5)

where y is the vertical coordinate of a pixel. In this paper,
we set h1 = 1

4h and h2 = 1
3h (h is the image height). g(p) is

defined as

g(p) =
v(p)

maxq∈I v(q)
(6)

where v(p) = 1
255 max(|cr−cg|, |cb−cg|, |cr−cb|), and cr, cg, cb

are the intensity values of the RGB channels, respectively. The
denominator of (6) is the maximal value of v(p) in image I,
and it normalizes the confidence value to the range of [0, 1].
If an object is white or gray (i.e., the RGB values are similar.),
g(p) values are small; If an object is bright (i.e., there is a big
difference between the RGB channels.), g(p) values are large.

We assume that pixels in the lower part of an image (y ≥ h2)
are closer to the camera. However, if there is a white or gray
object in this region (of small g(p)), the algorithm will predict
a large depth value [13], thus we assign the estimation with
a low confidence value (νa(p) = g(p)). For bright objects in
this region (of large g(p)), the algorithm will correctly predict
its distance, so we assign a large confidence (νa(p) = g(p))
to the prediction. The upper part of an image (h < h1) tends
to be the sky, which is far away, and the dark channel prior
[13] usually predicts the pixels’ distances correctly. Thus we
assign their confidence to νa(p) = 1. For a pixel in the middle
part of an image (h1 ≤ y < h2), it is very easy to confuse
whether a white/gray pixel belongs to a foreground object
or background sky [e.g., the parrot white face in Fig. 5(a)
and (c)]. We assign the confidence values of these pixels to the
larger ones between 1− y

h2
and g(p), which balances their color

and image locations. This spatial layout prior can be restrictive
when converting unconventional scenes. In our system, we
make it an option for this prior in the user interface, so that
user can choose to use it during a conversion.

To compute the confidence value of a superpixel s, we
average all the pixels’ confidence values in s

νa(s) =
1

|s|
∑
p∈s

νa(p). (7)

For the superpixels with higher confidence, we set them as
depth anchors and use them to fuse the depth values from
other cues (in Section IV-B4). In this paper, the depth anchors
from the aerial perspective cue are selected if νa(si) > 0.5,
which is an empirical threshold in the experiments.

An example of an estimated depth map from the areal
perspective cue and its the depth anchors are shown in
Fig. 6(a) and (l), respectively.

2) Pseudodepth from Motion: Here we make a very simple
assumption that an object with smaller motion is further away
from the viewing point

αm(p) = 1 − m(p)

maxp∈I m(p)
(8)

where m(p) is the motion magnitude at pixel p. Although
the assumption is simple, it is generally true especially for
background, since the foreground objects are dealt separately
in the system at a later stage (see Section IV-C).

The depth of a superpixel, αm(s), is just the mean depth of
its inside pixels.

Depth Anchors: It is known that the estimation of motion
parallax or depth from stereo matching depends on feature
correspondences. Hence, the estimation is more trustworthy
in textured regions than in textureless regions. Here, we set
the depth estimation confidence of a region using the motion
cue according to the richness of texture in the region

νm(s) =
1

|s|
#kp(s)

maxt∈I #kp(t)
(9)

where |s| is the size or the number of pixels in superpixel s,
and #kp(s) returns the number of key points in superpixel s

(kp stands for “key points.” Here we use Harris corner point
[11] as the key point.) Examples of an estimated depth map
and depth anchors from the motion cue are shown in Fig. 6(e)
and (m).

3) Depth from Defocus: In movies, cameramen often take
advantage of focus/defocus skills to enhance visual effect, e.g.,
closeups. Thus depth from defocus can be applied to many
video shots.

Image defocus can be considered as a heat diffusion process
[19] {

∂u(p,t)
∂t

= c
∂2u(p,t)

∂p2

u(p, 0) = f (p)
(10)

which assumes that at the initial state, an image f (p) is all-
focused. Then, at t = τ it is diffused to blur. The blurred
image is the solution to the heat diffusion equation (10), I(p) =
u(p, τ). In (10), c is called the diffusion factor, which relates
to the blurring parameter [8],

σ2 = 2tc (11)

where σ is the parameter of the Gaussian blurring kernel and
a larger value of σ indicates a farther distance to the camera.
Hence, the diffusion time t provides a clue to depth estimation
(assuming it is an anisotropic diffusion with constant c).

