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Abstract— Visual patterns, i.e., high-order combinations of
visual words, contributes to a discriminative abstraction of the
high-dimensional bag-of-words image representation. However,
the existing visual patterns are built upon the 2D photographic
concurrences of visual words, which is ill-posed comparing
with their real-world 3D concurrences, since the words from
different objects or different depth might be incorrectly bound
into an identical pattern. On the other hand, designing compact
descriptors from the mined patterns is left open. To address
both issues, in this paper, we propose a novel compact bag-
of-patterns (CBoPs) descriptor with an application to low bit
rate mobile landmark search. First, to overcome the ill-posed 2D
photographic configuration, we build up a 3D point cloud from
the reference images of each landmark, therefore more accurate
pattern candidates can be extracted from the 3D concurrences
of visual words. A novel gravity distance metric is then proposed
to mine discriminative visual patterns. Second, we come up with
compact image description by introducing a CBoPs descriptor.
CBoP is figured out by sparse coding over the mined visual
patterns, which maximally reconstructs the original bag-of-words
histogram with a minimum coding length. We developed a low
bit rate mobile landmark search prototype, in which CBoP
descriptor is directly extracted and sent from the mobile end
to reduce the query delivery latency. The CBoP performance is
quantized in several large-scale benchmarks with comparisons to
the state-of-the-art compact descriptors, topic features, and hash-
ing descriptors. We have reported comparable accuracy to the
million-scale bag-of-words histogram over the million scale visual
words, with high descriptor compression rate (approximately
100-bits) than the state-of-the-art bag-of-words compression
scheme.

Index Terms— Mobile visual search, compact visual descriptor,
low bit rate retrieval, bag-of-words, visual pattern mining,
structure-from-motion, sparse coding.
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I. INTRODUCTION

MOST existing scalable visual search systems are
built based on visual vocabulary with inverted

indexing [1]–[4]. Local features extracted from the reference
image are quantized into visual words, producing the so-called
bag-of-words histogram and the image is inverted indexed in
every non-zero words correspondingly. The bag-of-words rep-
resentation offers sufficient robustness against photographing
variances in occlusions, viewpoints, illuminations, scales and
backgrounds. Then, image search can be addressed in a similar
way as document retrieval, by which well-used techniques like
TF-IDF [5], pLSA [6] and LDA [7] can be deployed.

Motivation. One significant drawback of bag-of-words
comes from ignoring the spatial layouts of words. To a certain
degree, this can be compensated by carrying out spatial post-
verification, using for instance RANdom SAmple Consensus
(RANSAC) or neighborhood voting [1]. Alternatively, a more
efficient solution is to use pre-defined spatial coding to group
spatially nearby words as new features, for instance feature
bundling [8] and max/min pooling [9].

Nevertheless, the discriminability of pairing or grouping
words in each image is not alone, which in turn highly depends
on the overall statistics of word combinations in the rest
images. To this end, rather than fixed spatial coding [8], [9], a
more data driven approach is to discover such discriminative
grouping of visual words from the image corpus. This is
referred to as “visual patterns” or “visual phrases” [10]–[13]
as from the information retrieval literatures, which typically
involves techniques like co-location mining [14].

Formally speaking, a visual pattern is a meaningful spatial
combination of visual words, which can be regarded as a semi-
fully geometrical dependency feature, where the geometry
of each part depends only on its neighbors. Comparing to
previous works in spatial modeling where restrictive priors and
parameters are demanded [15], [16], visual patterns have been
well advocated by their parameter-free intrinsic, i.e. the pattern
structures are obtained by data mining with class or category
supervision. It equips visual patterns with the scalability, as
advanced from the previous unscalable models [15], [16].

Problem. Two important problems are left open in the
existing visual pattern mining paradigm:

• The existing visual patterns are built upon the 2D word
concurrences in individual images. Such concurrence
suffers from the ill-posed 2D photographic constitution
and cannot capture the real-world 3D layouts of words.
For instance words from different depth or different
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Fig. 1. Exemplar illustrations of incorrect 2D neighborhood configurations
of visual words, which are caused by either binding words with diverse depth,
or binding words from both foreground and background objects.

foreground/background objects may be encoded together
from the 2D perspective. However, such spatial concur-
rence and coding are not robust and discriminative, as
words may be disparity from other perspective. Figure 1
shows several examples to explain such incorrect config-
urations.

• Given the mined patterns, how to design a compact
yet discriminative image representation is left open.
To the best of our knowledge, visual patterns are typically
concatenated with the bag-of-words histogram [10]–[13],
as similar to the usage of textual patterns in the doc-
ument retrieval endeavor. We argue that, given a well-
designed pattern selection strategy, visual pattern alone
is already discriminative enough1. Our explanation is that
the visual word dependency has a clear spatial structure,
which is more discriminative comparing to the contextual
concurrence of textual words. This pattern-level compact
descriptor well suits for several emerging applications
like low bit rate mobile visual search [17], as detailed
in Section V.

Approach. We propose a Compact Bag-of-Patterns (CBoP)
descriptor to address both issues towards a compact yet
discriminative image representation. Figure 2 outlines the work
flow of our CBoP descriptor, which is built over the popular
bag-of-words model. In preliminary, we assume that each
target (e.g. object or landmark) in the dataset contains multiple
reference images captured at different viewing angles. Using
these images, a 3D point cloud is built for this target by
structure-from-motion [18]. Then, we present a 3D sphere cod-
ing scheme to construct the initial pattern candidates, which
eliminates the ill-posed 2D spatial layout in individual images
by binding 3D concurrent visual words in the point cloud.

Next, in visual pattern mining, we introduce a “gravity
distance” to incorporate the relative importance statistics of
words, i.e., the mutual information between their frequencies,
into the subsequent Aprior based frequent itemset mining [19].
In such a manner, the pattern reflects both concurrence fre-
quency in spatial space and statistical saliency in feature space.

Finally, a Compact Bag-of-Patterns (CBoP) is built from the
mined patterns by pooling. Pooling seeks an optimal tradeoff
between the descriptor compactness and its discriminability.
Sparse coding is employed to minimize the number of selected
patterns (typically at hundreds of bits) under a given distortion
tolerance between CBoP and the originally bag-of-words. It is
worth to note that, supervised labels can be also integrated into
the above formulation to further improve the performance.

