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Abstract—Recently, an increasing number of tone-mapping
operators (TMOs) have been proposed in order to display high
dynamic range (HDR) images on low dynamic range (LDR)
devices. Developing perceptually consistent image quality as-
sessment (IQA) measures for TMO is highly desired because
traditional LDR based IQA methods cannot support the cross
dynamic range quality comparison. In this paper, a novel ob-
jective quality assessment method is proposed on the basis of
sparse-domain representation, which has been well advocated as
a powerful tool in describing natural sparse signals with the
over-complete dictionary. Specifically, two indices, incorporating
both local and global features extracted from sparsely represented
coefficients, are introduced to simulate the human visual system
(HVS) characteristics on HDR images. The local feature measures
the sparse-domain similarity between the pristine HDR and tone-
mapped LDR images by leveraging the intrinsic structure with
sparse coding. On the other hand, benefiting from the natural
scene statistics (NSS), the global features are recovered from the
sparse coefficients to account for the natural behaviors of tone-
mapped images. Combining the local sparse-domain similarity
and the global “naturalness” prior, validations on the public
database show that the proposed sparse-domain model for tone-
mapped images (SMTI) provides accurate predictions on the
human perception of tone-mapped images.

Keywords—High dynamic range, image quality assessment,
tone-mapping operators, sparse representation.

I. INTRODUCTION

Traditional device referred technology uses low dynamic
range (LDR) image formats to accommodate the capabilities
of display devices. This leads to irrecoverable losses of in-
formation as the visible range of human visual system (HVS)
is much larger than the range achievable by the traditional
cameras or displays. High dynamic range (HDR) technology
overcomes such limitations and is able to offer high levels
of immersion by adapting to the broad range of luminance
levels that can be perceived by the HVS. However, capture and
display devices for HDR images are too expensive at current
stage, precluding the development of this field. To overcome
this issue, a large number of tone-mapping operators (TMOs)
have been developed to fill the gap between real-world scene
and display luminance. Existing tone-mapping algorithms can
be classified into two categories, i.e. the global and local
operators. Global one performs the identical operations for all
pixels regardless of any local variance [1].In contrast, the local
operator alters the transform metric according to the regional
characteristics of local image patches [2].

Traditionally, much efforts have been devoted to evaluat-
ing the TMOs based on subjective evaluation [3], which is

expensive and time consuming in general. Developing trusted
objective TMO image quality assessment (IQA) method is
highly desired for automatically controlling and optimizing
the TMOs. In view of this, the tone-mapped image quality
assessment methods (TMQI) that combines the structural sim-
ilarity metric and the first/second order image information is
developed to measure the quality of tone-mapped images in
[4], [5]. However, the correlation between subjective scores
and TMQI models implies that there is still large room for
improvement on developing accurate objective IQA models to
evaluate TMOs.

Sparse representation is efficient in dealing with rich,
varied and directional information contained in natural scene
[6] and image restoration [7], [8]. In our previous work, it
has been demonstrated to be closely related to the human
perception [9]–[13]. Inspired by this, an objective quality
assessment metric for tone-mapped images based on sparse-
domain representation is proposed. The model is composed
of two parts, the local sparse-domain similarity and global
naturalness measurement. Sparse similarity preserves local
behavior between the pristine HDR and generated LDR images
by leveraging the intrinsic structure during sparse coding. The
global measurement is fruited by the natural scene statistics,
seeking to capture the natural behaviors of tone-mapped im-
ages from the coefficient distribution in sparse coding.

The rest of this paper is organized as follows. Section
II explains the procedure of dictionary learning and sparse
decomposition. In Section III, the proposed SMTI algorithm
is described and analyzed. Section IV shows the performance
comparing with the state-of-the-art algorithms. Finally, Section
V concludes this paper.

II. UNIFIED SPARSE DECOMPOSITION

In this section, we will briefly introduce the process of
sparse decomposition using a pre-trained dictionary from HDR
images. It is worth noting that both the HDR and LDR images
are projected to the unified sparse space to make sure they are
represented under the identical bases.