In this system, we estimate depth from defocus by simulat-
ing a reversed heat diffusion process introduced in [27]{

∂u(p,t)
∂t

= −β(p) c
∂2u(p,t)

∂p2

u(p, 0) = I(p).
(12)

i.e., we take the blurred image I(p) as the initial state of the
process, and reverse the diffusion process till all the pixels are
sharp. β(p) is an indicator for stopping the diffusion process
on a pixel p

β(p) =

{
1, if |∇u(p) − ∇u| < θ

0, else
(13)

i.e. when the intensity gradient of a pixel, ∇u(p), is similar to
the average gradient of its 8-connected neighbor pixels, ∇u,
the reverse diffusion stops. (θ ∈ [0.2, 0.4] in our implementa-
tion.)
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Fig. 6. Generating depth anchors (using Fig. 5(a) as an example). The depth maps from the three cues, aerial perspective (a) motion parallax (e) and
defocus (h), are first computed. (The darker the color of a pixel, the closer it is to the camera.) For the aerial perspective cue, based on the pixel-
wise confidence map (b) and the over-segmentation (c) superpixel confidence map can be computed. For the motion cue, Harris corners are detected (f)
and the confidence map of motion cue (g) is computed by counting the key points number in each superpixel. For the defocus cue, the motion fields
of two layers of over-segmentation [(i) for superpixels and (j) for regions] are used to compute the occlusion boundary confidence map (k). Given the
corresponding thresholds of the aerial perspective cue and the motion cue, the anchor points with high confidence are selected (l) and (m), respectively.
For the defocus anchors (n), cyan anchors are the superpixels attached to the inner side of OB (blue boundaries), and pink anchors are the ones attached
to the region boundaries (the red boundaries). (o) All the anchors from the three cues—among them the purple ones are the common anchors of the
three cues.

Then the relative depth for each pixel is computed as

α̃d(p) =
∫ t(p)

0
c dt′ = c · t(p). (14)

t(p) is the stopping time at pixel p. As it is relative depth, we
assume c = 1 without loss of generality. (We shall align the
depth range from different cues in Section IV-B4.) Fig. 6(h)
shows a depth map obtained using the reversed diffusion on a
blurred image.

As shown in Fig. 6(h), the pixel-wise depth estimation from
defocus is noisy. We use the soft-max value of the pixels
within a superpixel as the relative depth of the superpixel

α̃d(si) =

∑
p∈si

α̃d(p)eα̃d (p)/ς∑
p∈si

eα̃d (p)/ς
(15)

where ς is a constant and set to 0.8 in this paper. Untill now
the defocus ambiguity (Section II) has not been resolved in
the current relative depth map.

Depth Anchors: For the defocus cue, according to the
estimation algorithm, we consider that the estimated depth on
edges is more accurate. There are two types of edges in an
image, texture edges (TE) on an object, and object OB. For

TE, the depth values can be propagated on both sides of the
edges. Hence, the depth anchors are selected on both sides
of the edges, which is trivial [e.g., the pink superpixels in
Fig. 6(n)]. Whereas for OB, their depths is determined by the
object, so the anchors are on the object side [e.g., the cyan
superpixels in Fig. 6(n)].

In the following paragraphs, we first introduce how to detect
OB and assign boundaries to the correct objects. Then, we
discuss how to resolve the defocus ambiguity.

1) Occlusion boundary detection and boundary assignment.
As shown in Fig. 7, we first compute the motion field from
two close frames (3–5 frames apart), and get mean motions
for large image regions and region boundaries [Fig. 7(c)]. The
image regions can be obtained by any image segmentation
method. We assume that a sufficient condition of being an
occlusion boundary is that the motions across the boundary are
different. Hence, we define the confidence value of being an
occlusion boundary by the dissimilarity of the motions across
the edge

νo(bi) = 1 − mi1 · mi2

|mi1 ||mi2 |
(16)
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Fig. 7. Motion-based occlusion boundary detection. The SLIC method[2] is
adopted to obtain superpixels. (a) With different segmentation parameters,
a two-layer segmentation is obtained at a fine scale and a coarse scale.
We call the smaller ones as “superpixels” and the larger ones as “regions.”
(b) Superpixel motion vectors are computed from the optical flow of the
pixels inside each superpixel. (c) Region motions (black arrows) are obtained
from the superpixel motions inside each region, and the boundary motions
(purple arrows) are computed from the pixel motions on the boundaries. (d)
Brighter color indicates a higher probability of a boundary being an occlusion
boundary. (e) Detected OB (blue) and region boundaries (red). A black color
indicates that the type of a boundary is undecided.

where bi is a region boundary, mi1 and mi2 are mean motion
vectors of the two regions. One example of occlusion bound-
ary confidence map of a frame is shown in Fig. 7(d). The
boundaries with high confidence value (e.g., νo(bi) > 0.6)
are selected as OB, e.g., the blue boundaries in Fig. 7(e).
And the boundaries with small confidence (e.g., νo(bi) < 0.4)
highlighted with red are considered as TE; they are inside of
an object. Otherwise, the type of a boundary is undetermined
boundary marked with black in Fig. 7(e). (In this paper, the
threshold 0.6 for OB and the threshold 0.4 for TE are chosen
empirically.)

