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ABSTRACT 

 

This paper presents a highly efficient external memory 

interface architecture to improve memory bandwidth 

utilization for AVS HD video encoder. Both burst and bank 

interleaved SDRAM accesses are intelligently adopted in 

the memory interface design. Our proposed architecture is 

composed of an address mapping layer and an arbitration 

layer. In the address mapping layer, according to the data 

request pattern and quantity, the clients in the encoder are 

divided into four groups which are assigned to different 

banks of the SDRAM. In each group, efficient address 

mapping schemes are proposed to minimize inner client 

overhead. In the arbitration layer, a straightforward group-

based interleaved arbitration scheme is proposed to 

minimize inter client overhead. Experimental results show 

that the data access overhead cycles of our proposed 

interface design are reduced significantly and the bandwidth 

utilization is improved by up to 10% compared to the tile-

linear address mapping scheme. 

 

Index Terms— address mapping, arbitration, memory 

bandwidth, AVS encoder 

 

1. INTRODUCTION 

 

AVS video coding standard, which is developed by China 

Audio Video Coding Standard (AVS) Working Group, has 

been accepted as an option by ITU-TFGIPTV for IPTV 

applications [1]. The AVS part 2 (AVS-P2) is high 

resolution friendly profile, which shows comparable 

performance with H.264/AVC for most HD sequences [7]. 

As the resolution of video-coding applications increases, 

explosive video data should be stored in off-chip memory 

such as DDR SDRAM [2]. In addition to the huge data 

transfers, the extra overhead cycles incurred by row-

activation of SDRAM have a very negative effect on the 

video processing systems. How to reduce the overhead 

cycles and thus improve bandwidth efficiency has already 

become a hot research topic currently. 

Numerous optimization strategies to improve 

bandwidth efficiency in video applications have been 

reported. H. Kim and I-C. Park proposed the array address-

translation method to minimize the number of row-

activation command and the power consumption [2]. Kaijin 

Wei et al adopted a novel Level C+ data reuse scheme to 

reduce the required external memory bandwidth for motion 

estimation [4][5]. A lossy reference frame compression 

technique has been proposed in [6] to reduce the SDRAM 

bandwidth, but this method will encounter quality 

degradation problem. 

In this paper, we propose a highly efficient memory 

interface design including an address mapping layer and an 

arbitration layer. The remainder of this paper is organized as 

follows. Section 2 presents the problem which will be 

solved in this paper. The address mapping layer and the 

arbitration layer are described in section 3 and section 4, 

respectively. Section 5 presents the hardware 

implementation of the proposed design. Section 6 shows the 

experimental results and section 7 concludes this paper. 

 

2. PROBLEM DEFINITION 

 

In this section, the memory bandwidth related problem in 

AVS encoder is described. It is noted that the SDRAM can 

achieve its best performance when an application accesses 

the memory in the burst access mode. In video-processing 

applications, the block-based access pattern can incur many 

row-activation overhead cycles which decreases the 

bandwidth utilization greatly. 

 

2.1. Features of SDRAM 

 

Figure 1 shows a simplified architecture of a four-bank 

SDRAM [2]. All memory banks share the same data and 

address buses, whereas each bank has its own row decoder, 

column decoder and sense amplifier. The mode register 

stores several SDRAM operation modes such as burst 

length, burst type, CAS (column address strobe) latency, etc. 

A series of commands need to be issued when accessing the 

SDRAM. Firstly, a row-activation (ACTIVE) command is 

used to copy the row data of a designated bank into the 

sense amplifier. Secondly, a column address is selected and 

the corresponding data is transferred by the READ or 



WRITE command. Finally, the activated SDRAM row is re-

charged for next SDRAM access by PRECHARGE 

command. 

When accessing the SDRAM, the overhead cycles for 

each command decrease bandwidth efficiency. The 

ACTIVE to column access delay called tRCD and 

PRECHARGE command period called tRP are the majority 

parts of overhead cycles [11]. The tRCD and tRP latency can 

be hidden by accessing different banks due to the 

independent processing capability of each bank [3]. 
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Fig. 1. Simplified architecture of a four-bank SDRAM. 

