
A HIGHLY EFFICIENT EXTERNAL MEMORY INTERFACE ARCHITECTURE FOR AVS

HD VIDEO ENCODER

Xiaofeng Huang, Chuang Zhu, Lei Zhang, Kaijin Wei, Huizhu Jia, Don Xie, Wen Gao

National Engineering Laboratory for Video Technology, Peking University, Beijing, China

xfhuang@jdl.ac.cn

ABSTRACT

This paper presents a highly efficient external memory

interface architecture to improve memory bandwidth

utilization for AVS HD video encoder. Both burst and bank

interleaved SDRAM accesses are intelligently adopted in

the memory interface design. Our proposed architecture is

composed of an address mapping layer and an arbitration

layer. In the address mapping layer, according to the data

request pattern and quantity, the clients in the encoder are

divided into four groups which are assigned to different

banks of the SDRAM. In each group, efficient address

mapping schemes are proposed to minimize inner client

overhead. In the arbitration layer, a straightforward group-

based interleaved arbitration scheme is proposed to

minimize inter client overhead. Experimental results show

that the data access overhead cycles of our proposed

interface design are reduced significantly and the bandwidth

utilization is improved by up to 10% compared to the tile-

linear address mapping scheme.

Index Terms— address mapping, arbitration, memory

bandwidth, AVS encoder

1. INTRODUCTION

AVS video coding standard, which is developed by China

Audio Video Coding Standard (AVS) Working Group, has

been accepted as an option by ITU-TFGIPTV for IPTV

applications [1]. The AVS part 2 (AVS-P2) is high

resolution friendly profile, which shows comparable

performance with H.264/AVC for most HD sequences [7].

As the resolution of video-coding applications increases,

explosive video data should be stored in off-chip memory

such as DDR SDRAM [2]. In addition to the huge data

transfers, the extra overhead cycles incurred by row-

activation of SDRAM have a very negative effect on the

video processing systems. How to reduce the overhead

cycles and thus improve bandwidth efficiency has already

become a hot research topic currently.

Numerous optimization strategies to improve

bandwidth efficiency in video applications have been

reported. H. Kim and I-C. Park proposed the array address-

translation method to minimize the number of row-

activation command and the power consumption [2]. Kaijin

Wei et al adopted a novel Level C+ data reuse scheme to

reduce the required external memory bandwidth for motion

estimation [4][5]. A lossy reference frame compression

technique has been proposed in [6] to reduce the SDRAM

bandwidth, but this method will encounter quality

degradation problem.

In this paper, we propose a highly efficient memory

interface design including an address mapping layer and an

arbitration layer. The remainder of this paper is organized as

follows. Section 2 presents the problem which will be

solved in this paper. The address mapping layer and the

arbitration layer are described in section 3 and section 4,

respectively. Section 5 presents the hardware

implementation of the proposed design. Section 6 shows the

experimental results and section 7 concludes this paper.

2. PROBLEM DEFINITION

In this section, the memory bandwidth related problem in

AVS encoder is described. It is noted that the SDRAM can

achieve its best performance when an application accesses

the memory in the burst access mode. In video-processing

applications, the block-based access pattern can incur many

row-activation overhead cycles which decreases the

bandwidth utilization greatly.

2.1. Features of SDRAM

Figure 1 shows a simplified architecture of a four-bank

SDRAM [2]. All memory banks share the same data and

address buses, whereas each bank has its own row decoder,

column decoder and sense amplifier. The mode register

stores several SDRAM operation modes such as burst

length, burst type, CAS (column address strobe) latency, etc.

A series of commands need to be issued when accessing the

SDRAM. Firstly, a row-activation (ACTIVE) command is

used to copy the row data of a designated bank into the

sense amplifier. Secondly, a column address is selected and

the corresponding data is transferred by the READ or

WRITE command. Finally, the activated SDRAM row is re-

charged for next SDRAM access by PRECHARGE

command.

When accessing the SDRAM, the overhead cycles for

each command decrease bandwidth efficiency. The

ACTIVE to column access delay called tRCD and

PRECHARGE command period called tRP are the majority

parts of overhead cycles [11]. The tRCD and tRP latency can

be hidden by accessing different banks due to the

independent processing capability of each bank [3].