Applications. The mined CBoP descriptor has potentials

1We show in Section III-B the selection strategy.

in multidisciplinary applications such as object recognition,
visual search and image classification. In this paper, we
demonstrate its usage in the low bit rate mobile visual search
application, where visual descriptors are directly extracted on
the mobile device and sent instead of the query image to
reduce the query delivery latency [17], [20], [21]. In such a
scenario, the extracted descriptor is expected to be compact
and discriminative, and the extraction should be efficient. Dif-
ferent from the state-of-the-art works of directly compressing
the high-dimensional bag-of-words histogram [17], [20], the
pattern-level abstraction is a more natural choice yet left open
so far. We provide two additional arguments to support such
patter-level descriptors:

• First, previous works are deployed based on the linear
combination of visual words for instance boosting [17],
which selects one word in each round into the compact
descriptor. It is a natural extension to look at their higher-
order statistical combinations, e.g. patterns, to further
improve the compression rate.

• Second, we argue that a pattern-level descriptor benefits
in both memory cost and extraction time. In this case,
only linear operations are applied to the initial bag-of-
words, which is memory light and much faster comparing
to alternatives like topic features [22], [23], [49].

In practice, our CBoP has achieved almost identical search
accuracy comparing to the high-dimensional (million scale)
bag-of-words histogram, with an approximate 100-bit descrip-
tor size. It significantly outperforms state-of-the-art alter-
native descriptors like 2D visual patterns [12], [13], topic
features [22], [23], [49] and Hashing based descriptors [24].

Outline. The rest of this paper is organized as follows:
Section II reviews related work in visual vocabulary, visual
pattern mining and compact descriptor etc. Section III intro-
duces our discriminative 3D visual pattern mining and CBoP
extraction schemes. Section V shows its application in low bit
rate mobile landmark search, with quantitative comparisons to
the state-of-the-art works [2], [12], [13], [22], [23], [24].

II. RELATED WORK

Visual Vocabulary. Building visual vocabulary usually
resorts to unsupervised vector quantization techniques such
as k-means clustering [1], hierarchical k-means clustering
(Vocabulary Tree) [2], approximate k-means clustering [3]
and their variations [3], [25], [26]. Using visual vocabulary,
an image is represented as a bag-of-words histogram, where
each bin counts how many local features of this image are
quantized into the corresponding word. To compensate the
word uncertainty and ambiguity caused, the quantization strat-
egy in bag-of-words can be further improved using methods
such as Hamming Embedding [29], Soft Assignments [3], and
kernelized visual codebook [30]. In general, visual vocab-
ulary can be treated as an approximated nearest neighbor-
hood search. From this perspective, an alternative solution is
hashing, for instance Locality Sensitive Hashing (LSH) [27],
kernalized LSH [28] and Spectral Hashing [24], which hashes
each local feature into a few bins and indices the images
accordingly.
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Fig. 2. The proposed Compact Bag of Patterns (CBoP) descriptor with an application to low bit rate mobile visual search.

Visual Pattern Mining. To further represent higher-order
discriminability, one solution is to model the spatial distribu-
tions among words. For instance, Csurka et al. [31] proposed
a generative model to characterize the spatial joint distribution
of words. Crandall et al. [32] proposed a middle-level image
representation by combining geometrically nearby words,
which requires pre-defined model priors and supervised labels.
However, these works are restricted due to the requirement of
model parameters or priors, which is therefore unsuitable for
the scenario of large-scale visual search.

A more promising alternative is to automatically discover
meaningful high-order combinations, or so-called “patterns”
or “phrases” [10]–[13]. Comparing to [31] and [32] with pre-
defined model priors, a visual pattern can be treated as a lossy
spatial representation that is discovered by unsupervised data
mining. For example, works in [10]–[13] encode the spatial
concurrence between words into item transactions, and then
adopts co-location pattern mining [14] to discover patterns that
are spatially nearby and frequently concurrent. Yuan et al. [12]
proposed to mine class-specific patterns, which are in turn used
to refine the local feature detection, e.g. to filter out unreliable
points.

On the other hand, works in [54]–[56] proposed to
directly combine the spatial layouts into the bag-of-words
(BoW) construction (or more specially on the construction
of contextual dictionary), which performs comparable to
the visual pattern mining schemes. However, these papers
focus on mining 2D patterns, which might be affected
by the incorrect 2D photographic concurrence between
visual words. In turn, working on 3D patterns serves as
our key innovation. Extracting 3D patterns brings about
more advantages compared to using 2D patterns only.
View-based 3D object matching [53] has been investigated
for many years, where the hypergraph-based method in
Gao et al. [57] has shown the state-of-the-art performance. The
results in existing 3D object retrieval has shown the superority
of using multiviews on object representation.

Word Abstraction. Different from visual patterns,
works in [33]–[36] focus on abstracting the initial words into
a more compact representation in a supervised manner. For
instance, Perronnin et al. [33] integrated category labels to
adapt an initial vocabulary into several class-specific vocabu-
laries. Winn et al. [36] learned class-specific vocabularies from
an initial vocabulary by merging word pairs, in which the word
distribution is modeled by the Gaussian mixture model. How-
ever, the requirement of category labels restricts the scalability
of [33]–[36], especially given thousands categories or more. To
a certain degree, topic models like probabilistic Latent Seman-
tic Analysis [22] and Latent Dirichlet Allocation [23] can

be also treated as a generative, higher-level word abstraction.
However, super parameters are involved to control the topic
generation, which is also time consuming and unscalable. We
will quantitatively compare our CBoP descriptor to the state-
of-the-art topic descriptor [49] in Section V.

Compact Descriptor for Mobile Visual Search. With the
ever growing computation power of mobile devices, recent
works [20], [21], and [17] have proposed to directly extract
and send image descriptors on the mobile end to achieve a
low cost wireless transmission. To this end, local descriptors
in the literature like SIFT [37], SURF [38] or PCA-SIFT [39]
are “over sized”. For example, sending hundreds of such
descriptors per image typically costs more data throughput
comparing to sending the original image. One pioneer work
in [21] proposed an extremely compact local descriptor named
CHoG (Compressed Histogram of Gradients), which adopts
tree coding to compress the initial descriptor into approxi-
mately 60 bits. In such a case, assuming the local detector
outputs ∼1,000 interest points per image, the overall data
transmission is approximately 8KB, much less than sending
the query image (typically over 20KB). Recent works in [20]
and [17] stepped forward to directly compress the quantized
bag-of-words histogram instead of the local descriptor set. For
instance, Chen et al. [20] proposed to encode the position
differences of the sparse non-zero histogram bins, resulting in
an ∼ 2K B code per image for a vocabulary with 1 million
words, which is much more compact than CHoG. Ji et al. [17]
adopted boosting based supervised codeword selection to
build location-adaptive codebooks for mobile landmark search,
which achieves ∼ 60-bit descriptor per image with the help
of side information such as GPS tags or landmark labels.