 

2.2. Memory access clients in AVS encoder 

 

In AVS encoder, motion estimation (ME) is the most 

bandwidth consuming part. Level C+ zigzag coding order is 

adopted in our encoder system to reduce the redundant data 

access of luminance reference pixels [5]. The bandwidth can 

be roughly reduced to 1/3 compared to the raster order [5]. 

Besides, the chrominance reference windows are also 

needed for fractional motion estimation (FME). In detail, 

the chrominance reference pixels are a 24×24 search 

window where the start pixel depends on the predicted 

motion vector (PMV) from integer motion estimation (IME). 

In addition to the reference windows for ME, original 

pixels, motion vectors for predicted motion vectors and 

reconstructed pixels for reference store are needed in AVS 

encoder. For each MB of I frame, one MB original pixels 

are fetched from external memory and one MB 

reconstruction pixels are written back to SDRAM to be 

referenced for P and B frame. The P and B frame encoding 

is almost the same as I frame except the additional reference 

frame load. P frame uses two forward reference frames to 

predict the current frame; B frame uses one forward frame 

and one backward frame as references. The corresponding 

motion vector (MV) information of the MB is stored when 

encoding P frame which is for future B frame encoding. 

The memory access clients in AVS encoder are shown 

in Table 1. F_ORG client fetches original pixels and 

F_REF_Y1-4 clients fetch luminance reference pixels for 

IME. F_REF_UV1-4 clients fetch chrominance reference 

windows for FME. There are four clients to load luminance 

and chrominance windows because AVS-P2 restricts the 

maximum number of reference pictures to 2, and the 

maximum number of reference to 4 for interlaced contents 

[7]. F_MV and S_MV clients fetch and store MV, 

respectively. S_REC_Y and S_REC_UV clients store 

luminance and chrominance reference pixels into external 

memory for P and B frame reference. Additional clients 

(S_BG and F_BG) are required in the system due to the 

Level C+ zigzag order bit-stream is not supported by 

decoder. A module named SPLICE will transform zigzag 

order bit-stream into standard order. S_BG client stores the 

zigzag bit-stream into external memory and F_BG client 

fetches bit-stream in standard order from external memory 

for SPLICE. The √  indicates the enabled state and - 

indicates the disabled state for each client in Table 1. 

 

2.3. Data access and data processing pipeline 

 

In the encoder system, data access and data processing are 

pipelined, as shown in Figure 2. The cycles spent in the data 

access stage impacts the encoder performance when it is 

longer than the data processing period. Besides the 

bandwidth requirement for the encoder, the bandwidth 

required for CPU also inspires us to improve bandwidth 

efficiency. 

The problem to be solved in this paper is how to 

minimize the bandwidth in the encoder system. As talked 

above, overhead cycles are seriously degrading the 

bandwidth efficiency and in the next we will focus on how 

to reduce these overhead cycles. 
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Fig. 2. Data access and data processing pipeline space time-

diagram. 

 
Table 1. Enabled and disabled memory access state of clients in AVS encoder for IPB frame 

 F_ORG F_REF_Y1-4 F_REF_UV1-4 F_MV F_BG S_REC_Y S_REC_UV S_MV S_BG 

I frame √ - - - √ √ √ - √ 

P frame √ √ √ - √ √ √ √ √ 

B frame √ √ √ √ √ - - - √ 

 



3. ADDRESS MAPPING 

 

Various address mapping schemes have been proposed for 

different applications [2][8][9]. A poor address mapping 

scheme generates unnecessary SDRAM latency such as tRCD 

which largely degrades system performance. The type of 

SDRAM latency can be categorized into two groups: inner 

client overhead and inter client overhead. The inner client 

overhead denotes the latency during a client access. The 

inter client overhead denotes the incurred latency when 

switching from one client access to another. 
 

3.1. Address mapping scheme to minimize inner client 

overhead 

 

Before designing a memory address mapping scheme to 

minimize the inner client overhead, the data access patterns 

of clients in AVS encoder are thoroughly analyzed. There 

are three kinds of data access patterns in AVS encoder as 

shown in Figure 3. The first pattern is one MB unit data 

access. Clients such as F_ORG and F_MV fetch one MB 

data of original pixels and MV for the current MB to be 

encoded. The second pattern is MB column data access. The 

F_REF_Y1-4 clients belong to this pattern due to adoption of 

the Level C+ zigzag encoding order [5]. The third pattern is 

2-dimensional (2D) MB access. The F_REF_UV1-4 clients 

belong to this pattern because of the PMV dependent 2D 

reference windows. 
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Fig. 3. Access patterns in AVS encoder. a: one MB unit data 

access, b: MB column data access, c: 2-dimensional (2D)  

MB data access. 

