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ABSTRACT

Lossy image compression usually introduces undesired com-
pression artifacts, such as blocking, ringing and blurry effect-
s, especially in low bit rate coding scenarios. Although many
algorithms have been proposed to reduce these compression
artifacts, most of them are based on image local smoothness
prior, which usually leads to over-smoothing around the ar-
eas with distinct structures, e.g., edges and textures. In this
paper, we propose a novel framework to enhance the percep-
tual quality of decoded images by well preserving the edge
structures and predicting visually pleasing textures. First-
ly, we propose an edge-preserving generative adversarial net-
work (EP-GAN) to achieve edge restoration and texture gen-
eration simultaneously. Then, we elaborately design an edge
fidelity regularization term to guide our network, which joint-
ly utilizes the signal fidelity, feature fidelity and adversarial
constraint to reconstruct high quality decoded images. Ex-
perimental results demonstrate that the proposed EP-GAN is
able to efficiently enhance decoded images at low bit rate and
reconstruct more perceptually pleasing images with abundant
textures and sharp edges.

Index Terms— Compression artifact reduction; genera-
tive adversarial network (GAN); perceptual loss; edge prior;
image restoration

1. INTRODUCTION

With the explosion of digital media services, there is a in-
creasing demand to compress the images/videos to facilitate
storage and transmission, which may degenerate their quali-
ty especially at low bit rate. The popular lossy compression
standards (e.g., JPEG and HEVC) adopt the block-based com-
pression architecture and quantize every block independently
to reduce the amount of transform coefficients. This process
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determines the amount of bit rate and may incur obvious blur-
ring, ringing and blocking artifacts with coarse quantization
steps, leading to poor user experience. In addition, these com-
pression artifacts also have negative impacts on the accuracy
of high-level computer vision tasks, such as face recognition
and object detection [1]. Consequently, compression artifact
reduction is required at the decoder side to enhance the per-
ceptual quality of the compressed images.

In order to reduce compression artifacts, there are numer-
ous post-processing techniques proposed in the literatures.
In [2-4], researchers focused on restoring high quality de-
coded images by removing blocking artifacts based on im-
age prior distribution. These methods mainly considered the
smoothness or the regularity of images, which may lead to
over smooth the true edges or texture details. Recently, deep
convolutional neural networks (DCNNs) have demonstrated
superior performance in both high-level [5] and low-level [6]
computer vision tasks compared with traditional handcrafted
features based algorithms. Dong et al. [7] proposed a pio-
neer work using artifact reduction convolutional neural net-
work (AR-CNN) to reduce the JPEG compression artifacts.
However, the perceptual quality of the reconstructed images
from AR-CNN is still not satisfactory, and many structural
details, e.g., edges and textures, have been blurred and even
removed along with compression artifacts. This is because
the AR-CNN only adopts pixel-wise Lo distance as its loss
function without considering image regular structures, and all
the local areas are processed equally.

To solve the above problems, researchers further intro-
duced new loss functions [8] by constraining the perceptual
distortion between the high level image features extracted by
pre-trained CNN. The latest generative adversarial network
(GAN) [9], which was proposed to generate images in a min-
max game way, has been confirmed to promisingly produce
photo-realistic texture details in low-level tasks such as super-
resolution [10]. The motivation is that when the generated im-
ages are difficult to be distinguished from the original ones,
they should be “real” enough for human perception. There-
fore, these methods not only utilize features to measure per-



ceptual similarity, but also generate visually pleasing textures.

In this paper, we propose a multi-constraint based post-
processing algorithm to enhance the perceptual quality of the
compressed images, especially for the images compressed at
low bit rate. To reconstruct a high quality decoded image,
we first propose a novel edge-preserving generative adversar-
ial network (EP-GAN). Then, we carefully design a multi-
constraint loss function by incorporating the signal fidelity
loss, feature fidelity loss and adversarial loss with our pro-
posed edge fidelity loss. By minimizing the proposed multi-
constraint loss function, the proposed EP-GAN can obtain a
more perceptually pleasing reconstruction with abundant tex-
tures and sharp edges, comparing with AR-CNN method. The
main contributions of this paper are as follows:

e We propose an edge preserving image prior applied in
edge fidelity loss term, which enforces the generative
adversarial network to better restore the edge structures
besides maintaining semantic similarity and generating
texture details.

e We take advantage of multiple image characteristics
and propose a multi-constraint framework for percep-
tual reconstruction of compressed images.

The remainder of this paper is organized as follows. Section
2 introduces the proposed multi-constraint framework for en-
hanced image decoding in detail. Extensive experimental re-
sults and discussions are reported in Section 3. Finally we
conclude this paper in Section 4.