Location Recognition. There has been a longstanding
history in vision-based location recognition. For example,
for city-scale landmark recognition, Schindler et al. [4] pre-
sented a location recognition system through geo-tagged video
streams with multiple-path search in the vocabulary tree [2].
Eade et al. [40] leveraged the vocabulary tree [2] based
visual matching for real-time loop closing. Irschara et al.
[41] adopted structure-from-motion to build 3D scene models
for street views, which also combined vocabulary tree [2]
based matching for simultaneously scene modeling and loca-
tion recognition. Xiao et al. [50] proposed to combine bag-
of-features with simultaneous localization and mapping to
further improve the recognition precision. And incrementally
vocabulary indexing is also explored in [51] to maintain a
landmark search system in a time varying database.

For worldwide landmark recognition, the IM2GPS sys-
tem [42] attempted to infer the possible location distributions
of a given query by visually matching geo-tagged landmarks.
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Fig. 3. Visualized examples of the point clouds for constructing visual pattern candidates. Exemplar landmarks are located at Peking Univ. Campus.

Kalogerakis et al. [43] further combined the single image
matching with sequential data to improve the recognition
accuracy. Zheng et al. [44] used a predefined landmark list
to crawl candidate images from image search engines, then
re-clusters and prunes these images to build a worldwide
landmark recognition engine.

III. DISCRIMINATIVE 3D PATTERN MINING

In this section, the 3D pattern mining and CBoP descriptor
design is presented. We deploy CBoP based on the bag-
of-words image representation as detailed in Section III-A.
Suppose we have M Target of Interest (ToI) in total, each
of which could be an object instance, a scene, a landmark
or a product. For each ToI, we also have a set of reference
images captured from different viewing angles. For generality,
we assume the viewing angle parameters, i.e. inter and intra
camera parameters, are unknown2. For each ToI, we first
introduce a 3D sphere coding scheme to generate the initial
pattern candidates, followed by a gravity-distance-based pat-
tern mining algorithm in Section III-B. Finally, patterns from
individual ToIs are pooled together to extract the Compact
Bag-of-Patterns (CBoP) as detailed in Section III-C.

A. Scalable Visual Search Preliminary

Following [4], [17], [20], and [41], we use Vocabulary Tree
(VT) [2] to build up the initial bag-of-words. VT adopts
hierarchical k-means to partition local descriptors extracted
from the image corpus into visual words. An h-depth VT with
b-branch produces m = bh words. In many state-of-the-art
systems m is typically at a million scale. Given a query image
Iq with J local descriptors L(q) = [L1(q), . . . , L J (q)], VT
quantizes L(q) by traversing from the root to a leaf of the

2Different from the previous works in supervised pattern mining, we build
the initial pattern candidates from images of the same object instance, rather
than from the same target category. However, our pattern mining approach is
general and also suitable for 2D patterns category-level supervision.

tree to find the nearest word for each descriptor. Therefore
L(q) is converted into an m-dimensional BoW histogram
V(q) = [V1(q), . . . , Vm(q)]. Given in total N reference image
{Ii }N

i=1, an optimal ranking should minimize

LossRank(q) =
N∑

i=1

Rank(i)Wi
(
V(q) − V(i)

)
(1)

where Rank(i) = ex p
(− posi tion(i)

)
is the ranking position

of Ii and Wi is the TF-IDF vector for V(i) [5]:

Wi = [ NV1 Ii

NIi

× log(
N

NV1

), . . . ,
NVm Ii

NIi

× log(
N

NVm

)] (2)

where Ni is the number of local descriptors in Ii ; NVj Ii the
number of local descriptors in Ii quantized into Vj ; N the total
number of images in the database; NVj the number of images

containing word Vj ;
NV j Ii
NIi

the term frequency of word Vj in

image Ii ; and log( N
NV j

) the inverted document frequency of

word Vj .

B. Discriminative 3D Pattern Mining

3D Sphere Coding. For each reference image Ii (i ∈
[1, nt ]) of the tth ToI (t ∈ [1, M]), suppose there are J
local descriptors L(i) = [L1(i), . . . , L J (i)] extracted from
Ii , which is quantized into an m-dimensional bag-of-words
histogram V(i) = [V1(i), . . . , Vm(i)]. We denote the spatial
positions of L(i) as S(i) = [S1(i), . . . , SJ (i)], where each
Sj (i) ( j ∈ [1, J ]) is the 2D or 3D spatial position of the jth
local descriptor. For each Sj (i), we scan its spatial k-nearest
neighborhood to identify all concurrent words

T j (Ii ) =
{

L j ′(i)|L j ′(i) ∈ L(i) & Sj ′(i) ∈ kNN
(
Sj (i)

)}
(3)

where T j (Ii ) (if any) is called an “transaction”. We denote all
transactions in Ii with order K as:

Tk(Ii ) = {
T j (Ii )

}
j∈[1,J ] (4)
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Transactions found for images [I1, . . . , Int ] in the tth ToI
with order k is defined as Tk(ToIt ) = {Tk(I1), . . . , Tk(Int )}.
The goal of pattern mining is to mine mt patterns from{
Tk(ToIt )

}K
k=1, i.e., Pt = {

P1, . . . , Pnt

}
from T oIt . And in

total we have
{
Pt

}M
t=1, which are subsequently used to generate

CBoP3.
While the traditional pattern candidates are obtained by

coding the 2D concurrences of visual words in individual
reference images, we propose to search the k nearest neigh-
bors in the 3D point cloud of each ToI. This point cloud
is constructed by structure-from-motion over the reference
images with bundle adjustment [18], which can be further
used in other view-based 3D object analysis applications [59].
Figure 3 shows several exemplar 3D point clouds of landmarks
as detailed in Section V.

