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ABSTRACT

In this paper, a practical video coding scheme is developed to realize
state-of-the-art video coding efficiency with lower encoder complex-
ity at low bit-rate, while supporting standard compliance and error
resilience. Such an architecture is particularly attractive for wireless
visual communications. At the encoder, multiple descriptions of a
video sequence are generated in the spatio-temporal domain by tem-
poral multiplexing and spatial adaptive downsampling. The resulting
side descriptions are interleaved with each other in temporal domain,
and still with conventional square sample grids in spatial domain. As
such, each side description can be compressed without any change to
existing video coding standards. At the decoder, each side descrip-
tion is first decompressed, and then reconstructed to original resolu-
tion with the help of the other side description. In this procedure, the
decoder recover the original video sequence in a constrained least
squares regression process, using 2D or 3D piecewise autoregres-
sive model according to different prediction modes. In this way, the
spatial and temporal correlation is sufficiently explored to achieve
superior quality. Experiment results demonstrate the proposed video
coding scheme outperforms H.264 in rate-distortion performance at
low bit-rates and achieves superior visual quality at medium bit-rates
as well.

Index Terms— Low bit-rates, mode dependent, adaptive regres-
sion, wireless visual communications

1. INTRODUCTION

In recent years, the availability of inexpensive hardware such as
CMOS cameras that are able to ubiquitously capture visual content
from the environment has fostered the development of Wireless Vi-
sual Sensor Networks (WVSNs). It has developed as a new tech-
nology with many potential applications, ranging from mobile mul-
timedia to security monitoring.

Unlike PCs or the Internet, which are designed to support all
types of applications, WVSNs are usually mission driven and ap-
plication specific. The explosive growth of diverse visual sensor
applications is calling for video coding technology capable of deal-
ing with the associated harsh operating conditions. These contain
advances in understanding of resource-deficient wireless communi-
cations including constrains on energy and bandwidth, the integra-
tion of efficient video coding techniques, and the development of
advanced error resilience technique to allow a reliable transmission.

There exists a vast literature on video coding techniques. Tradi-
tional video compression standards, such as H.264/AVC, are based

on the idea of prediction coding to exploit spatio-temporal correla-
tions. Although achieving the state-of-the-art rate-distortion perfor-
mance, it may not be suited for low-cost multimedia sensors since
predictive coding requires complex encoders and entails high energy
consumption. Besides, the prediction coding system also causes
inter-frame dependency in decompression, which results in error
propagation for an error-prone channel. Another approach in con-
ventional wisdom is distributed video coding (DVC) [1]. Within
the framework, the traditional balance of complex encoder and sim-
ple decoder can be reversed. Moreover, DVC has an inbuilt robust-
ness to channel losses because there is a duality between distributed
source coding and channel coding. Clearly, such algorithms are very
promising for WVSNs. However, despite all the research efforts ded-
icated to DVC, the current systems still fail to meet the compression
efficiency of their predictive coding counterparts.

To meet all the strict requirements, new video coding paradigms
for wireless visual communications need to be considered. Wisdoms
on the emerging compressive sensing (CS) theory [2] gives us some
inspiration. On one hand, it shows that it is possible, at least theoret-
ically, to obtain compact signal representation by a greatly reduced
number of random samples. Several successful algorithms in image
coding demonstrate the validity of this theory [4]. On the other hand,
the fact that most natural video frames have strong spatio-temporal
correlations suggests the possibility of interpolation-based compact
representation of video signals. In this way, video source needed to
be compressed and transmitted is significantly reduced, so that it can
efficiently ease the burden of the encoder and wireless transmission
channel, and extend the life of wireless sensors.

With the above motivation, in this paper, we propose a stan-
dard compliance low bit-rate video coding scheme with relatively
lower encoder complexity. As illustrated in Fig. 1, by temporal mul-
tiplexing and spatial adaptive downsampling we can obtain two side
descriptions of the original video signals. The resulting two side
descriptions remain a conventional square sample grid, and thus it
can be compressed and transmitted without any change to current
video coding standards and systems. This property makes the pro-
posed scheme more practical and general. At the decoder, each side
description is first decompressed, and then reconstructed to original
resolution with the help of the other side description. In this pro-
cedure, the decoder recovers the original video sequence in a con-
strained least squares regression process, using 2D or 3D piecewise
autoregressive model depending on different prediction modes. If
only one of the two descriptions is received, we also can produce
lower, but still acceptable, quality reconstructions. Therefore, the
proposed scheme has the error resilience ability to the error-prone



Fig. 1. The framework of the proposed video coding scheme

wireless channels. This manner is similar with multiple description
coding [3].

The rest is organized as follows. Section II presents the pro-
posed lightweight encoder. Section III details the design of decoder.
Section IV presents some experimental results. Section V concludes
the paper.

2. LIGHTWEIGHT ENCODER

In the encoder design, we propose a novel lightweight approach
called temporal multiplexing with spatial adaptive downsampling.
First, the input video frames are split by a simple multiplexer into
odd and even side descriptions, each of which contains odd and even
frames respectively. Each frame in two descriptions is then per-
formed spatial downsampling to further compact the video signals.
Finally, the two low-resolution (LR) descriptions are compressed by
any third-party encoder (e.g., H.264) and transmitted to the destina-
tion by wireless channel.