2. PROPOSED FRAMEWORK FOR ENHANCED
IMAGE DECODING

2.1. Problem Formulation

For a decoded image, I¢, the goal of enhanced image decod-
ing is to further improve its visual quality by removing the
compression artifacts and reconstruct more visually pleasing
edge and texture structures corrupted during compression, ob-
taining a high quality restoration image I". In order to gener-
ate a reconstructed image favored by human perceptions us-
ing deep neural network, we specifically design a perceptual
loss function by combining several statistical characteristics
of the corresponding uncompressed original image I° instead
of using the traditional mean square error (MSE) based loss
function. The proposed perceptual loss function is explained
in Eq.(1),

£Pe'rcept = EMSE +)\1£Feat +/\2£Edge +A3£Adv7 (D

where the weights, {);}, are the trade-off parameters to bal-
ance the multiple loss components. In this paper, we empiri-
cally set \; to 2 x 1076, X5 to 1 and A3 to 10~ according to
experimental results to make these loss function in the same
order of magnitude, which can well balance both the objective

and subjective quality of the reconstructed images. Herein, a
novel EP-GAN is proposed, as shown in Fig. 1, to well re-
store the destroyed edge structures during compression. By
minimizing the above perceptual loss function, our EP-GAN
can generate visually pleasing restoration images. In the fol-
lowing sections, we will detail the network architectures and
introduce the individual loss functions used to guide such net-
work to achieve visually pleasing restoration.

2.2. Edge-preserving Generative Adversarial Network
2.2.1. Generator network architecture

In lossy compressed images or videos, edge distortions are
always sensitive to be observed by Human Visual System
(HVS). However, traditional reconstruction methods treated
all the pixels equally and failed to recover the sharp edges in
an effective way. To deal with this issue, we propose an edge
prior of the high quality original image I° as a guidance and
force the generative network to perform edge detection as a
joint task in compressed image reconstruction.

Feature extraction stack: We follow the network design
of He et al.’s work in [11] and introduce skip connection,
which has been confirmed to be efficient in training deep neu-
ral networks. We adopt the residual block proposed in [10]
to build our neural network. Concretely, each residual block
contains two convolutional layers with 3 x 3 kernel size and
64 feature maps, two Batch Normalization (BN) [12] layers
and a ReLU [5] layer. As shown in Fig. 1, we utilize B = 16
residual blocks as a stack to fully extract the features from the
compressed image for the following restoration.

Edge predicting sub-branch: We wish to incorporate our
generative network with edge preserving mechanism to re-
cover the distorted edges. Therefore, we propose to extract
edge structure from the high quality image [° as the prior
label, denoted as I”, which guides our deep generative net-
work to perform multi-task learning. Specifically, the stacked
residual blocks produce two sub-branches of features at the
last layer blocks. One output is the features for image restora-
tion and the other one is for edge prediction. Meanwhile, we
introduce an edge fidelity loss as a regularization term in our
loss function, which computes the Lo distance between pre-
dicted and labeled edge maps.

Then, we fuse the features and the edge map from the two
sub-branchs through another two convolutional layers with
3 x 3 kernel size and 256 feature maps, followed by a Re-
LU layer. These combined features will be fed to the final
layer to reconstruct the high quality restoration images, and
the final layer is a convolutional layer with 1 x 1 kernel size
and 3 feature maps followed by a tanh activation function.

2.2.2. Discriminator network architecture

In order to make full use of the edge prior we have intro-
duced in section 2.2.1, we incorporate it as a condition into
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Fig. 1: Proposed framework of edge-preserving generator network and discriminator network architectures. The £ indicates the kernel size,
n indicates the feature map numbers and s indicates the stride for each convolutional layer.

the discriminator network. Therefore, the positive examples
{I°|I¥} and the negative examples {I"|I¥} are fed into the
discriminative network. We take the architecture design pro-
posed in [10] as a reference and use the LeakyReL U [13] ac-
tivation (o = 0.2) in our design, as shown in Fig. 1. The first
six convolutional layers are all 4 x 4 filter kernels and the fea-
ture maps are in an increasing way by a factor of 2 from 64 to
2048 with stride 2. Except the first convolutional layer, other
five layers are followed by BN layers. The seventh layer and
the eighth layer utilize 1 x 1 filter kernels with stride 1, which
correspond to 1024 and 512 feature maps. Then the two lay-
ers are followed by a special residual block with three convo-
lutional layers, three BN layers and two LeakyReLU layers
sequentially. The channels are 128, 128, and 512, with kernel
sizes 1, 3 and 3. The outputs of the last convolutional unit
are fed into a dense layer with sigmoid activation function to
discriminate the positive pairs from the negative pairs.