Distance based Pattern Mining. Previous works in visual
pattern mining mainly resort to Transaction based Co-location
pattern Mining (TCM). For instance, works in [10], [11],
and [12] built transaction features by coding the k nearest
words in 2D4. A transaction in TCM can be defined by coding
the 2D spatial layouts of neighborhood words. Then frequent
itemset mining algorithms like APriori [19] are deployed to
discover meaningful word combinations as patterns, which
typically check the pattern candidates from orders 1 to K .

TCM can be formulated as follows: Let {V1, V2, . . . , Vm}
be the set of all potential items, each of which corresponds to
a visual word in our case. Let D = {T1, T2, . . . , Tn} be the set
of all transactions extracted as above, each is a combination
of items in V after spatial coding. For simplification, we use
i ∈ [1, n] to denote all transactions discovered with orders 1
to K in T oI1 to T oIM . Let A be an “itemset” for a given
transaction T, we define the Support of an itemset as

support(A) =
∣∣{T ∈ D|A ⊆ T}∣∣

|D| , (5)

If and only if support (A) ≥ s, the itemset A is defined as
a frequent itemset of D, where s is the threshold to restrict
the minimal support rate. Note that any two Ti and T j are
induplicated.

We then define the confidence of each frequent itemset as:

condifence(A → B) = support(A ∪ B)

support(A)

=
∣∣∣
{
T ∈ D|(A ∪ B) ⊆ T

}∣∣∣
∣∣{T ∈ D

∣∣A ⊆ T}| ,

(6)

where A and B are two itemsets. The confidence in Equa-
tion 6 is defined as the maximal likelihood that B is correct
in the case that A is also correct. The confidence-based
restriction is to guarantee that the patterns can discover
the minimal item subsets to represent the visual features at
order k ∈ [2, K ].

3Note that the k nearest neighbor could be either 2D or 3D. And it will be
refined later by a gravity distance metric.

4This spatial configuration can be further refined by incorporating the scales
of interest points, which imposes scale invariance into transactions [13]

To yield a minimal association hyperplane to bound A, an
Association Hyperedge of each A is defined as:

AH(A) = 1

N
confidence

(
(A − {Vi }) → Vi

)
. (7)

Finally, by checking all possible itemset combinations in D
from order 2 to K , the itemsets with support () ≥ s and
AH ≥ γ are defined as frequent patterns.

One important issue of TCM relates to the repeated pat-
terns in texture regions containing dense words. To address
this, Distance-based Co-location Pattern Mining (DCM) is
proposed with two new measures named participation ratio
(pr) and participation index (pi).

First, a R-reachable measure is introduced as the basis of
both pi and pr: Two words Vi and Vj are R-reachable when

dis(Vi , Vj ) < dthres, (8)

where dis() is the distance metric in the spatial space, such
as Euclidean and dthres is the distance threshold. Subse-
quently, for a given word Vi , we define its partition rate
pr(V, Vi) as the percentage of subset V − {Vi } that are
R-reachable:

pr(V, Vi ) =
π

(∣∣instance(V)
∣∣
)

∣∣instance(Vi )
∣∣ , (9)

where π is the relational projection operation (a function to
operation on instance(V)) with de-duplication. The partici-
pation index pi is defined as:

pi(V, Vi ) = minm
i=1

{
pr(V, Vi )

}
, (10)

where pi describes the frequency of subset V − Vi in the
neighborhood. Note that only item subsets with pi larger than
a give threshold is defined as patterns in DCM.

Gravity Distance R-reachable: In many cases, the Euclid-
ean distance cannot discriminatively describe the co-location
visual patterns, as the word discriminability and scale in item
construction are ignored. Intuitively, words from the same
scale tend to share more visual senses in item construction,
and more discriminative words also produce more meaningful
items. With this principle, we proposed a novel Gravity
Distance R-reachable (GD R-reachable) to incorporate both
cues. Two words Vi and Vj are GD R-reachable once Ri, j <
Crir j in the traditional DCM model, where ri and r j are the
local feature scales of Vi and Vj respectively, C is the fixed
parameter and Ri, j = dis(Vi , Vj ) is the Euclidean distance of
two words.

To help interpretation, we can image that every word has
a certain “gravity” to the other words, which is proportional
to the square of its local feature scale. If this gravity is larger
than a minimal threshold Fmin, we denote these two words as
GD R-reachable:

Fi, j = ε
π(ri )

2π(r j )
2

(Ri, j )2 , ε i s a constant

Fi, j > Fmin → ε
π(ri )

2π(r j )
2

(Ri, j )2 > Fmin → Ri, j < Crir j . (11)

Similar to DCM, the input of gravity-distance-based mining
is all instances of visual words. Each instance contains the
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Algorithm 1: Gravity distance based visual pattern mining

1

following attributes: original local features, visual word ID,
location and scale of this local feature (word instance).
To unify the description, we embed the word ID of each feature
with its corresponding location into the mining. Then, we run
the same procedure of DCM to mine co-location patterns.
Algorithm 1 outlines the work flow of our gravity distance
based visual pattern mining. Figure 4 shows some studied
cases of the mined patterns.

C. Sparse Pattern Coding

Sparse Coding Formulation. Given the mined pattern
collection P, not all patterns are equivalently important and
discriminative. Indeed, there are typically redundancy and
noise in this initial pattern set. However, how to design a
compact yet discriminative pattern-level features are left open
in the literature. In this subsection, we formulate the pattern-
level representation as a sparse pattern coding problem, aiming
to maximally reconstruct the original bag-of-words histogram
using a minimal number of patterns.

Formally speaking, let P = {P1, . . . , PL } be the mined
patterns with maximal order K . In online coding, given the
bag-of-words histogram V(q) = [V1(q), . . . , Vm(q)] extracted
from image Iq , we aim to encode V(q) by using a compact
yet discriminative subset of patterns, say P(q) ⊂ P. This is
formulated as seeking an optimal tradeoff between maximizing
the reconstruction ability and minimizing the coding length:

arg min
w

N∑

i=1

||V(i) − wT P(i)||2 + α||w||1, (12)

where P is the patterns mined previously, from which a
minimal set is selected to lossy reconstruct each bag-of-words
histogram V(i) as much as possible. w serves as a weighted
linear combination of all non-zero patterns in P, which pools
patterns to encode each V(i) as:

fP(i) = w1 P1 + w2 P2+, . . . , wm Pm , (13)

where [w1, wm ] is the learnt weighted vector to reconstruct
V(i) in Equation 12. Each w j is assigned to either 0 or
1, performing a binary pattern selection. The summed up
is operated as follows: First, we expand each transaction
to a full-length BoW, in which only words correspond-
ing to the itemset is non-zero. Then, these “expanded”
patterns are summed up, producing the final overall
BoW.