 

A simple and effective scheme named MB-based 

column address mapping is proposed as shown in Figure 4(a) 

which will minimize latency for inner client access. The 

MB-based column address mapping method maps one 

frame data into external memory by sequentially storing 

MB-based column data. The init_addr is the start address of 

one frame data. The one_col_addr_offest means the address 

space occupied where stores one MB-based column data. 

The translation of mapped address into SDRAM row, bank 

and column addresses is shown as Figure 4(b). The lowest 

10 bits is mapped to column address, 10-12 bits is mapped 

to bank address and the highest 14 bits is mapped to row 

address of SDRAM, respectively. 

 
 

Fig. 4. (a) MB-based column address mapping scheme (b) mapped 

address to SDRAM command translation. 

 

The MB unit data access would not generate SDRAM 

latency which can adopt burst access due to the continuous 

address space in external memory. The same conclusion can 

be derived for the MB column data access. The third access 

pattern can be seen as the combination of the second access 

pattern, so we only need to care about the access switching 

from one column to another. The switching skips about one 

MB-based column data (Cmb_col) of the frame. If the capacity 

of one row data of all the chosen banks (Crow_banks) is larger 

than Cmb_col as shown (1), the switching will not cross 

different rows in the same bank. In our system, the 

maximum data amount of Cmb_col is 

(256B+128B)×68=25.5KB for 1080P; the SDRAM bank 

number is 8, SDRAM data width is 64b and column address 

width of SDRAM is 10b [10]. We can get that Crow_banks is 

64×210×8b=64KB which is larger than Cmb_col. Then we can 

get the conclusion that the switching from one column to 

another in the third access pattern will not generate row-

activation overhead and therefore inner client overhead gets 

the minimum value. 

Crow_banks > Cmb_col                             (1) 

 

3.2. Address mapping schemes to minimize inter client 

overhead 

 

The inner client overhead problem has been perfectly solved 

by MB-based column address mapping method. The inter 

client overhead may be incurred when switching from one 

client to another. For example, the inter client overhead will 

be incurred when switching from F_ORG to F_REF_Y1 

client if they locate in the different rows of same bank as 

shown in Figure 5. To avoid inter client overhead, a group-

based address mapping method is proposed. 
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Fig. 5. Inter client overhead example. 



3.2.1. Group division for encoder clients 

 

The group division is based on the data access pattern and 

data amount of encoder clients. Based on the access patterns 

as shown in Figure 3, we divide all the encoder clients into 

three groups (one MB unit access group, MB column access 

group, 2D MB access group). In the one MB unit data 

access group, the data access patterns of F_BG and F_ORG 

clients are different: the access manner of F_ORG is in 

zigzag order, but the access manner of F_BG is in raster 

order. Based on the analysis above, we divide one MB unit 

data access group into two sub-groups: raster order group 

and zigzag order group. Finally, we summarize the grouped-

clients into Table 2. Store clients are allocated to each group 

based on the consistence of corresponding fetch clients. 

 
Table 2. Grouped-clients 

group client 

zigzag order group F_ORG, F_MV, S_MV 

raster order group F_BG, S_BG 

MB-based column access group F_REF_Y1-4, S_REF_Y 

2D MB access group F_REF_UV1-4, S_REF_UV 

 

3.2.2. Bank allocation for each group 

 

For raster and zigzag order group, we restrict the one MB 

data to locate in the same row of SDRAM based on the 

small data access amount fact. Thus the required bank is 1 

for raster and zigzag order group. Different from raster and 

zigzag order groups, the needed bank for MB column access 

group is 2 to hide the overhead cycles when access 

happened in the row border of SDRAM. In order to satisfy 

(1), the least bank required for 2D MB access group is 4. 