We assume that the boundary shares the same motion with
its region. Hence, we assign an occlusion boundary to the
region of similar motion. The motion of a boundary [pink
arrow of Fig. 7(c)] is the mean motion of the pixels on the
boundary.

2) Resolving the defocus ambiguity. As shown in Fig.
8(a) and (b), the blurring degree of the frontmost yellow
object is the same as that of the background. Hence, just
from the degree of blur, the algorithm cannot tell whether
an object is in front of or behind the focused area, but only

the relative distance. We call this defocus ambiguity of depth
from defocus.

To resolve the ambiguity, we use the focused region/object
as the reference, and introduce pairwise occlusion relationship
(a type of partial order) between regions/objects so as to sort
their order in depth.

The depth reference region, r0, is the one with the smallest
degree of blur (i.e., with the minimum average α̃d(p), p ∈ r0).
The depth partial order of two adjacent regions ri1 and ri2 with
a shared boundary bi is decided by

PO(ri1 , ri2 ) =

⎧⎪⎪⎨
⎪⎪⎩

ri1 ≺ ri2 , bi ∈ ri1 and bi ∈ OB

ri1 	 ri2 , bi ∈ ri2 and bi ∈ OB

ri1 ∼ ri2 , bi ∈ TE

undecided, otherwise

(17)

where OB and TE denote the occlusion boundary set and the
texture edge set, respectively. ri1 ≺ ri2 means the depth of ri1

is smaller than ri2 . ri1 ∼ ri2 means the two regions are of a
similar depth. Taking Fig. 8 as an example, the girl’s region
B is the reference, according to the boundary assignment (c)
and (d), B ≺ C, B 	 A, and A ≺ C, hence, A ≺ B ≺ C.

All the regions with decided pairwise partial orders are
linked to a ranking list, and this ranking transfers to the anchor
superpixels of the regions. Superpixels within a region share
similar depths, i.e., sij ∼ sik, if sij, sik ∈ ri. Then, the depth
value of a superpixel si is computed as

αd(si) =

⎧⎨
⎩

α̃d(s0) + |α̃d(si) − α̃d(s0)|, s0 ≺ si

α̃d(s0) − |α̃d(si) − α̃d(s0)|, s0 	 si

α̃d(si), s0 ∼ si

(18)

where s0 denotes a reference anchor superpixel in r0. Equation
(18) resolves the defocus ambiguity by flipping a superpixel to
the correct side of the reference point according to the depth
partial order and keeping their relative distance unchanged.
Fig. 8(e) shows the resolved depth ambiguity in anchor super-
pixels. For other regions/superpixels that are not in the ranking
list or not associated to any boundaries, the depth values are
left to be decided in the depth fusion phase.

4) Multicue Fusion: Fusing the depth maps from the three
cues consist of three phases, 1) aligning the depth from the
three cues to the same range, 2) depth value assignment on
common anchor superpixels, and 3) propagating the depth
values of depth anchors to the other superpixels in a frame.

(a) Depth alignment. Since each cue returns the depth of
its own range, and the three cues should predict the same
depth values on the common anchor superpixels, we use these
common anchors to align the depth values from different cues.

Denote Y = (αa(cs1), . . . , αa(csn)) as the reference depth
vector from the common anchor superpixels of a reference
cue. (In the 2-D-to-3-D conversion, any of the three cues
can be the reference cue. In this paper, we use the aerial
perspective cue as the reference.) n is the number of common
anchor pixels on the depth maps from the three cues, and
csi denotes a common anchor superpixel. αa(csi) is defined
in (3). Denote X = (α∗(cs1), . . . , α∗(csn)) as a to-be-aligned
depth vector from another cue, where * ∈ {m, d}, defined in



1802 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 10, OCTOBER 2013

Fig. 8. Resolving the defocus ambiguity. (a) Video frame with defocus ambiguity. (b) Depth map computed using soft-max (15) in superpixels. The defocus
ambiguity part is highlighted in a red rectangle. The darker the color of a pixel, the closer it is to the camera. (c) Motions of the image regions (black arrows)
and boundaries (pink arrows). (d) Inferred TE (red) with their attached anchor superpixels (pink), and OB (blue) with their attached anchor superpixels (cyan).
(e) Depth ambiguity is resolved by flipping the superpixels’ depth values w.r.t. the reference region (the girl).

Fig. 9. Depth alignment. Each point is a common anchor superpixel of one
of the three cues. The blue points are depth anchors from the reference aerial
perspective cue, the green points from the motion cue and the red points from
the defocus cue. (a) Before alignment. (b) After alignment.