Learning with respect to Equation 12 and 15 are achieved
by spare coding over the pattern pool P. While guaranteeing
the real sparsity through L0 is intractable, we approximate a
sparse solution for the coefficients w using L1 penalty, which
results in a Lasso based solution [45].

Finally, we denote the selected pattern subset as Qselected,
which contains nselected patterns as [Q1, . . . , Qnselected ]. nselected

is typically very small, say one hundred. Therefore, each
reference or query image is represented as an nselected-bin
pattern histogram.

Supervised Coding. Once the supervision labels {Li }N
i=1

(e.g. category label or prediction) for reference image {Ii }N
i=1

are also available, we can further incorporate Li to refine the
coding of Equation 12 as:

arg min
w

N∑

i=1

||V(i) − (wT u)T P(i)||2 + α||w||1, (14)

where we integrate the supervised label {Li }N
i=1 into the coding

function of P for I (i) as:

(wT u)T P(i) = w1u1 P1 + w2u2 P2+, ..., wmum Pm . (15)

[u1, . . . , um ] adds the prior distribution of patterns to weight
the selection of [w1, . . . , wm], where u j is the discriminability
of the jth pattern based on its information gain to Li :

u j = H (Li) − H (Li |Pj ) (16)

Here, H (Li) is the prior of label Li given Ii , H (Li |Pj ) is the
conditional entropy of label Li given Pj , which is obtained
by averaging the intra-class observation of Pj divided by the
inter-class distribution of Pj :

H (Li |Pj ) = p(Pj |L j )∑
l p(Pj |Ll)

. (17)

In this sense, the definition of supervised label Li is fairly
flexible, e.g., category labels or positive/negative tags, which
also allows the case of missing labels.

In terms of compact visual descriptor, CBoP preserves the
higher-order statistics comparing to the transitional non-zero
coding scheme [20] as well as the state-of-the-art boosting-
based word selection scheme [17]. Different from all previous
unsupervised descriptor learning schemes [10]–[13], and [20],
CBoP further provides a supervised coding alternative as an
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Fig. 4. Case study of the mined patterns between the gravity distance based pattern mining and the Euclidean distance based pattern mining.

Fig. 5. The proposed low bit rate mobile visual search framework using CBoP descriptor. Different from previous works in near-duplicate visual search, we
emphasize on extremely compact descriptor extraction directly on the mobile end. Our CBoP descriptor is typically of hundreds of bits. To the best of our
knowledge, the CBoP is the most compact descriptor with comparable discriminability to the state-of-the-art visual descriptors [2], [20], [21], [26].

optional choice, which yet differs from the work in [17] that
demands online side information from the query.

IV. CBOP FOR LOW BIT RATE MOBILE VISUAL SEARCH

We demonstrate the advantages of the proposed CBoP
descriptor in the scenario of low bit rate mobile landmark
search. Different from sending the query image compact
descriptors are directly extracted and sent from the mobile end
to reduce query delivery latency. Such descriptor(s) is expected
to be compact, discriminative, and can be efficiently extracted.

Search Pipeline: Figure 5 shows the work flow of using
our CBoP descriptor in this prototype. The algorithm extracts
local features from the query image, quantizes them into bag-
of-words, scans 2D spatial nearby words to generate potential
patterns, and encodes the discovered patterns into CBoP 5. We
further compress this descriptor into a bin occurrence (hit/non-
hit) histogram with residual coding.

In the remote server, the decoding procedure is performed:
First, a difference decoding is conducted to obtain CBoP
histogram, which is then recovered into a bag-of-words his-
togram by summing up all non-zero patterns using their word
combinations with weights:

V(q)recovered = wT Q =
nselected∑

i=1

wi Qi (18)

The decompressed BoW is subsequently sent to the VT-based
search system where the ranking is conducted. Note that the
spatial layouts of words can be also sent to conduct re-ranking.

Efficiency. In our current implementation, given a query
image, we only need approximately 2 seconds to extract the
CBoP descriptor. By using visual word pruning technique

5Note that while the patterns are built offline through 3D sphere coding,
in online search we use their 2D codes since we do not have a structure
correspondence from the query image to the reference point clouds. Not doubt,
this introduces certain distortion. However, as shown in our experiments,
superior performance over state-of-the-arts can be still guaranteed.

(e.g. only maintains the visual word centroid features as well
as an approximate radius of each word), the storage cost of
VT is also limited.

Contextual Learning. There is cheaply available side
information in the mobile end, such as GPS tags, compass
direction and base station identity tag. Exploiting the above
side information with our supervised coding (Section III-C),
the extracted CBoP can be further refined, as detailed in the
subsequent experiments (Section V).

V. QUANTITATIVE RESULTS

A. Data Collection

PhotoTourism. First, we perform the patch level validation
over the the image patch correspondence benchmark6. It
contains over 100,000 image patches with correspondence
labels generated from the point clouds of Trevi Fountain
(Rome), Notre Dame (Paris) and Half Dome (Yosemite), all
of which are produced by the Photo Tourism system [18].
Each patch correspondence consists of a set of local patches,
which is obtained by projecting a given 3D point from the
point cloud back to multiple reference images and cropping
the corresponding salienct regions7. Some exemplar patches
obtained through the above procedure are shown in Figure 6.

10M Landmark Photos. To validate our CBoP
descriptor in the scalable image retrieval application,
we have also collected over 10 million geo-tagged photos
from both Flickr (http://www.Flickr.com) and Panoramio
(http://www.Panoramio.com) websites. We crawled photos
tagged within five cities i.e. Beijing, New York City, Lhasa,
Singapore and Florence. This dataset is named as 10M
Landmarks. Some exemplar photos are shown in Figure 7.

We use k-means clustering to partition photos of each city
into multiple regions based on their geographical tags. For

6http://phototour.cs.washington.edu/datasets/
7Since this dataset contains the ground truth patch correspondences as well

as the point clouds from [18] and [48], we will skip the the 3D sphere coding
(Section III) in the following quantitative tests.
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Fig. 6. Exemplar local patches in the PhotoTourism dataset. Each patch is
sampled at patch size 64 × 64 with a canonical scale and orientation. For
details on how the scale and orientation is established, please refer to [48].
These ground truth correspondences are collected from the structure-from-
motion based point cloud construction, through the back projection of the
matched points.

each city, we select the top 30 densest regions as well as
30 random regions. We then invite a group of volunteers to
identify one or more dominant landmark views for each of
these 60 regions. For an identified dominant view, all their
near-duplicate photos are manually labeled in its belonged
region and nearby regions. Eventually, we have 300 queries as
well as their ground truth labels (corrected matched photos)
as our test set.