The minimum bank required for each group is shown as 

Table 3. 

 
Table 3. Minimum bank required for each group 

group bank required 

zigzag order group 1 

raster order group 1 

MB-based column access group 2 

2D MB access group 4 

 

3.2.3. Minimal bank array address mapping scheme for 2D 

access 

 

In each group, we adopt MB-based column address 

mapping scheme. The inner client overhead will be 

minimized if the bank for each group satisfies Table 3. The 

inter client overhead will be minimized by group-based 

interleaved arbitration method which will be described in 

Part 4. 

For 2D MB access group, the needed bank is dependent 

on the Crow_banks and Cmb_col. In order to be more general for 

different applications, we propose a minimal bank array 

address mapping scheme for 2D MB access. 

As shown in Figure 6, the red rectangle in the frame is 

decomposed into residing in different banks but of the same 

row in SDRAM. frame_width and frame_height represent 

the width and height of the frame. page_width and 

page_height represent the MB width and MB height 

contained in one row of the bank. There are three patterns in 

2D MB data access. The (a) pattern access represents data 

access in the frontier among three banks. As we can see, 

there is no overhead cycle when we switch columns because 

of the bank interleaved access. The same conclusion can be 

derived for access pattern (b) and (c). 
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Fig. 6. Minimal bank array address mapping scheme for 2D MB 

access. 

 

4. ARBITRATION 

 

The arbitration strategy affects the inter client overhead 

because of the SDRAM access order for each client. In 

order to minimize inter client overhead, we propose a 

straightforward group-based interleaved arbitration scheme. 

Our proposed arbitration method is shown as Figure 7. 

It is a fact that different groups are assigned to different 

banks; this is the reason the group-based interleaved 

arbitration is adopted in this work. Compared with write 

command, read command needs extra cycles to return the 

request data which affects the encoder performance. The 

subroutine of get_wr(rd)_group returns the maximum 

accessed group index for read or write request. The 

ger_wr_(rd)_client subroutine returns one of the requested 

clients in the selected group based on the fixed priority. 
 
subroutine arbiter(rd_req,wr_req) {

    while(rd_req || wr_req) {    

         if(rd_req) {

              group = get_rd_grp(rd_req,grp_last); 

              client = get_rd_client(group);

         }

         else if(wr_req) {

              group  = get_wr_grp(wr_req,grp_last);

              client = get_wr_client(group);

         }

         access(client);

         grp_last = group;

    } 

}

subroutine get_wr(rd)_grp(req,last_grp) {

    group=last_group;

    if(other groups have req) {

        group= group of maximum req;

    }

    return group;

}

subroutine get_wr(rd)_client(group) {

     client = select one request client in group; 

     return client;

}

 
 

Fig. 7. A straightforward group-based interleaved arbitration 

scheme. 



5. HARDWARE IMPLEMENTATION 

 

5.1. Address mapping layer and its hardware 

implementation 

 

Figure 8 shows block diagram of the address mapping 

schemes which takes MB and frame information as its input 

and generates proper mapped address. mbx and mby are the 

MB coordinate locations. MBH means the MB height of the 

frame. MB_SIZE represents the SDRAM address space 

occupied to store one MB data. 

 

address

mapping

init_addr

mbx

mby

MBH
mapped 

address

MB_SIZE

 
 

Fig. 8. Block diagram of the address mapping schemes. 

 

mb_addr = (mbx*MBH+mby)*MB_SIZE;

row_addr = {corresponding SDRAM row address of mb_addr};

{bank_2,bank_1,bank_0} = {corresponding SDRAM bank address of mb_addr};

col_addr = {corresponding SDRAM column address of mb_addr};

mapped_addr = init_addr+{row_addr,bank_2,bank_1,2'b00,bank_0,col_addr};

 
(a) Zigzag order group address mapping realization 

mb_addr = (mbx*MBH+mby)*MB_SIZE;

row_addr = {corresponding SDRAM row address of mb_addr};

{bank_2,bank_1,bank_0} = {corresponding SDRAM bank address of mb_addr};

col_addr = {corresponding SDRAM column address of mb_addr};

mapped_addr = init_addr+{row_addr,bank_2,bank_1,bank_0,3'b010,col_addr};