(8) (18), respectively. A linear transformation is adopted to the
depth alignment

aX + b = Y (19)

where a and b are the transformation parameters, whose
optimal values can be obtained by solving a least square
problem. Fig. 9 shows the alignment result.

(b) Depth Assignment on Common Anchors. After align-
ment, on each common anchor superpixel, if the differences
among the depth values of the three cues are within 10%, the
depth value of the anchor is set to the arithmetic mean of the
three depth values; Otherwise, the depth value of the anchor is
taken as the one with the maximum confidence in (νa, νm, νo).

(c) Depth Propagation. For the noncommon-anchor super-
pixels, we estimate their initial fused depth values in the same
way as the common anchors introduced above. Then, we have
an initial depth map α0(s). In this phase, the depth values
on the common anchor superpixels are used as boundary
condition and propagated to the rest of a frame subject to
a smoothness prior and the initially fused depth constraint.

An optimal depth map α∗ is inferred via the maximum
a posterior (MAP) estimation on a MRF by minimizing the
following energy function:

α∗ = arg min
α

E(α|α0, I) (20)

E(α|α0, I) = Eu(α, α0) + λEs(α, I) (21)

where Eu is the unary term, Es is the pairwise term, and λ is
the weighting factor to balance the two terms.

The unary term is defined as the cost on the deviation of
the estimated depth α(s) from the initial value α0(s) on each
superpixel s,

Eu(α, α0) =
∑
s∈I

(α(s) − α0(s))2. (22)

The pairwise term Es is defined as

Es(α, I) =
∑
s,t∈∂

(α(s) − α(t))2e−‖Is−It‖2 (23)

where neighbor superpixels, s and t, are assumed to have
similar depth values if their colors are similar.

The optimization of E(α|α0, I) is solved by Graph Cuts [5],
where the depth values are quantized to 15–25 levels and each
level is considered as a label in the graph labeling problem.
During the optimization the depth values on the common
anchor superpixels are fixed. One example of the optimized
depth map is shown in Fig. 5(f) and (g).

C. Foreground Depth Refinement

It is important to get accurate depth maps for key frames;
not only does it ensure the quality of stereo visual effect, but
also provides seeds for depth propagation to nonkey frames
in a video shot. Although the above multicue fusion method
can provide a good depth estimation for background, the depth
values of foreground pixels can be inaccurate if the foreground
moves fast. Moreover, cognitive studies [20] suggested that
human visual system is more sensitive to foreground objects.
Considering this, we add an interactive step for foreground
depth refinement, which takes the following steps, 1) inter-
active segmentation of foreground objects, followed by 2)
foreground depth reestimation and interactive adjustment.

1) Foreground Segmentation: The GrabCut [31] method
is used to segment objects using user scribbles as shown
in Fig. 3(b). In this paper, we modify the original GrabCut
method by adding depth information to the model. In the
original GrabCut method, the segmentation label �p ∈ {0, 1}
for each pixel is obtained by iteratively minimizing an energy
function

E(�, k, θ, I) = U(�, k, θ, I) + V (�, I) (24)

where U(·) is the data term modeled by a Gaussian Mixture
Model (GMM) of color with model parameter θ and k com-
ponents, V (·) is the smoothness term, I is pixel color. (Please
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refer to [31] for the details of the GrabCut method.) In our
system, besides color, the depth values α(I) obtained from the
multicue depth estimation module (described in Section IV-B)
are also considered in both the data term and smoothness term.
Hence, we modify the original GrabCut data term as

U(�, k, θ, I, α(I)) =
∑

p

D(�p, kp, θ, I(p), α(p)) (25)

where D(·) = −λc log p(I(p)) − λα log p(α(p)). λc and λα are
weights for the log probability of color and depth of GMM,
respectively.

The modified smoothness term is

V (�, I, α(I)) =
∑
q∈∂p

S(p, q) (26)

where S(·) = [�p �= �q]e−γ1||p−q||−γ2|α(p)−α(q)|, and [�p �= �q]
equals 1 if �p �= �q; otherwise 0. ||p − q|| is the Euclidean
distance between two pixel coordinates. |α(p) − α(q)| is
the absolute difference of the depth, which penalizes depth
difference between neighbor pixels. In the future, we could
automatically detect visual saliency regions[40] to reduce user
interactions of object segmentation.

If the GrabCut does not give an accurate segmentation, the
system provides users an interactive interface to adjust object
contours. We adopt Intelligent Scissors [25] to facilitate users
to refine the segmentation contours efficiently. Fig. 3(c) shows
the refinement of the hat contour by just dragging the three
blue control points using Intelligent Scissors.