A. Dictionary Training

Based on sparse-land model [14], each image patch 𝒙 ∈ ℝ
𝑑

can be represented by a linear combination of a few primitives
in an over-complete dictionary 𝑫 (𝑫 ∈ ℝ

𝑑×𝑘). As such, ∀𝒙,
∃𝜶 ∈ ℝ

𝑘 satisfying 𝒙 ≈ 𝑫𝜶 and ∥𝜶∥0 ≪ 𝑑, where the
notation ∥∙∥0 represents the 𝑙0 norm. Let the input image be 𝑋 ,
which can be partitioned into non-overlapped patches 𝒙1, 𝒙2,
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⋅ ⋅ ⋅ , 𝒙𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 . The objective function of dictionary
training can be formulated as follows,

(𝑫, {𝜶𝑖}) = argmin
𝑫,{𝜶𝑖}

∑
𝑘

∥𝒙𝑖 −𝑫𝜶𝑖∥22, s.t.∥𝜶𝑖∥0 < 𝐿. (1)

where 𝐿 controls the sparse level. The typical KSVD algorithm
[15] is used to learn the content-adaptive dictionary.

To apply the design philosophy of sparse representation in
the scenario of tone mapping, the patches from HDR images
are firstly extracted for dictionary learning. In regarding to
the LDR image, the same dictionary is applied to ensure
the HDR and LDR share the same over-complete dictionary
in representation. Alternatively, a global dictionary can be
obtained offline from a large dataset of images for training,
leading to less computational complexity in real applications.
The performance comparison between the two strategies will
be given in Section IV.

B. Unified Sparse Decomposition

Sparse decomposition aims at approximately recovering the
image signals using a few number of primitives and appropriate
coefficients with respected to the trained dictionary 𝑫. This
can be formulated as follows:

𝜶𝑖 = argmin
𝜶𝑖

∑
𝑘

∥𝒙𝑖 −𝑫𝜶𝑖∥22, s.t.∥𝜶𝑖∥0 < 𝐿. (2)

It is a NP hard problem but can be well solved by match-
ing pursuit family. The orthogonal matching pursuit (OMP)
algorithm [16] is applied in this work.

The HDR and LDR images are both partitioned into 4× 4
non-overlapped patches, denoted as {𝒙𝑖}, {𝒙′

𝑖} respectively.
For each HDR patch 𝒙𝑖, the OMP method can choose the
suitable primitives {Ψ𝑖,1, . . . ,Ψ𝑖,𝐿} and the relevant coeffi-
cients {𝛼𝑖,1, . . . , 𝛼𝑖,𝐿}. For the corresponding LDR patch 𝒙′

𝑖,
the sparse coefficient is obtained using the same primitives
with the HDR patch as follows,

𝜶′
𝑖 = ((Ψ𝑇

𝑟 Ψ𝑟)
−1(Ψ𝑟)

𝑇 )𝒙′
𝑖 (3)

where Ψ𝑟 = [Ψ𝑖,1, . . . ,Ψ𝑖,𝐿]
𝑇 . As such, the HDR and its

tone-mapped LDR patches are projected into the unified sparse
space which is learnt from HDR ones. In the following, the
sparse coefficient matrices for the HDR and LDR images are
denoted as 𝑨𝒉𝒅𝒓 and 𝑨𝒍𝒅𝒓 respectively.

III. SPARSE-DOMAIN QUALITY MEASUREMENT

The proposed SMTI model is defined as two-stage frame-
work by taking advantages of the sparse coefficients derived
in Section II. The first stage is to calculate the sparse-
domain similarity that predicts the local quality between the
pristine HDR and the generated LDR images by leveraging the
intrinsic structure during sparse coding. The second stage is
measuring the overall feature to capture the experience of HVS
characteristics according to the sparse coefficient distribution
of the LDR images. It’s worth noticing that images with RGB
color space is firstly converted to the Yxy space and only the
Y component is taken into account in the implementation.

A. Sparse-domain Similarity

As sparse coefficients inherits the different range between
HDR and LDR images in representing signals and the variation
of range in a local window is negligible, we firstly perform a
local coefficients comparison instead of obtaining similarity
map using original coefficients 𝑨𝒉𝒅𝒓 . Then, motivated by the
method calculating block similarity in [17], we transform them
into a unified space through L2 norm. Specifically, the sparse
coefficients are pre-filtered by a local standard deviation (std)
function, followed by the normalization with respect to its
coefficient energy,

𝑨′
𝒉𝒅𝒓 =

𝑨𝒉𝒅𝒓 ∗ 𝑓𝜎
∥𝑨𝒉𝒅𝒓 ∗ 𝑓𝜎∥2

, (4)

where ∗ is the 2-D convolution operator and 𝑓𝜎 is a 3 × 3
std kernel to restrict the coverage area within 12× 12 pixels.
𝑨′

𝒉𝒅𝒓 is the normalized coefficient matrix of the HDR image.
Along this vein, 𝑨′

𝒍𝒅𝒓 can be calculated in a similar way.