PKUBench. We also extend the validation to
the typical mobile search scenario over PKUBench
(http://61.148.212.146:8080/landmark/benchmark), which
is a public available mobile visual search benchmark. This
benchmark contains 13,179 scene photos organized into
198 landmark locations, captured by both digital and phone
cameras. There are in total 6,193 photos captured from digital
cameras and 6,986 from phone cameras respectively. We
recruited 20 volunteers in data acquisition. Each landmark is
captured by a pair of volunteers with a portable GPS device
(one using digital camera and the other using phone camera).
Especially, this benchmark includes four groups of exemplar
mobile query scenarios (in total 118 images):

• Occlusive Query Set: 20 mobile queries and 20 corre-
sponding digital camera queries, occluded by foreground
cars, people and buildings.

• Background Cluttered Query Set: 20 mobile queries and
20 corresponding digital camera queries, captured far
away from a landmark, where GPS search yields worse
results due to the signal bias of nearby buildings.

• Night Query Set: 9 mobile phone queries
and 9 digital camera queries, where the

photo quality heavily depends on the lighting
conditions.

• Blurring and Shaking Query Set: 20 mobile queries with
blurring or shaking and 20 corresponding digital camera
queries without any blurring or shaking.

B. Evaluation Criteria

Effectiveness. We use mean Average Precision (mAP) to
evaluate our performance, which is also widely used in the
state-of-the-art works [1], [3], [4], [21], [26]. mAP reveals the
position-sensitive ranking precision by the returning list:

M AP@N = 1

Nq

Nq∑

i=1

(

∑N
r=1 P(r)rel(r)

min(N, # − relevant − images)
)

(19)
where Nq is the number of queries; r is the rank, N the number
of related images for query i ; rel(r) a binary function on the
relevance of r ; and P(r) the precision at the cut-off rank of r .

Note that here we have a min operation between
the top N returning and # − relevant − images. In
large-scale search, there are always over hundreds of
ground truth relevant images to each query. There-
fore, dividing by # − relevant − images would result
in a very small MAP. Alternatively, a better choice
is to divide by the number of returning images. We use
min(N, # − relevant − images) to calculate MAP@N8.

Efficiency. We evaluate the efficiency using the descriptor
compactness, i.e., the size of the descriptor stored in the
memory or hard disk (for instance 1KB per descriptor etc.).

Extreme Cases. We show our performance in several
extreme mobile visual search scenarios, i.e., blurred queries
or occlusive queries, as detailed in Section V-G.

C. Baselines

• Bag-of-Words: Transmitting the entire BoW incurs the
lowest compression rate. However, it provides an mAP
upper bound to the other BoW compression strategies.
Note that in practice considering only non-zero words
are transmitted, more practical solutions such as Tree
Histogram Coding (detailed later) would be used.

• 2D Patterns: Instead of obtaining the initial pattern
candidates through 3D sphere coding, using the point
cloud, we adopt the traditional 2D spatial coding from
individual reference images as initially proposed in [13].
This baseline validates the effectiveness of our proposed
3D sphere coding strategy.

• LDA [23]: One straightforward alternative in abstracting
compact features from the bag-of-words histogram is the
topic model features [7], [22], [23]. In this paper, we
implement the well-used Latent Direchellet Allocation
(LDA) based feature in [23] as our baseline.

• CHoG [21]: We also compare our CBoP descriptor to
the CHoG local descriptor, which is a state-of-the-art
alternative as introduced in [21].

8In the case that N is smaller than the number of labeled ground truth,
we can simplify min(N, # − relevant − images) with N in the subsequent
calculation. The min(N, # − relevant − images) operation is a common
evaluation in the TRECVID evaluation (http://trecvid.nist.gov/).
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Fig. 7. Exemplar photos collected from Flickr and Panoramio to construct our 10M landmarks dataset.

• Tree Histogram Coding [20]: In terms of image-level
compact descriptor, we further implement the Tree His-
togram Coding scheme proposed by Chen et al. [20],
which is a lossless BoW compression that uses residual
coding to compress the BoW histogram9.

• LDVC [17]: Finally, we compare our CBoP descriptor
with the state-of-the-art compact descriptor to the best
of our knowledge [17], which adopts location discrimi-
native coding to boost a very compact subset of words.
To compare to our unsupervised CBoP, we used reference
images from the entire dataset (i.e. landmark photos from
the entire city) to train the LDVC descriptor. To compare
to our supervised CBoP, we adopt the location label to
train a location sensitive descriptor as in [17].

D. Implementation Details

Settings. For each reference dataset, there are four steps
to build our CBoP offline: Step I : Vocabulary Construction,
Step II : 3D Sphere Coding, Step III : Visual Pattern Mining,
and Step IV : CBoP construction. For both 10M Landmarks
and PKUBench, we run bundle-based structure-from-motion
to obtain the patch correspondence set and transaction config-
urations and do pattern mining and CBoP construction, which
covers Step I to Step IV. For PhotoTourism, it already provides
the patch correspondence set as well as the point clouds, which
can be directly treated as the input of our CBoP descriptor
learning. Therefore, only Step IV and the mining part of
Step III are involved.

Million Scale Vocabulary. We adopt dense sampling to
extract local features and described by SIFT [37]. We then
adopt the Vocabulary Tree model [2] to build our initial
visual vocabulary with inverted indexing10. Figure 8 shows
how different codebook sizes affect the pattern mining results.
In conclusion, we set the branching factor b = 10 and the
tree depth h = 6 in our final implementation, which produces
approximate 0.1M words.

Visual Pattern Mining. Structure from Motion: Given the
reference images captured at multiple viewing angles for

9Please note that, THC is a lossless compression, which can be decoded
as using the original visual words as query. In THC, this is done by only
recording the non-zero word frequencies with their positive difference (using
difference coding). We compare to THC to see the mAP variations of using
the original visual words from a query image vs. using the set of visual words
decoded from the visual patterns.