2) Foreground Depth Reestimation: Foreground object
depth and geometry estimation can be inaccurate if the objects
are in fast motion or no defocus cue can be leveraged. If
the multicue depth estimation result is not satisfactory for
an foreground object, the system provides a user interface
to reestimate a foreground object depth by allowing users to
choose one of the three cues. A user can choose a cue either
according to his/her experience by observing the video clip or
by comparing the depth maps generated by the three cues and
decide the best one for the object shape. For example, 1) if
the defocus cue is obvious, user can select to use depth-from-
defocus. An example is shown in Fig. 10(d). 2) If the object is
static and the camera motion satisfies the SfM constraint, users
can use SfM. 3) If there is not a good cue to use, users can just
use a plane surface model to represent the object geometry as
shown in Fig. 10(c).

Besides the geometry of foreground objects, their locations
in the scene may also need adjustment. Although the fore-
ground depth by multicue fusion may be noisy, we assume
that the majority of pixels are reasonable; Hence, we can
decide the object location/depth by majority voting. Or users
can manually adjust foreground object locations using the 3-D
labeling interface [shown in Fig. 3(a) Window 3].

D. Foreground Propagation

After the foreground depth is updated, the whole depth map
for a key frame is completely generated. In this section, we
introduce a method, which propagates the key frame depth to

Fig. 10. Depth estimation and foreground depth reestimation.

nonkey-frames within the same shot based on object tracking
[39] and segmentation.

Given an foreground object and the depth map of a key
frame, we first directly warp the object contours to the nonkey-
frames according to the object motion, and use the warped
curve as initial object location. Then the warped contour is
evolved to the object boundary using an adapted Level-set
method based on [6]. We introduce the details as follows.

Let φ : � → �2 be a level set function defined on a domain
�. Then the proposed energy functional ξ(φ) is

ξ(φ) = μRϕ(φ) + Eimg(φ) (27)

where μ is a constant. The level set regularization term Rϕ(φ)
is

Rϕ(φ) =
∫

�

ϕ(|∇φ|)dp (28)

where ϕ is a potential function ϕ : [0, ∞) → �
ϕ(φ) =

1

2

∫
�

(|∇φ| − 1)2dp. (29)

It is a metric to characterize how close a function |∇φ| is to a
signed distance function, which satisfies a desirable property
of |∇φ| = 1 in � → �2.

Eimg(φ) is the adapted term of the external energy in [6]. It
depends upon the image and its depth map

Eimg(φ) = aLg(φ) + bAg(φ) + c�κ(φ) (30)

where a, b and c are the coefficients of the energy functionals
Lg(φ), Ag(φ) and �d(φ), respectively

Lg(φ) =
∫

�

gδ(φ)(|∇φ|)dx (31)

Ag(φ) =
∫

�

gH(−φ)dx (32)

and

�κ(φ) =
∫

�

κH(−φ)dx (33)

where δ and H are the Dirac delta function and the Heavi-
side function, respectively. Function g is defined as an edge
indicator by

g =
1

1 + |∇Gσ ∗ I|2 (34)
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Fig. 11. Foreground object tracking and depth update. (a) Labeled fore-
ground object (red curve denotes its boundary) at a key frame t − 1.
(b) Warped foreground object contour from frame t − 1 to frame t using
KLT [24]. (c) Object boundary refinement by the proposed Level-set method.
(d) Tracked object at frame t + 1. (e) Initial depth map estimated by multicue
fusion at frame t. (f) Updated depth of foreground object after boundary
refinement.

Fig. 12. Results for depth propagation in a video shot.

where I denotes the frame on the domain �, and Gσ is a
Gaussian kernel with a standard deviation σ. Lg(φ) relates to
the length of the zero level curve φ and Ag(φ) is introduced
to accelerate the process of curve evolution.

In the proposed propagation method, we integrate depth into
the level set data term, the function κ is defined as

κ =
1

1 +
∑

p,q∈N |α(p) − α(q)| (35)

where N is a set of neighbor pixels including p and q in the
domain �; α(p) is the depth value of pixel p.

The energy functional �κ(φ) is a new added term to
the original formulation proposed in [6]. In addition to the
intensity map, it is proposed to estimate accurate contours
of foreground objects according to the gradient field of a
depth map, assuming that pixels on an object share similar
depths. �κ(φ) penalizes the case when the depth values inside
the segmented object are quite different with each other. In
experiments, it confirms that the final segmentation result is
improved greatly by adding this term and the object’s depth is
more reliable after it is updated based on the refined segment,
as shown in Fig. 11.