Bank 3

…

Sense amp 3

Column Decoder

Bank 2

…

Sense amp 2

Column Decoder

Bank 1

…

Sense amp 1

Column Decoder
Bank 0

…

Sense amp 0

Column Decoder

Row

Decoder
Data Buffer

Data

Mode Register

Address

row

Fig. 1. Simplified architecture of a four-bank SDRAM.

2.2. Memory access clients in AVS encoder

In AVS encoder, motion estimation (ME) is the most

bandwidth consuming part. Level C+ zigzag coding order is

adopted in our encoder system to reduce the redundant data

access of luminance reference pixels [5]. The bandwidth can

be roughly reduced to 1/3 compared to the raster order [5].

Besides, the chrominance reference windows are also

needed for fractional motion estimation (FME). In detail,

the chrominance reference pixels are a 24×24 search

window where the start pixel depends on the predicted

motion vector (PMV) from integer motion estimation (IME).

In addition to the reference windows for ME, original

pixels, motion vectors for predicted motion vectors and

reconstructed pixels for reference store are needed in AVS

encoder. For each MB of I frame, one MB original pixels

are fetched from external memory and one MB

reconstruction pixels are written back to SDRAM to be

referenced for P and B frame. The P and B frame encoding

is almost the same as I frame except the additional reference

frame load. P frame uses two forward reference frames to

predict the current frame; B frame uses one forward frame

and one backward frame as references. The corresponding

motion vector (MV) information of the MB is stored when

encoding P frame which is for future B frame encoding.

The memory access clients in AVS encoder are shown

in Table 1. F_ORG client fetches original pixels and

F_REF_Y1-4 clients fetch luminance reference pixels for

IME. F_REF_UV1-4 clients fetch chrominance reference

windows for FME. There are four clients to load luminance

and chrominance windows because AVS-P2 restricts the

maximum number of reference pictures to 2, and the

maximum number of reference to 4 for interlaced contents

[7]. F_MV and S_MV clients fetch and store MV,

respectively. S_REC_Y and S_REC_UV clients store

luminance and chrominance reference pixels into external

memory for P and B frame reference. Additional clients

(S_BG and F_BG) are required in the system due to the

Level C+ zigzag order bit-stream is not supported by

decoder. A module named SPLICE will transform zigzag

order bit-stream into standard order. S_BG client stores the

zigzag bit-stream into external memory and F_BG client

fetches bit-stream in standard order from external memory

for SPLICE. The √ indicates the enabled state and -

indicates the disabled state for each client in Table 1.

2.3. Data access and data processing pipeline

In the encoder system, data access and data processing are

pipelined, as shown in Figure 2. The cycles spent in the data

access stage impacts the encoder performance when it is

longer than the data processing period. Besides the

bandwidth requirement for the encoder, the bandwidth

required for CPU also inspires us to improve bandwidth

efficiency.

The problem to be solved in this paper is how to

minimize the bandwidth in the encoder system. As talked

above, overhead cycles are seriously degrading the

bandwidth efficiency and in the next we will focus on how

to reduce these overhead cycles.

data access data processing

data access data processing

T

S

S1

S2

Fig. 2. Data access and data processing pipeline space time-

diagram.

Table 1. Enabled and disabled memory access state of clients in AVS encoder for IPB frame

 F_ORG F_REF_Y1-4 F_REF_UV1-4 F_MV F_BG S_REC_Y S_REC_UV S_MV S_BG

I frame √ - - - √ √ √ - √

P frame √ √ √ - √ √ √ √ √

B frame √ √ √ √ √ - - - √

3. ADDRESS MAPPING

Various address mapping schemes have been proposed for

different applications [2][8][9]. A poor address mapping

scheme generates unnecessary SDRAM latency such as tRCD

which largely degrades system performance. The type of

SDRAM latency can be categorized into two groups: inner

client overhead and inter client overhead. The inner client

overhead denotes the latency during a client access. The

inter client overhead denotes the incurred latency when

switching from one client access to another.