2.3. Loss Functions for Perceptual Reconstruction

In this section, we introduce our loss function to train the
proposed network. The loss function includes four compo-
nents capturing distinct perceptual characteristics of the re-
constructed image I” aiming to obtain visually-pleasing im-
ages.

2.3.1. Signal fidelity loss (MSE)

To ensure the fidelity of the restored images, the pixel-wise
MSE loss is utilized as follows,

1 2
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where W, H and C are the width, height and number of chan-
nels in the image.

2.3.2. Feature fidelity loss

Johnson et al. [8] first introduced the perceptual similarity
measure by computing the distance in the pre-defined feature
space instead of the image space. Similarly, we also define the
feature space distance as the feature fidelity loss to encourage
the network to reconstruct images preserving similar feature
representation with the original image,

1
WHC
where W, H and C are the width, height and number of chan-
nels in the feature maps, and ¢(-) denotes the feature space
function, which is a pre-trained VGG-19 [14] network to map
images into feature space. The fourth pooling layer is utilized

to calculate the Lo distances of the feature activations as our
feature fidelity loss function.

EFeat =

6(1°) — ¢(IM)]l5, 3)

2.3.3. Edge fidelity loss

As mentioned in section 2.2.1, edge distortions are easily ob-
served by HVS. In order to reproduce sharp edges, we pro-



pose the edge fidelity loss by computing the edge map pre-
dicted by our network /7 and the label edge map I7:

1 ‘e e
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where W, H are the width and height of the edge map. The
labelled edge map I” is extracted by a specific edge filter on
the uncompressed image /°. In our experiments, we choose
the Sobel operator. I% is predicted by edge predicting sub-
branch of the generator. The network is forced to perform
edge-guided restoration by minimizing the edge fidelity loss.

‘CEdge =

2.3.4. Adversarial loss

We introduce the adversarial loss to further generate texture
details which is favoured by Human. Our discriminative net-
work D introduced in section 2.2.2, distinguishes whether the
input image is original or reconstructed conditioned by the la-
belled edge map I” and outputs the probability. We impose
the negative log of this discrimination probability on the pair
{I "I E} as the adversarial loss to the generative network:

L gy = —log (D(I"|17)). 3)

Simultaneously, the discriminative network minimizes

Lp = —log(D(I°|I7)) — log(1— D(I"|I7)). (6)

It is worth mentioning that we use the labelled edge map
IF as the condition since the EP-GAN is expected to produce
the realistic high-frequency in both texture and edge areas.

3. EXPERIMENTAL RESULTS

3.1. Implementation Details

We select 2060 pictures from Waterloo Exploration
Database [15] in the training process. First, the MATLAB
JPEG encoder is applied to these images using quality factor
QF = 10 to generate low bit rate compressed images. Then,
we randomly sampled patches in size of 224 x 224 from high
quality images I° and the corresponding compressed images
I? to make up pairs and trained our network on a NVIDIA
Titan X GPU. We set the batch size as 4 and used Adam [16]
with momentum term 5; = 0.9 as our optimizer. In order to
ensure the stability of the adversarial training, we first initial-
ize and train the generator network by minimizing MSE only.
Subsequently, we alternately train the discriminator network
and generator network with the learning rate of 10~ in the
first half of the training epoches, and decrease the learning
rate to 10~° in the rest epoches.

3.2. Objective Evaluations

To verify the efficiency of the proposed method, we
performed experiments on two commonly used datasets:

LIVEI1 [17] and the validation set of BSDS500 [18]. The
traditional objective metrics, PSNR, PSNR-B [19] and S-
SIM [20], are used to evaluate the compression artifact re-
duction performance. We compare our EP-GAN method with
the state-of-the-art approaches, SA-DCT [21], AR-CNN [7],
L4 [22] and the latest compression artifact removal method
using GAN proposed by Galteri et al. [23]. Because most of
other state-of-the-art approaches (except GAN by Galteri et
al.) only minimize the MSE loss, we replace the proposed
perceptual loss by MSE to train our network as a “Baseline”
for fair comparison. All experiments in this section are con-
ducted on the image luminance component.

Table 1 shows the quantitative results of different com-
pression artifact reduction methods. The baseline method out-
performs SA-DCT, AR-CNN, L4 on all the datasets, which
can be concluded that our network with MSE can recover
the compressed image surpassing the state-of-the-art perfor-
mance in objective metrics. Regarding GAN, although the
performance of the method proposed by Galteri et al. is much
lower than other approaches, our EP-GAN that uses edge pri-
or to guide GAN training, achieves much better performance
than that of Galteri et al.’s work.