Subsequently, the similarity map between HDR and LDR
images can be obtained,

𝑭 =
2𝑨′

𝒉𝒅𝒓 ⋅𝑨′
𝒍𝒅𝒓 + 𝐶1

𝑨′
𝒉𝒅𝒓 ⋅𝑨′

𝒉𝒅𝒓 +𝑨′
𝒍𝒅𝒓 ⋅𝑨′

𝒍𝒅𝒓 + 𝐶1
, (5)

where ⋅ is the dot product operator, and 𝐶1 is a stabilizing
constant.

Finally, the sparse-domain similarity index can be calcu-
lated by a pooling process as follows,

𝑆 =
tr (𝑾 𝑇𝑭 )

∥ 𝑾 ∥ . (6)

𝑾 =
[
𝒘(1), . . . ,𝒘(𝑖), . . . ,𝒘(𝑁)

]𝑇
is the weighting matrix

consisting of 𝑁 row vectors where 𝑁 is the number of the
patches. Each row vector weights an image patch.

In this comparison, all the patches shares the same weigh-
ing strategy. Considering the perceptual importance of different
sparse levels, the weighting vector 𝒘𝑖 is designed to be a
monotonic decreasing function as follows,

𝑤𝑖
𝑗 =

1

2𝜂
exp

[
− (𝑗 − 1)

2

𝜂

]
, (7)

where 𝜂 is the only parameter that controls the divergence
degree between sparse levels and set as 2 empirically.

B. Naturalness Measurement

Benefiting from the natural scene statistics, a global no-
reference (NR) metric with respect to tone-mapped images is
developed to measure the perceived naturalness. First, plenty
of natural LDR images representing various scene types are de-
composed by the OMP algorithm, obtaining sparse coefficients
matrices respectively. The measurement factor for arbitrary
sparse level 𝑗 is then defined as follows,

𝑀𝑗 =

∑𝑁
𝑖=1 𝛼𝑖,𝑗

𝑁
, (8)

where 𝛼𝑖,𝑗 is the sparse coefficient for image patch 𝑥𝑖 in sparse
level 𝑗. Subsequently, the representative for natural image is
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Fig. 1. The histograms of (a)𝑀1 (fitted by Gaussian Kernel), (b)𝑀2 (fitted by
Beta PDF), (c)𝑀3 (fitted by Gaussian Kernel) and (d)𝑀4 (fitted by Gaussian
Kernel) of natural images. 𝑀𝑗 is the mean of sum of the 𝑗-th dimension in
sparse coefficients.

simplified to an 𝐿-parameter vector from the redundancy pixel
matrix, denoted as 𝑴 = [𝑀1,𝑀2, . . . ,𝑀𝑗 , . . . ,𝑀𝐿].

Fig. 1 shows the statistics histograms of the basic four
characterization factors based on 2300+ natural LDR images,
respectively. By observation, the effect of 𝑀𝑗(𝑗>3) is not
significant. It inspires us to employ the basic three sparse levels
(𝑀𝑗 , 𝑗 = 1, 2, 3) to avoid redundant calculations while keeping
best performance.

In addition, the distribution curve of 𝑀1 and 𝑀3 fits well
with Gaussian kernel defined in Eqn. 9 and 𝑀2 is satisfied
with Beta function well given by Eqn. 10.

𝑃𝑔(𝑀𝑗) = exp

[
−(

𝑀𝑗 − 𝜇

𝜎
)2
]

(9)

𝑃𝑏(𝑀𝑗) =
(1−𝑀𝑗)

𝛽−1(𝑀𝛾−1
𝑗 )

𝐵(𝛾, 𝛽)
(10)

where 𝐵(𝛾, 𝛽) is the Beta function. We perform a training
to obtain the parameters, and the values are set as follows.(
𝜇1 = 113.3, 𝜎1 = 37.22, 𝛾2 = 4.095, 𝛽2 = 35.06 and 𝜇3 =
0.008426, 𝜎3 = 0.2262.)