3.1. Address mapping scheme to minimize inner client

overhead

Before designing a memory address mapping scheme to

minimize the inner client overhead, the data access patterns

of clients in AVS encoder are thoroughly analyzed. There

are three kinds of data access patterns in AVS encoder as

shown in Figure 3. The first pattern is one MB unit data

access. Clients such as F_ORG and F_MV fetch one MB

data of original pixels and MV for the current MB to be

encoded. The second pattern is MB column data access. The

F_REF_Y1-4 clients belong to this pattern due to adoption of

the Level C+ zigzag encoding order [5]. The third pattern is

2-dimensional (2D) MB access. The F_REF_UV1-4 clients

belong to this pattern because of the PMV dependent 2D

reference windows.

a
b

c

one frame data: such as MV, original

pixels, reference pixels, bit-stream

one MB

unit data

Fig. 3. Access patterns in AVS encoder. a: one MB unit data

access, b: MB column data access, c: 2-dimensional (2D)

MB data access.

A simple and effective scheme named MB-based

column address mapping is proposed as shown in Figure 4(a)

which will minimize latency for inner client access. The

MB-based column address mapping method maps one

frame data into external memory by sequentially storing

MB-based column data. The init_addr is the start address of

one frame data. The one_col_addr_offest means the address

space occupied where stores one MB-based column data.

The translation of mapped address into SDRAM row, bank

and column addresses is shown as Figure 4(b). The lowest

10 bits is mapped to column address, 10-12 bits is mapped

to bank address and the highest 14 bits is mapped to row

address of SDRAM, respectively.

Fig. 4. (a) MB-based column address mapping scheme (b) mapped

address to SDRAM command translation.

The MB unit data access would not generate SDRAM

latency which can adopt burst access due to the continuous

address space in external memory. The same conclusion can

be derived for the MB column data access. The third access

pattern can be seen as the combination of the second access

pattern, so we only need to care about the access switching

from one column to another. The switching skips about one

MB-based column data (Cmb_col) of the frame. If the capacity

of one row data of all the chosen banks (Crow_banks) is larger

than Cmb_col as shown (1), the switching will not cross

different rows in the same bank. In our system, the

maximum data amount of Cmb_col is

(256B+128B)×68=25.5KB for 1080P; the SDRAM bank

number is 8, SDRAM data width is 64b and column address

width of SDRAM is 10b [10]. We can get that Crow_banks is

64×210×8b=64KB which is larger than Cmb_col. Then we can

get the conclusion that the switching from one column to

another in the third access pattern will not generate row-

activation overhead and therefore inner client overhead gets

the minimum value.

Crow_banks > Cmb_col (1)

3.2. Address mapping schemes to minimize inter client

overhead

The inner client overhead problem has been perfectly solved

by MB-based column address mapping method. The inter

client overhead may be incurred when switching from one

client to another. For example, the inter client overhead will

be incurred when switching from F_ORG to F_REF_Y1

client if they locate in the different rows of same bank as

shown in Figure 5. To avoid inter client overhead, a group-

based address mapping method is proposed.

row a

row b

Bank 0

original pixels

 luminance reference pixels

inter client

overhead

Fig. 5. Inter client overhead example.

3.2.1. Group division for encoder clients

The group division is based on the data access pattern and

data amount of encoder clients. Based on the access patterns

as shown in Figure 3, we divide all the encoder clients into

three groups (one MB unit access group, MB column access

group, 2D MB access group). In the one MB unit data

access group, the data access patterns of F_BG and F_ORG

clients are different: the access manner of F_ORG is in

zigzag order, but the access manner of F_BG is in raster

order. Based on the analysis above, we divide one MB unit

data access group into two sub-groups: raster order group

and zigzag order group. Finally, we summarize the grouped-

clients into Table 2. Store clients are allocated to each group

based on the consistence of corresponding fetch clients.

Table 2. Grouped-clients

group client

zigzag order group F_ORG, F_MV, S_MV

raster order group F_BG, S_BG

MB-based column access group F_REF_Y1-4, S_REF_Y

2D MB access group F_REF_UV1-4, S_REF_UV

3.2.2. Bank allocation for each group

For raster and zigzag order group, we restrict the one MB

data to locate in the same row of SDRAM based on the

small data access amount fact. Thus the required bank is 1

for raster and zigzag order group. Different from raster and

zigzag order groups, the needed bank for MB column access

group is 2 to hide the overhead cycles when access

happened in the row border of SDRAM. In order to satisfy

(1), the least bank required for 2D MB access group is 4.

The minimum bank required for each group is shown as

Table 3.