Table 1: The average results of PSNR (dB), PSNR-B (dB), SSIM on
the LIVE1 and BSDS500 images compressed by JPEG at QF = 10

Metrics LIVE1 BSDS500

PSNR | PSNR-B | SSIM | PSNR | PSNR-B | SSIM
JPEG 27.77 25.33 0.791 27.61 24.98 0.777
SA-DCT | 28.65 28.01 0.809 | 28.40 27.51 0.793
AR-CNN | 28.98 28.70 0.822 | 28.82 28.49 0.805

L4 29.08 28.71 0.824 - - -

GAN 27.29 26.60 0.773 - - -
Baseline 29.45 29.10 0.845 | 29.30 28.84 0.822
EP-GAN | 28.80 28.04 0.823 | 2845 27.59 0.798

3.3. Perceptual Results

Since the ultimate goal of our work is not to achieve the best
objective evaluation results, but a perceptual pleasing restora-
tion image, we show the perceptual results in this section. The
EP-GAN and baseline are compared with the existing avail-
able method AR-CNN. We select one image from the datasets
of LIVE1 and BSDS500 respectively, and the subjective re-
sults are shown in Fig. 2.

We can see that there are obvious artifacts such as block-
ing and blurring artifacts in JPEG images compressed at low
bit rate. The AR-CNN and the baseline methods can recov-
er the low frequency information effectively, but many areas
such as the grass in the restoration images are over-smoothed
and blurred. However, our EP-GAN can produce very good
details in the grassland and keep the fence edge sharp, thus
making the whole image perceptually pleasing. We also ob-
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Fig. 2: Subjective comparison for LIVE1 and BSD100 images compressed by JPEG at QF=10, and restored by different compression artifact

reduction methods.

serve that the EP-GAN does not introduce details randomly.
For example, in the second row of Fig. 2, our approach large-
ly enriches the texture of grass and flowers, while the body
of horse remains smooth, which can efficiently prove that the
EP-GAN reconstructs image in aware of semantics.

3.4. Investigations of Edge Preserving Scheme

Different from the Galteri et al.’s method, our EP-GAN in-
troduces edge prior information to keep the edge fidelity and
guide the generative network to concentrate on texture and
edge areas simultaneously. In order to verify the effective-
ness of edge preserving of EP-GAN, we abandon the edge
predicting sub-branch in the generative network and remove
the labelled edge map as the condition of the input in the dis-
criminative network. Moreover, only the MSE loss, feature
fidelity loss and the adversarial loss are utilized as the loss
functions in network training. We name this variant of our
EP-GAN as the V-GAN in the following.

We compare our EP-GAN with the V-GAN on the Ur-
ban100 dataset which contains building pictures with sharp
edges and compressed at QFs equalling to 10 and 20. Table 2
shows the results using the objective metrics. The EP-GAN
performs better in all of the measurements, which confirms
that EP-GAN can keep the edge fidelity better compared with
the GAN without the designed edge loss function. Fig. 3 also
obviously shows that the edges can be recovered much better
using the proposed edge preserving prior information com-
pared with V-GAN.

4. CONCLUSION

In this paper, we proposed a novel framework to achieve
the human-favored reconstructions for compressed images by
well-preserving edge structures and predicting visually pleas-

Table 2: The average results of PSNR (dB), PSNR-B (dB), SSIM,
EPSNR on the Urban100 dataset with QF = 10, 20

QF=10 QF=20
Method | —5oNR—PSNR-B SSIM | PSNR  PSNR-B SSIM
JPEG | 2695 2458 0832 | 2929 2685  0.893
V-GAN | 2833  27.66 0859 | 29.69 2937  0.905
EP-GAN | 2858  27.84  0.868 | 30.75 2954 0912

Fig. 3: Subjective comparison for Urban 100 dataset image com-
pressed by JPEG at QF=10. It can be clearly seen that EP-GAN
recovers the edge more efficiently.

ing textures. Firstly, we proposed an EP-GAN by concentrat-
ing on edge restoration and texture generation simultaneously.
Then we excavated distinctive visual characteristics of natu-
ral images by incorporating the signal fidelity loss, feature
fidelity loss, adversarial loss and our proposed edge fidelity
loss to train the network. According to extensive experimen-
tal results, the proposed EP-GAN outperforms the stat-of-
the-art compression artifact reduction methods by obtaining
more perceptually pleasing reconstruction results. Specifical-
ly, our perceptual reconstruction reproduces many details in
texture area and generates shape edges comparing with AR-
CNN method.
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