Considering the various significance of sparse level, differ-
ent scaling factors should be defined to adjust the respective
impact factor. To measure the importance of each sparse level,
an experiment on the basis of relevancy statistics comparing
to subjective data is carried out and the result is shown in
Fig. 2(a). Higher KRCC & SRCC score stands for stronger
relevancy. It demonstrates that the correlation is decreasing
while the indexing of sparse level rising and the first sparse
level achieves significantly higher performance than the other
two. Hence, the naturalness is defined as follows,

𝑅 = 𝑃𝑔(𝑀1) 𝑃𝑏(𝑀2)
𝑎 𝑃𝑔(𝑀3)

𝑏, (11)

where the scale of 𝑀1 is set to 1 as reference, and the
other two exponents decrease progressively, 0<𝑎, 𝑏<1. We set
𝑎 = 0.9077 and 𝑏 = 0.1106 as the final parameters.
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Fig. 2. Ranking correlation coefficient for (a) when naturalness is set to
𝑃 (𝑀𝑗) and (b) sparse-domain similarity in terms of the sparse level 𝐿. The
red solid and blue dashed lines indicate SRCC and KRCC curves, respectively.

C. Quality Prediction Model

The local sparse-domain similarity index described in
Sec. III-A and global naturalness measurement introduced in
Sec. III-B leads to the final SMTI model. Eventually, the
overall weighting metric is defined as

SMTI = 𝜆𝑆𝑚 + (1− 𝜆)𝑅𝑛 (12)

where 𝑚 and 𝑛 are scale parameters to measure the sensitivity
of two components, and 0<𝜆<1 determines the weight of
the relative importance. In the implementation, we choose
𝜆 = 0.9012, 𝑚 = 0.6983 and 𝑛 = 0.1060 as the final param-
eters.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, two
criteria, which are Spearman rank-order correlation coefficient
(SRCC) and Kendall rank-order correlation coefficient (KRC-
C), are employed under the public database [4]. A good IQA
model is expected to achieve high SRCC and KRCC values.

Two experiments have been carried out to enhance the
performance and save execution time. The first one is eval-
uating the influence on the SRCC & KRCC based on the
variation of the sparse level 𝐿 in Eqn. (4). Fig. 2(b) provides
the ranking correlation coefficient. The performance increases
and converges quickly after 𝐿 = 2 and to the maximum at
𝐿 = 4. This motivates us to adopt fewer primitives to avoid
redundant calculations while preserving the relatively superior
quality prediction performance.

The second experiment is discussing that the dictionary
used in previous is adaptively learned for each HDR image. To
further extend the generality, the global dictionary methodolo-
gy is applied and examined. Specifically, the global dictionary
is trained over all the natural images from LIVE database
[18]. From Table I, it can be concluded that the global trained
dictionary leads to slight performance decreases. However,

TABLE I. AVERAGE PERFORMANCE COMPARISON OF APPLYING

GLOBAL AND ADAPTIVE DICTIONARY IN TERMS OF THE KRCC AND

SRCC METRICS.

Global Dictionary Adaptive Dictionary

KRCC 0.7461 0.7508

SRCC 0.8543 0.8606
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Fig. 3. Breakdown comparison of 15 test image groups among the proposed
SMTI, TMQI and TMQI-II. The red one is for SMTI, blue one is for TMQI
and green one is for TMQI-II. The last group shows the average scores.

the offline global dictionary training may further enable its
applications in real scenarios.

In order to evaluate the overall performance of the pro-
posed method, we compare our work with the TMQI [4] and
TMQI-II [5]. The experimental results are given in Table II,
indicating that the proposed SMTI method achieves higher
performance compared to TMQI and TMQI-II. To demonstrate
the robustness of SMTI, the breakdown prediction performance
of SRCC & KRCC in 15 test groups and the average score is
demonstrated in Fig. 3. It is shown that the SMTI outperforms
the others in most of the cases.

TABLE II. PERFORMANCE COMPARISON OF SMTI, TMQI AND

TMQI-II ON PUBLIC DATABASE [4].

KRCC SRCC

TMQI TMQI-II SMTI TMQI TMQI-II SMTI

Average 0.6649 0.6269 0.7508 0.7963 0.7686 0.8606

Min 0.5455 0.2857 0.5714 0.6826 0.5000 0.7143

Max 0.7857 0.9286 1.0000 0.9048 0.9762 1.0000

V. CONCLUSION

In this paper, an objective image quality assessment method
is proposed to evaluate the quality of tone-mapped images.
The novelty of the paper lies in employing the sparse-domain
coefficients to compare the cross dynamic range similarity
and evaluate the naturalness. Firstly, with a dictionary trained
from HDR images, the pristine HDR and tone-mapped LDR
images are projected to the unified sparse space to compare
the local sparse-domain similarity. Second, a novel naturalness
measure is developed based on the features extracted from the
coefficients in sparse representation. Experimental results show
that the proposed method achieves higher correlation with the
subjective data. In the future, TMO optimization algorithms
will be further investigated based on the design philosophy of
the proposed SMTI model.
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