Table 3. Minimum bank required for each group

group bank required

zigzag order group 1

raster order group 1

MB-based column access group 2

2D MB access group 4

3.2.3. Minimal bank array address mapping scheme for 2D

access

In each group, we adopt MB-based column address

mapping scheme. The inner client overhead will be

minimized if the bank for each group satisfies Table 3. The

inter client overhead will be minimized by group-based

interleaved arbitration method which will be described in

Part 4.

For 2D MB access group, the needed bank is dependent

on the Crow_banks and Cmb_col. In order to be more general for

different applications, we propose a minimal bank array

address mapping scheme for 2D MB access.

As shown in Figure 6, the red rectangle in the frame is

decomposed into residing in different banks but of the same

row in SDRAM. frame_width and frame_height represent

the width and height of the frame. page_width and

page_height represent the MB width and MB height

contained in one row of the bank. There are three patterns in

2D MB data access. The (a) pattern access represents data

access in the frontier among three banks. As we can see,

there is no overhead cycle when we switch columns because

of the bank interleaved access. The same conclusion can be

derived for access pattern (b) and (c).

Bank a Bank c

Bank c Bank a Bank b

Bank b Bank c Bank aBank a

(b
)

(c)

Bank a Bank b Bank c

Bank a

Bank c

Bank b

Bank a

frame width

fram
e h

eig
h

t

page width

p
ag

e h
eig

h
t

Bank b
One MB(a)

Fig. 6. Minimal bank array address mapping scheme for 2D MB

access.

4. ARBITRATION

The arbitration strategy affects the inter client overhead

because of the SDRAM access order for each client. In

order to minimize inter client overhead, we propose a

straightforward group-based interleaved arbitration scheme.

Our proposed arbitration method is shown as Figure 7.

It is a fact that different groups are assigned to different

banks; this is the reason the group-based interleaved

arbitration is adopted in this work. Compared with write

command, read command needs extra cycles to return the

request data which affects the encoder performance. The

subroutine of get_wr(rd)_group returns the maximum

accessed group index for read or write request. The

ger_wr_(rd)_client subroutine returns one of the requested

clients in the selected group based on the fixed priority.

subroutine arbiter(rd_req,wr_req) {

 while(rd_req || wr_req) {

 if(rd_req) {

 group = get_rd_grp(rd_req,grp_last);

 client = get_rd_client(group);

 }

 else if(wr_req) {

 group = get_wr_grp(wr_req,grp_last);

 client = get_wr_client(group);

 }

 access(client);

 grp_last = group;

 }

}

subroutine get_wr(rd)_grp(req,last_grp) {

 group=last_group;

 if(other groups have req) {

 group= group of maximum req;

 }

 return group;

}

subroutine get_wr(rd)_client(group) {

 client = select one request client in group;

 return client;

}

Fig. 7. A straightforward group-based interleaved arbitration

scheme.

5. HARDWARE IMPLEMENTATION

5.1. Address mapping layer and its hardware

implementation

Figure 8 shows block diagram of the address mapping

schemes which takes MB and frame information as its input

and generates proper mapped address. mbx and mby are the

MB coordinate locations. MBH means the MB height of the

frame. MB_SIZE represents the SDRAM address space

occupied to store one MB data.

address

mapping

init_addr

mbx

mby

MBH
mapped

address

MB_SIZE

Fig. 8. Block diagram of the address mapping schemes.

mb_addr = (mbx*MBH+mby)*MB_SIZE;

row_addr = {corresponding SDRAM row address of mb_addr};

{bank_2,bank_1,bank_0} = {corresponding SDRAM bank address of mb_addr};

col_addr = {corresponding SDRAM column address of mb_addr};

mapped_addr = init_addr+{row_addr,bank_2,bank_1,2'b00,bank_0,col_addr};

(a) Zigzag order group address mapping realization

mb_addr = (mbx*MBH+mby)*MB_SIZE;

row_addr = {corresponding SDRAM row address of mb_addr};

{bank_2,bank_1,bank_0} = {corresponding SDRAM bank address of mb_addr};

col_addr = {corresponding SDRAM column address of mb_addr};

mapped_addr = init_addr+{row_addr,bank_2,bank_1,bank_0,3'b010,col_addr};

(b) Raster order group address mapping realization

mb_addr = (mbx*MBH+mby)*MB_SIZE;

row_addr = {corresponding SDRAM row address of mb_addr};