10We adopt the VT model to build the initial bag-of-words histograms,
but our solution is general enough for other vocabularies such as k-means
clustering [1], Approximate K-Means [3] and their variances [25], [3] etc.

Fig. 8. The influence of codebook size on the CBoP based mAP performance.

each ToI, we adopt structure-from-motion to simultaneously
estimate the 3D point matching and the intrinsic camera
parameters of these images. Figure 9 shows several exam-
ples of 3D point clouds estimated by structure-from-motion.
Similar to [18], we extract interest points and match them
between images using SIFT [37]. Then, candidate matches are
done using a symmetry criterion and the initial fundamental
matrices between image pairs are estimated by RANSAC plus
bundle adjustment [18].

Word Quantization. We project each virtual 3D point back
into individual images, if and only if this point was randomly
sampled at the very beginning and retained after structure-
from-motion estimation. We sample 64 × 64 pixels around
each interest point as input patches, which are quantized into
visual words. Finally, for each 3D virtual point, the majority
of the visual word bin (there could be multiple bins since
these patches could be quantized into different words) from
its reference image patches is selected to represent the word
identity of this 3D point.

3D Sphere Coding. Subsequently, for each 3D virtual point,
we scan its K spatial neighborhood in 3D to build the initial
itemset collection.

Visual Pattern Mining based on GD R-reachable DCM.
We adopt the DCM based pattern mining scheme with GD
R-reachable distance (Section III) to mine visual patterns
from each ToI. The ensemble of all mined patterns forms
the pattern pool for the subsequent sparse pattern coding
(The quantitative comparisons between the Euclidean distance
and Gravity distance are detailed later.).

Sparse Pattern Coding Implementations. The sparsity
factor α in Section III-C acts as a tradeoff between the recon-
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Fig. 9. Examples of the reconstructed point clouds from touristic landmarks in Peking University.

struction capability of the original bag-of-words histogram and
the compactness of the CBoP descriptor. For simplicity, we
directly adopt a ten-fold cross validation on our training set
to figure out the best α for both offline and online coding.

E. Insights Into CBoP

Pattern Discriminability. We investigate the rationality of
CBoP by running boosting based feature selection over both
visual patterns P and visual words V. Ideally, the mined
patterns should be more discriminative than the original words
when measuring them together. Our evaluation procedure is
similar to the feature selection approach as described in [17]:
First, we sample a set of training images ([I′

1, . . . , I′
nsample

]) and
use each image to search similar images by its bag-of-words
histogram, which results in the following training set:

Query(I′
1) = [A1

1, A1
2, . . . , A1

R ]
... = ... (20)

Query(I′
nsample) = [Ansample

1 , A
nsample
2 , . . . , A

nsample
R ]

where A j
i is the ith returning of the jth query. We expect the

boosted words/patterns from P ∪ V should maximally retain
[A j

1, A j
2, . . . , A j

R] for each jth query.
To this end, we define [w1, . . . , wnsample ] as an error weight-

ing vector to the nsample images used as pesudo query, which
measures the ranking consistency loss in the word/pattern
selection. We further define the selected word/pattern subset
as C. At the tth boosting iteration, we got the current (t − 1)
words/patterns as Ct−1. To select the next tth discriminative
word or pattern from P ∪ V, we estimate the ranking preser-
vation of the current selection Ct−1 as:

Loss(I′
i ) = wt−1

i

R∑

r=1

Rank(A1
r )WA1

r
|| f (Ct−1

I′
i

), VAi
r
||2 (21)

where i ∈ [1, nsample]; Rank(Ai
r ) is the current position of

the originally ith returning of query I′
i ; f () the bag-of-words

recovery function similar to Equation 18. [wt−1
1 , . . . , wt−1

nsample
]

the (t-1)th error weighting, which measures the ranking loss

Fig. 10. Percentage of visual patterns left in the feature pool (visual words +
visual patterns) after the Boosting based selection. Here, a lower percentage
means a higher percentage of patterns being selected into the final CBoP
descriptor.

of the jth query ( j ∈ [1, nsample]). Then, the overall ranking
loss is:

LossRank =
nsample∑

i=1

wt−1
i

R∑

r=1

Rank(Ai
r )WAi

r
|| f (CI′

i ), VAi
r
||2
(22)

The next word/pattern Ct is selected based on:

Ct = arg min
j

nsample∑

i=1

wt−1
i

R∑

r=1

Rank(Ai
r )WAi

r

×|| f ({C + C j }I′
i ), VAi

r
||2 (23)

Subsequently, we update the error weighting of each wt−1
i as

the corresponding loss of each ith query in Equation 23.
Figure 10 shows the percentage of visual patterns learnt by

using our Boosting based selection. A pattern level feature is
an important proposition in the boosted feature.

Pattern Order. Another issue is to determine the max
pattern order K , which controls the tradeoff between the time
efficiency and the CBoP effectiveness. To a certain degree,
it also controls the tradeoff between the descriptor generality
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TABLE I

MEMORY (MB) REQUIREMENTS FOR CBOP AND OTHER

ALTERNATIVES ON THE MOBILE END

Fig. 11. mAP variances with respect to the maximal pattern order K . For
each K , a fixed CBoP length 1,000 is applied to yield the best performance.

and the descriptor discriminability. For instance, higher-order
patterns would lead to the over fitted descriptor learning over
the training set11. By increasing the maximal pattern order,
the computation cost would be higher. Figure 11 shows how
the mAP varies with respect to different maximal pattern
order K . It is clear that from the results of pattern orders 3
and 4, the order influence is limited.

Note that VT compression is applied: First, we applied [52]
to do VT pruning, in which most of less useful subtrees
are pruned out in the online quantization. Second, we have
observed that the central SIFT points of nearby words in
VT are typically repeatable in many dimensions. Therefore,
difference coding is applied to further compress word centers
at each layer.

F. Quantitative Performance

Efficiency Analysis. We deploy the low bit rate mobile
visual search prototype on HTC Desire G7 as a software
application. The HTC DESIRE G7 is equipped with an
embedded camera with maximal 2592 × 1944 resolution,
a Qualcomm MSM7201A processor at 528MHz, a 512M
ROM + 576M RAM memory, 8G extended storage and
an embedded GPS. Tables I and II show the memory and
time cost with comparisons to state-of-the-arts in [20], [21],
and [26]. In our CBoP descriptor extraction, the most time-
consuming part is the local feature extraction, which can be
further accelerated by random sampling, instead of using the
interest point detectors [21], [37].