To speed up the evolution process, we initialize the level
set function based on the segmentation result of its previous
frame. Given the segmented foreground object, we extract
speeded up robust features [4] as feature points for feature
tracking and warp the contour using the KLT tracking method
[24]. The approximated contour of the foreground object is
propagated from its previous frame and can be used as a good
initialization, which reduces the number of iterations to move
the zero level set to the desired object boundary compared to a
general initialization. We apply a standard method to minimize
the energy functional by finding the steady state of its gradient
flow as [3].

More propagation results are shown in Fig. 12. The first
row shows the labeling at frame t − 1. The warping results
using KLT [24] are shown in the second row. The direct
warping seems inaccurate, especially when the displacement
of the foreground objects is large, e.g., Fig. 12(b). The third
row displays the refined segmentation results by the proposed
method. We can see that the contours of the objects are local-
ized nicely. The fourth row shows the depth maps estimated
by the multicue fusion method described in section IV-B).
In the fifth row, updated/reestimated foreground depth of the
objects are presented. The improvement is evident. The objects
at frame T + 1 can be reliably tracked from T using the same
method.

E. Stereo View Frame Synthesis

Before stereo view synthesis, it is necessary to convert
a depth map α(I) to a disparity map d(I). The disparity
value d(p) at pixel p is the horizontal coordinate difference
between the corresponding pixels in the left view and the
right view. When a stereo frame is displayed, a pixel with
negative disparity value is perceived as a point outward screen
by viewers, and vice versa. A larger absolute value of d(p)
indicates a longer distance between the screen and the point.

In the system, a pixel depth α(p) is converted to a pixel
disparity d(p) by

d(p) = s · WI · (
α(p) − αmin(I)

αmax(I) − αmin(I)
− τ) (36)

where WI is the image width, αmax(I) is the maximal depth
values in an image I. s is the control factor that restricts the
maximal absolute disparity, and it makes the system adaptive
to different screen sizes. Generally speaking, for devices
whose screens are larger than 70 inches, s should be less
than 1%. τ (0 ≤ τ < 1) is the parameter that shifts the
disparity to a negative value and produces inward/outward
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screen effects. Without τ, all the disparities will be positive,
then the outward screen effect cannot be rendered. In our
system, τ is determined by the stereo effect of a reference
foreground object in the scene. Let pref be the reference point
on a foreground object, and α(pref ) be its depth value. τ is
computed as

τ =
α(pref ) − αmin(I)

αmax(I) − αmin(I)
− d(pref )

s · WI

(37)

d(pref ) is the disparity of the reference point/object, which
is automatically predicted by a trained disparity estimation
model—a multilabel support vector machine (SVM).

We use motion and position of a segmented object as
the features to predict its disparity value. The feature vector
includes four components: 1) object motion magnitude and
orientation histograms, 2) pixel location histogram of the
object region, 3) the mean and variance of the depth values
(by multicue estimation in Section IV-B) of the object pixels,
and 4) the motion magnitude and orientation histograms of the
background region, which is an indication of camera motion.

In the learning phase, given a pair of training stereo-
scopic video sequences sampled from commercial 3-D movies,
disparity maps are directly computed by a state-of-the-art
stereo matching method [33]. Notice that we do not perform
parallel view rectification before the stereo matching, hence,
the disparities are signed values. Since the disparity values
obtained by the stereo matching [33] are quantized into several
discrete disparity levels, we use them as the depth labels of
the pixels in the multilabel SVMs (i.e., each disparity value of
a pixel is considered as a class label in the SVMs). After the
motion feature and position feature are extracted, the SVM is
trained in the one-vs-all manner, which means that data of the
target class are positive examples, and all the rest of the data
are considered as negative examples. It is expected that the
trained model can capture the correlation between the motion
and the signed disparity. In the testing phase, features are first
extracted from the test 2-D video, then object disparities are
predicted.

When synthesizing the stereo view, an original 2-D frame I

is considered as the middle view between the synthesized left
view Il and right view Ir of the stereo image pair. So, Il and
Ir can be synthesized by warping I according to the predicted
disparity map d(I)

Ir(p) = I(p + 0.5 × d(p)) (38)

Il(p) = I(p − 0.5 × d(p)). (39)

After warping, there appear some “holes” due to the disconti-
nuity of the disparities. An inpainting method [34] is utilized
to fill these holes and the system obtains the final stereo views.

To make the scene depth configuration consistent between
similar shots, the system passes parameters to control the depth
range and disparity range of a scene.

V. Experiments and Results

In experiments, we convert several well-known films into
stereo. Fig. 14 shows some converted key frames from three

Fig. 13. Example key frames and their conversion results. First row: two
original frames from Avatar. Second row: depth maps generated by the
proposed system (left foreground with user interaction; right: no interaction).
Third row: converted anaglyph. Forth row: the converted stereo frames (side-
by-side).

movies. We evaluate the system in both conversion quality and
conversion efficiency.