 
(b) Raster order group address mapping realization 

mb_addr = (mbx*MBH+mby)*MB_SIZE;

row_addr = {corresponding SDRAM row address of mb_addr};

{bank_2,bank_1,bank_0} = {corresponding SDRAM bank address of mb_addr};

col_addr = {corresponding SDRAM column address of mb_addr};

if(bank_0==0) mapped_bank=3'b011;

else mapped_bank=3'b100;

mapped_addr = init_addr+{row_addr,bank_2,bank_1,mapped_bank,col_addr};

 
(c) MB column access group address mapping realization 
row= {SDRAM row address of init_addr} +

           +(mby/page_height)+(mbx/(3*page_width))*[(MBH/page_height)];

tmp={(mbx%(3*page_width))/page_width),((mby%(3*page_height))/page_height)};

case(tmp) {

    4'b0000: bank=5; 4'b0001: bank=6; 4'b0010: bank=7;

    4'b0100: bank=7; 4'b0101: bank=5; 4'b0110: bank=6;

    4'b1000: bank=6; 4'b1001: bank=7; 4'b1010: bank=5;

}

col=((mbx%page_width)*page_height+mby%page_height)*MB_SIZE;

mapped_addr={row,bank,col};
 

(d) 2D MB access group address mapping realization 

 
Fig. 9. Address mapping realizations for (a) zigzag order group (b) 

raster order group (c) MB column access group and (d) 2D MB 

access group. 
 

Address mapping realizations for zigzag order group, 

raster order group, MB column access group and 2D MB 

access group are shown in Figure 9. The multiplication and 

division operation in Figure 9 can be replaced by shift 

operation if we set parameters such as MBH to 2n. 

The address mapping module is integrated into fetch 

and store clients as shown in Figure 10. para_parse module 

parses the parameters to addr_mapping module after the 

assertion of mb_start signal which is dispensed by mb_ctrl 

module. The req_to_ddr signal will be valid after 

addr_mapping module is finished. In fetch client, data from 

external memory is organized to return to the request user 

module. In store client, we buffer the data-to-be-stored in a 

ping-pong RAM in order to access external memory in burst 

access mode. 
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Fig.10. (a) fetch client (b) store client. 

 

Our memory interface architecture is shown as Figure 

11. An address mapping layer and an arbitration layer are 

included in the architecture. The address mapping layer 

includes the client interface which interacts with encoding 

modules such as IME, FME and so on. The arbitration layer 

reorders the request clients in a highly efficient manner by 

group-based interleaved arbitration scheme. 
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Fig.11. Memory interface architecture. 
 

5.2. System architecture 

 

System architecture is shown as Figure 12. The memory 

interface is a bridge for all external memory data request 

modules in encoder. Firmware is used for frame-level 

control, responsible for parameter configuration. Capture 

module captures original video data and stores it into 

external memory. Efficient five-stage MB-pipelining 

architecture is applied for our encoder core in the purple 

block and the five major components are IME, FME, mode 

decision (MD), deblocking filter (DB) and bit stream 

generating (BG).  
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Fig. 12. System architecture. 



 

6. RESULTS 

 

In order to verify the performance of our proposed method, 

the tile-linear address mapping scheme (TLAM) [9] is used 

for comparison. The performance evaluation is performed 

on VCS simulation of AVS-P2 encoder. 

Table 4 shows the results of both proposed and TLAM 

address mapping schemes. The results show that our 

proposed method reduces much more overhead cycles 

compare to the TLAM method. The overhead cycles are 

hidden in our proposed method except for the data access at 

the beginning of each pipeline. On average, the speedup 

factor of the proposed method over the TLAM method is 

5% for frame and 10% for interlace. 

 

7. CONCLUSION 

 

This paper presents a novel memory-interface architecture 

which is composed of an address mapping layer and an 

arbitration layer to improve memory access efficiency. In 

address mapping layer, a group-based address mapping 

scheme is proposed to minimize inner client overhead. 

Group-based interleaved arbitration scheme is realized in 

the arbitration layer which guarantees the access to SDRAM 

in the highest efficient way. Experimental results show that 

the proposed method improves the SDRAM bandwidth by 

up to 10% compared to the TLAM method. 
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