11In an extreme case, if there is only one training image, we can simply
retain all non-zero words into one pattern, producing a 1-bit descriptor for
this ToI.

TABLE II

TIME (SECOND) COST FOR CBOP AND OTHER ALTERNATIVES ON THE

MOBILE END

Fig. 12. Query example comparisons in extreme mobile query scenarios
including Occlusive Query Set, Background Cluttered Query Set, Night Query
Set and Blurring and Shaking Query Set in the PKUBench dataset.

Fig. 13. Distortion analysis of retrieval performance versus query compres-
sion rates, as well as the comparisons to [20], [21], and [26] using the ground
truth query set (the pink circle corresponds to the THC [20]).

Rate Distortion Analysis. To compare our CBoP descrip-
tors to the baselines [20], [21], [26], we perform the rate distor-
tion analysis in Figure 13, where the rate means the descriptor
lengths of our CBoP descriptor and other alternatives, while
the distortion is measured by the search performance drop in
terms of mAP with respect to different methods. As shown in
Figure 13, our CBoP descriptor has achieved the best tradeoff
in the rate distortion evaluation. It reports the highest compres-
sion rate with a comparable distortion (by viewing Figure 13



3110 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 7, JULY 2014

Fig. 14. Visualized examples of sparse and dense point clouds in the San Francisco Landmark Dataset [58]. From left to right: Sparse point cloud, overhead
view of point clouds on the street, dense point cloud example 1, dense point cloud example 2.

Fig. 15. The correlation between the percentages of sampled 3D points and
the retrieval mAP using CBoP.

horizontally), as well as the highest ranking performance
with a comparable compression rate (by viewing Figure 13
vertically). In addition, without supervised learning, our CBoP
descriptor can still achieve better performance comparing to
all alternatives and state-of-the-arts [20], [21], [26].

Note that the baselines of 2D Patterns, LDA, and THC
are all based on 2D images rather than 3D point clouds.
Therefore, the superior performance over these baselines has
demonstrated the effectiveness of mining patterns from 3D
point clouds.

Extreme Mobile Query Scenarios. Figure 12 further shows
five cases of imperfect mobile visual query scenarios in
PKUBench, including Occlusive Query Set, Background Clut-
tered Query Set, Night Query Set and Blurring and Shaking
Query Set. Our CBoP descriptor achieves identical or better
performance, due to its higher-order statistics to capture the
Eigen structure of scene/object against photographing changes.
Figure 16 shows the performances of our CBoP and other
alternatives in the extreme mobile query scenarios in the
PKUBench. As in Figure 16, it is obvious that the mined
patterns are much more discriminative even comparing to
the BoW features, in terms of its discriminability between
foreground and background words, as well as the fact that
most patterns are located in the most discriminative regions
from the target of interest.

On the Application Scenario of CBoP: Although our
approach is designed for large-scale mobile landmark search,
not every landmark dataset works well as our case. Especially,

Fig. 16. mAP comparisons of our CBoP descriptor (blue bar) to its original
BoW features (red bar) in the extreme mobile query scenarios in PKUBench.

given our 3D sphere coding from the 3D point clouds, the
dataset itself has to involve close and related viewing angles
for every landmark. This is the case when preparing our
landmark dataset (the 10M Landmark Dataset), in which
the reference images of each landmark are captured from
different but overlapped viewing angles. However, it is not
always true for some other datasets such as the San Francisco
dataset [58], which depends on the LadyBug scanning routes.
For instance, buildings located at the cross-street should have
more overlapped viewing angles hence the point clouds are
dense (and therefore more visual patterns could be discovered),
while building on the street might be not. As shown in
Figure 14:

On the Sparsity of Point Clouds: Another practical issue
would be influence of point cloud sparsity, which intuitively
would affect the search performance of using CBoP descriptor.
As shown in Figure 15, we progressively reduce (subsample)
the number of 3D points in building upon the point clouds
and evaluate the retrieval mAP degeneration. It is obvious
that there is a significant drop when retaining about less than
30% points, while the performance remains stable with >50%
points.

G. Case Study and Visualized Examples

Visualized Search Results with Patterns. Figure 17 further
shows the performance of using CBoP histogram for the
mobile visual search in our 10M Landmarks dataset, with
comparisons to both bag-of-words based representation as well
as 2D pattern features. In Figure 17, our CBoP achieves very
comparable search accuracy with a very limited number of
histogram bins, e.g. hundreds, in contrast to the million-scale
BoW histogram.
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Fig. 17. Case study of retrieval in the 10M Landmarks. The first image
in each row is the query, and the right hand side shows retrieval results of:
1. CBoP, 2. 2-dimensional CBoP, and 3. BoW. Note that the red rectangle
indicates an incorrect retrieval returning.

VI. CONCLUSION

We have proposed to mine discriminative visual patterns
from 3D point clouds, based on which we learn a Compact
Bag-of-Patterns (CBoP) descriptor. The 3D point clouds based
mining schemes alleviates the ill-posed pattern configurations
from the 2D photographic statistics of individual images.
Beyond existing pattern level representation, the proposed
CBoP offers a compact yet discriminative visual representa-
tion, which significantly contributes to low bit rate mobile
visual search.

To discover more precise pattern configurations in the
real-world, we propose to reconstruct 3D point clouds of
search objects by using structure-from-motion based on bundle
adjustment, in which a 3D sphere coding is applied to precisely
capture the co-location statistics of words in 3D point clouds.
A gravity-based distance is introduced to mine co-location
patterns, which incorporates the spatial distances of visual
words to derive the patterns containing more discriminative
words. Based upon the mined patterns, we further propose to
build a compact yet discriminative image representation at the
level of meaningful patterns, named Compact Bag-of-Patterns
(CBoP). CBoP adopts a sparse coding to pursue a maximal
reconstruction of the original bag-of-words histograms with a
minimal pattern coding length. Finally, labels can be further
incorporated to improve the discriminability of CBoP descrip-
tor in a supervised manner.

We have validated the proposed CBoP descriptor in a low
bit rate mobile landmark search prototype. We quantitatively
demonstrate the advantages of CBoP on both benchmark
datasets and a 10-million landmark photo collection. Our
CBoP descriptor has outperformed the state-of-the-art pattern

mining schemes [13], topic features [23], and compact descrip-
tors [17], [20], [21].
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