A. Video Sets for Quality Evaluation

We prepare three sets of videos for quality evaluation.
1) Video Set I—the anchor set, which contains five stereo
video clips from five original stereo movies. Two of them
are synthetic/cartoon movies (labeled with “*” in Table I)
and the other three are of real scenes. 2) Video Set II—
synthesized stereo clips by the proposed system (side-by-side
format). The clips are synthesized from the left view videos
in Video Set I (Two examples are shown in Fig. 13). For the
impairment assessment of video quality, different from (39),
here we synthesize the right view as Ir(p) = I(p + d(p)) (d(p)
is defined in (36). Fifteen graduate students were recruited and
trained to use the proposed system. They are divided into five
groups and each group is asked to convert one clip into stereo
within a given time (3–10 in according to the length of the clips
and complexity of the scenes). Thus, there are three versions
for each of the five clips so as to diminish the individual
performance effect on the conversion quality. 3) Video Set
III—synthesized stereo clips by the system proposed by Liao
et al. [22]. Another 15 students are trained to use the system
[22] to generate five groups of stereo video clips (each clip
has three versions). The right views are synthesized from the
left views of Video Set I also according to Ir(p) = I(p+d(p)).

B. Conversion Quality Evaluation

The quality of the converted videos is evaluated subjectively.
Fifteen subjects (they are not the students who converted the
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Fig. 14. Example results on three video sequences, (a) Inception, (b) Up,
and (c) Hunger Games. First column: two key frames from each of the
three original videos. Second column: depth maps. Third column: Red-cyan
anaglyphs .

videos, and not familiar with the videos) are asked to com-
pare the stereo effects between the converted videos and the
anchors. All the subjects are with normal or rectified normal
visual acuity and normal stereoscopic acuity. (However, we
did not test their eye dominance.) The degradation category
rating from ITU-T Recommendation P.910 [29] is used in
the subjective experiments. Samsung Active Shutter 3DTVs
(UA55ES6100) are used to display stereo videos with a 2m

viewing distance in a dark room.
Subjects are asked to give a score to a converted video clip

(in real values) by comparing it with the corresponding anchor
clip according to a five-level impairment scale. The score
ranges from 1 to 5; 5 indicates the impairments of converted
video “are imperceptible,” and 1 means the “impairments
are very annoying.” As shown in Table I, average evaluation
scores, variances and conversion time of the proposed method
and another two systems are recorded in the experiments.

Experiment 1—stereo quality evaluation of our system We
evaluate the stereo qualities of the converted video clips and
their key frames.

Seventy-five key frames are sampled from the converted
videos (Video Set II). Each key frame is the median frame
of a video shot according to the shot segmentation results
introduced in Section IV-A. Subjects give scores when they are
presented with the converted key frames and their correspond-
ing anchor frames (in Video Set I). The experiments report an
average score, 4.40 (with a variance of 0.42). Most of time the
subjects could not perceive the difference in the background.
This supports our assumption that a better foreground will
greatly improve visual impression.

TABLE I

Comparison of Converted Video Quality of Three Methods

with Evaluation Scores (Variance)/Actual Average Time Cost

Our Method The method in [22] Samsung
clip 1 4.39 (0.39)/270 s 4.20 (0.44)/352 s 3.52 (0.41)
clip 2* 4.72 (0.28)/202 s 4.75 (0.36)/275 s 4.05 (0.43)
clip 3 4.65 (0.30)/335 s 4.60 (0.42)/478 s 3.76 (0.39)
clip 4* 4.63 (0.36)/230 s 4.42 (0.40)/301 s 3.91 (0.37)
clip 5 4.60 (0.34)/187 s 4.48 (0.32)/230 s 3.64 (0.44)

Fig. 15. Comparison results between the method in [22] and the proposed
method. (a) Original 2-D frame. (b) and (d) Depth map generated using the
method in [22] and its 3-D visualization with texture mapping. (c) and (e)
Depth map generated using the proposed method and its 3-D visualization.

For each anchor stereo clip in Video Set I, the 15 subjects
compare it with the three versions of converted videos in
Video Set II, and then report totally 45 subjective scores (three
versions of converted videos × 15 observers). The first column
in Table I shows the average scores (with variances) of the
converted videos generated by the proposed system.

The average score of all converted videos increases to 4.59
compared with the score of 4.40 on the key frames. This
indicates that while watching videos, the artifacts are less
noticeable.

Experiment 2—comparison with the interactive conversion
system proposed in [22] The converted video clips by [22]
in Video Set III are also compared with their original stereo
clips in Video Set I. Their evaluation scores of visual quality
reported by the subjects are recorded. The average score of
each clip is shown in the second column of Table I. Comparing
the first two columns, we can see that the proposed system
achieves a better or comparable conversion quality than the
system proposed by [22]. It can be noted that the users spent
less average actual conversion time on each clip using our
system.