{bank_2,bank_1,bank_0} = {corresponding SDRAM bank address of mb_addr};

col_addr = {corresponding SDRAM column address of mb_addr};

if(bank_0==0) mapped_bank=3'b011;

else mapped_bank=3'b100;

mapped_addr = init_addr+{row_addr,bank_2,bank_1,mapped_bank,col_addr};

(c) MB column access group address mapping realization
row= {SDRAM row address of init_addr} +

 +(mby/page_height)+(mbx/(3*page_width))*[(MBH/page_height)];

tmp={(mbx%(3*page_width))/page_width),((mby%(3*page_height))/page_height)};

case(tmp) {

 4'b0000: bank=5; 4'b0001: bank=6; 4'b0010: bank=7;

 4'b0100: bank=7; 4'b0101: bank=5; 4'b0110: bank=6;

 4'b1000: bank=6; 4'b1001: bank=7; 4'b1010: bank=5;

}

col=((mbx%page_width)*page_height+mby%page_height)*MB_SIZE;

mapped_addr={row,bank,col};

(d) 2D MB access group address mapping realization

Fig. 9. Address mapping realizations for (a) zigzag order group (b)

raster order group (c) MB column access group and (d) 2D MB

access group.

Address mapping realizations for zigzag order group,

raster order group, MB column access group and 2D MB

access group are shown in Figure 9. The multiplication and

division operation in Figure 9 can be replaced by shift

operation if we set parameters such as MBH to 2n.

The address mapping module is integrated into fetch

and store clients as shown in Figure 10. para_parse module

parses the parameters to addr_mapping module after the

assertion of mb_start signal which is dispensed by mb_ctrl

module. The req_to_ddr signal will be valid after

addr_mapping module is finished. In fetch client, data from

external memory is organized to return to the request user

module. In store client, we buffer the data-to-be-stored in a

ping-pong RAM in order to access external memory in burst

access mode.

addr_mapping

mb_addr

mb_req

(mbx,mby)

para_parse

parametersmb_start

req_to_ddr

data_organize

to fetch module

data from ddr

fetch

data_bufferaddr_mapping

(mbx,mby)

para_parse

mb_addr

mb_req

mb_start parameters

req_to_ddr data to ddr

from store module

store

wr_over

(a) (b)

Fig.10. (a) fetch client (b) store client.

Our memory interface architecture is shown as Figure

11. An address mapping layer and an arbitration layer are

included in the architecture. The address mapping layer

includes the client interface which interacts with encoding

modules such as IME, FME and so on. The arbitration layer

reorders the request clients in a highly efficient manner by

group-based interleaved arbitration scheme.

F_ORG

from

mb_ctrl

to

IME

F_REF_Y1-4

from

mb_ctrl

to

IME

F_REF_UV1-4

from

IME

to

FME

F_MV

from

mb_ctrl

to

IME FME

MD

fetch part

F_BG

from

mb_ctrl

to

SPLICE

S_BG

from

BG

S_MV

from

MD

S_REC_Y

from

DB

S_REC_UV

from

DB

store part

arbiter

From/to DDR ctrl IP

Fig.11. Memory interface architecture.

5.2. System architecture

System architecture is shown as Figure 12. The memory

interface is a bridge for all external memory data request

modules in encoder. Firmware is used for frame-level

control, responsible for parameter configuration. Capture

module captures original video data and stores it into

external memory. Efficient five-stage MB-pipelining

architecture is applied for our encoder core in the purple

block and the five major components are IME, FME, mode

decision (MD), deblocking filter (DB) and bit stream

generating (BG).

IME Engine

Org. Ref. Pixels

encoder memory interface

UV fetch

Ref. Pixels

FME

Engine
MD

DB Engine

BG Engine

MB Level Pipelining Controller(mb_ctrl)

MVP

MB Level Pipelining
RISC CPU

/ Firmware

Memory Controller

Capture

Video Camera

External

Memory

SPLICE bit-stream

Fig. 12. System architecture.

6. RESULTS

In order to verify the performance of our proposed method,

the tile-linear address mapping scheme (TLAM) [9] is used

for comparison. The performance evaluation is performed

on VCS simulation of AVS-P2 encoder.

Table 4 shows the results of both proposed and TLAM

address mapping schemes. The results show that our

proposed method reduces much more overhead cycles

compare to the TLAM method. The overhead cycles are

hidden in our proposed method except for the data access at

the beginning of each pipeline. On average, the speedup

factor of the proposed method over the TLAM method is

5% for frame and 10% for interlace.

7. CONCLUSION

This paper presents a novel memory-interface architecture

which is composed of an address mapping layer and an

arbitration layer to improve memory access efficiency. In

address mapping layer, a group-based address mapping

scheme is proposed to minimize inner client overhead.

Group-based interleaved arbitration scheme is realized in

the arbitration layer which guarantees the access to SDRAM

in the highest efficient way. Experimental results show that

the proposed method improves the SDRAM bandwidth by

up to 10% compared to the TLAM method.

8. REFERENCE

[1] Chuang Zhu, Yuan Li, Hui-zhu Jia, Xiao-dong Xie,

Hai-bing Yin, “A highly efficient pipeline architecture

of RDO-based mode decision design for AVS HD

video encoder,” ICME, July 2011, 2011.

[2] H. Kim and I.-C. Park, “High-Performance and Low-

Power Memory-Interface Architecture for Video

Processing Applications,” IEEE Trans. Circuits Syst.

Video Technol., vol. 11, pp. 1160-1170, Nov. 2001.

[3] S. Rixner et al, “Memory access scheduling,” in Proc.

ISCA, Vancouver, BC, Canada, Jun. 2000, pp. 128–138.

[4] Kaijin Wei, Shanghang Zhang, Huizhu Jia, Don Xie,

Wen Gao, “A flexible and high-performance hardware

video encoder architecture,” IEEE Picture Coding

Symposium(PCS), Krakow, Poland, pp.373-376, May

2012.

[5] Kaijin Wei, Rongwei Zhou, Shanghang Zhang, Huizhu

Jia, Don Xie, Wen Gao, “AN OPTIMIZED

HARDWARE VIDEO ENCODER FOR AVS WITH

LEVEL C+,” ICME, July 2012, 2012.

[6] A. D. Gupte, B. Amrutur, M. M. Mehendale, A.V. Rao,

M. Budagavi, “Memory Bandwidth and Power

Reduction Using Lossy Reference Frame Compression

in Video Encoding,” IEEE Trans. Circuits Syst. Video

Technol., vol. 21, pp. 225-230, Nov. 2011.

[7] Wen Gao et al, “AVS Vide Coding Standard,” Studies

in Computational Intelligence, 2010, Volume 280,

Intelligent Multimedia Communication: techniques and

Applications, Pages 125-166.

[8] K. Asheesh, P. R. Panda, N. D. Dutt, and A. Nicolau,

“High-level synthesis with synchronous and RAMBUS

DRAMs,” in Proc. SASIMI’98, 1998, pp. 186–193.

[9] K. Iwata et al, “A 342mW Mobile Application

Processor With Full-HD Multi-Standard Video Codec

and Tile-Based Address-Translation Circuits,” IEEE

Journal of Solid-State Circuits, vol. 45, no. 1, pp. 59–

68, 2010.

[10] Micron Technology, Inc. Micron 512Mb: x4, x8, x16

DDR2 SDRAM Datasheet, 2006.

[11] Kun-Bin Lee, Tzu-Chieh Lin, Chein-Wei Jen, “An

Efficient Quality-Aware Memory Controller for

Multimedia Platform SoC,” IEEE Trans. Circuits Syst.

Video Technol., vol. 15, pp. 620-633, May. 2005.

Table 4. Experimental results

Encoding

mode

sequence overhead cycles for

TLAM

overhead cycles for

proposed

valid data transfer

cycles

speedup I P B

progressive foreman 1192712 628806 8977760 5.16% 0.87% 4.03% 5.29%

CREW 4676248 2511300 35914912 4.97% 0.92% 4.32% 5.31%

flowergarden 4687210 2560638 36792720 4.78% 0.93% 4.21% 4.86%

city 11170604 5650104 81763360 5.55% 0.97% 4.67% 5.60%

blue_sky 25018708 12803334 186739336 5.38% 0.90% 4.94% 5.88%

interlace foreman 2136670 778968 12508720 8.71% 3.40% 7.21% 9.52%

CREW 7511100 2578608 43541168 9.20% 3.60% 8.50% 10.70%

flowergarden 7882234 2654046 45351540 9.30% 3.70% 7.60% 10.60%

blue_sky 39608802 13105944 230329024 9.30% 3.80% 7.70% 10.80%