We also compare the depth maps generated by the two
systems in Fig. 15. The depth estimation in [22] requires
propagating the depth values from feature point pixels to the
other pixels. Since the propagation is based on the smoothness
assumption in space and time but without occlusion boundary
constraint, the region boundaries in the depth maps tend to
be defused. Fig. 15(b) shows a depth map estimated by [22].
It can be clearly seen that the foreground region (in the red
box) is enlarged. When the scene is rendered in 3-D according
to the depth map [Fig. 15(d)], the background geometry is
distorted. In contrast, the depth map [Fig. 15(c)] computed by
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TABLE II

Time Consumption of Our System

Item Time(per frame)
Shot segmentation 10 ms
Depth propagation 3 s

Automatic depth estimation 1.5 s
Depth to disparity conversion 0.1 s

Foreground segmentation 3 s to 5 s
Total 8 s to 10 s

Fig. 16. Failure examples of the proposed method on low quality videos.
Left column: two low quality video frames captured by nonprofessional
cameras. The upper one has severe motion blur. The lower is low resolution.
Right column: the depth maps generated by the proposed system without
user interaction. The colored boxes highlight typical failure cases. Red boxes:
wrongly estimated depth in bright regions at a close distance; Yellow boxes:
wrongly estimated depth in dark regions at a far distance; Blue box: wrong
depth orders in blurred regions. Green Boxes: wrong depth orders in stationary
regions.

the proposed system is more precise and it renders a better
result as shown in Fig. 15(d).

Experiment 3—comparison with an automatic conversion
system. In this experiment, we compare the conversion
quality to an automatic commercial conversion system—the
2-D-to-3-D conversion module in the Samsung 3DTV. The
left views of the five stereo clips are input to the 3DTV in the
2-D-to-3-D mode. The 3DTV automatically synthesizes stereo
videos. The subjects are asked score the stereo quality of the
synthesized videos by comparing to the original stereo videos.
As shown in Table I, the proposed interactive system obtains
an obviously better conversion quality than the Samsung
3DTV.

C. Conversion Efficiency

The system is efficient in both interactive operations and
the automatic modules. As shown in Table II, for a video with
1280 × 720 resolution, the average conversion time per frame
is about 8 to 10 s, among which user interaction costs about
3–5 s on a key frame, and the automatic computation takes
about 5 s per frame, of which the depth estimation (1.5 s) can
be computed off-line before interactions.

We compare the key components in our system and the
system in [22] particularly of the interaction modules. In our

system, the interaction is to segment foreground objects. In
[22], the interaction is to label the depth difference between
regions. According to user feedback, object segmentation is
more intuitive and takes less time than labeling of depth
difference between regions.

The IMAX system is a commercial system of movie pro-
duction. From media reports, the IMAX system takes about 6
to 10 weeks to convert a 2-h 2-D film into a stereo one; James
Cameron used 60 weeks and 750 000 man hours to convert the
Titanic[15], while our system only takes about 12 days of PC-
hours for automatic conversion and 20-50 man-hours for user
interaction.

VI. Conclusion

We presented an interactive system of 2-D-to-3-D video
conversion, which is comprehensive and consists of a number
of modules ranging from depth estimation, depth-to-disparity
conversion, stereo view synthesis, to video coding/decoding.
The proposed depth estimation method fuses three cues that
govern different depth regimes from close to far. The optimal
depth is inferred by minimizing the energy defined on a
Markov Random Field. Experiment results demonstrate the
advantage of the proposed system.

However, there are some limitations in this system. The
reliability of the automatic depth estimation using the three
depth cues depends on the quality of videos, i.e., the method
is only good at converting videos with high resolution and
strong depth cues. Given a degraded video frame shot by a low
resolution nonprofessional camcorder as shown in Fig. 16, the
three cues are usually hard or unreliable to extract, then the
depth estimation will be rather unsatisfactory. For example, in
Fig. 16(a), there is little defocus cue, the motion blur ruins
accurate motion estimation, and only aerial perspective can be
applied. As mentioned before (in Section IV-B), due to the
algorithmic flaws in each monocular cue, the estimated depth
map contains a lot of errors. Similarly, Fig. 16(b) shows a
low-resolution frame of indoor scene almost without any of
the three cues. The estimated depth map is erroneous.

In addition, the integration of monocular cues is still naive,
e.g., the alignment of depth maps of different cues is a linear
model. In the future, we shall extend the current system by
incorporating more monocular cues for depth estimation and
study advanced models of depth alignment, so that it is able to
robustly estimate scene depth from regular or even low quality
videos as well.
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