For spatial downsampling, we choose not to perform uneven ir-
regular down sampling of a video frame according to local spatial or
frequency characteristics. Instead, we stick to conventional square
pixel grid by uniform spatial down sampling of the frame with a fac-
tor of two. Yet the simple uniform downsampling scheme is made
adaptive by a directional low-pass prefiltering step prior to down-
sampling. This manner is the same as that in [4]. The other purpose
of this preprocessing is to induce a mechanism of collaboration be-
tween the spatial uniform downsampling process at the encoder and
optimal upconversion process at the decoder. The sampling loca-
tions of odd and even descriptions are different, which are carefully
designed to make the resulting LR side descriptions interleave with
each other on HR sample grid in the temporal domain, as illustrated
in Fig. 2. In this way, we can introduce structure correlation for two
descriptions.

Fig. 2. Uniform downsampling with temporal multiplexing. (A)
the original frame, (B) downsampled version (blue points) for odd
frames; (C) downsampled version (black points) for even frames.

Now we can see downsampling can efficiently ease the burden of
encoder and wireless channel by greatly reducing the amount of data
needed to processing. In this way, it naturally extends the lifetime of
the WVSNs. Meanwhile, since a uniform downsampling scheme is
chosen, the generated two descriptions will constitute two LR video
sequences, which can be compressed to further reduce the data rate
by using any standard encoder (e.g. H.264). Therefore, the whole
system remains standard compliant and practical.

3. MODE-DEPENDENT SOFT DECODING BY
MODEL-BASED ADAPTIVE REGRESSION

At the decoder, the two side descriptions are individually decodable
and mutually refinable. In this section, we will detail the decoder
design.

3.1. The Interpolation Model

Let y be the low-pass filtered, down-sampled and compressed frame.
The vector y ∈ ZM consists of M LR pixel values in a given lex-
icographical order, where Z is an integer alphabet from which the
pixel values are drawn. What we want to do is to recover the under-
lying HR frame x ∈ ZN , N = 4M . The formation of y from x is
modeled as:

y = DHx+ n, (1)

where H is the low-pass filtering operation and D is the downsam-
pling process. The term n is the quantization noise in compression.
In what follows we develop a model-based reconstruction approach
to perform up-sampling, inverse filtering and denoising jointly.

Reconstruction of x from y is inherently ill-posed. The perfor-
mance of the reconstruction algorithm can be greatly improved if a
good adaptive model is integrated into estimation. Motivated by the
geometric constraint of edges and motion trajectory, we propose to
use three-dimensional piecewise autoregressive (3D-PAR) model for
video signals:

x(i, t) =
∑

(u,k)∈S(i,t)

αu,ki,t x(i+ u, t+ k) + n(i, t), (2)

where i is spatial location and t is the frame number; S(i, t) is the
spatio-temporal support of the 3D-PAR model; αu,ki,t are the model
parameters, and n(i, t) is a random perturbation independent of
video signal. Specially, we introduce two 6-order 3D-PAR models in
our design, as illustrated in Fig.3. One is the diagonal model AR×
which consists of four 8-connected spatial neighbors and two tempo-
ral neighbors, and the other is the axial model AR+ which consists
of four 4-connected spatial neighbors and two temporal neighbors.



3.2. Mode Dependent Soft Decoding

We integrate the 3D-PAR model into the solution of the inverse prob-
lem as formulated in Eq. (1). In a local window S, our task is to
jointly estimate the parameters of the interpolation model and the
block of HR pixels x ∈ S such that the estimated model can opti-
mally fit the estimated x. Now the HR frame reconstruction from
a compressed LR frame can be stated as the following constrained
optimization problem:

min
x,α

∑
i∈W
‖x(i, t)−

∑
(u,k)∈S(i,t)

αu,kx(i+ u, t+ k)‖2,

s.t. ‖y − DHx‖2 < σ2
n(r),

(3)

where σ2
n(r) is the energy of the quantization noise of the com-

pressed LR frame at bit rate r. Let L be the number of the LR pixels
inside S, ‖y − DHx‖2 < σ2

n(r) corresponds to L inequality con-
straints.

If pixels in the local window S have weak temporal correlation
with neighboring frames, such as S is a occlusion region, the ac-
curacy of estimation will degrade heavily due to the introduction of
uncorrelated temporal neighbors. At such a case, 2D-PAR should
be utilized instead of 3D-PAR. How to adaptively choose 2D or 3D
model is key to the performance of frame reconstruction. Accord-
ing to the statistical duality between LR frame and its HR counter-
part, the prediction mode generated in LR descriptions compression
could provide us some useful prior knowledge. In accordance with
the H.264 standard, the proposed reconstruction algorithm can be
divided into four modes: Intra, Skip, Inter-P, Inter-B.

Fig. 3. Two used 6-order 3D-PAR model. The central pixel is in
red, the spatial neighbors are in blue, and the temporal neighbors are
in black which are aligned by MVs.

For Intra mode, the problem of frame reconstruction degrades
to spatial image interpolation. The upconversion is based on the
diagonal and axial 2D-PAR image models and on the deconvolution
of the directional low-pass prefiltering. Incorporating these two PAR
models into the original nonlinear estimation framework, we state
the task of upconversion as the following constrained least squares
problem:

min
x,a,b


ζ×

∑
i∈W

∥∥x(i, t)− aTs s×(i, t)
∥∥2+

ζ+
∑
i∈W

∥∥x(i, t)− bTs s+(i, t)
∥∥2 + λ ‖y − DHx‖2


(4)

where s×(i, t) and s+(i, t) consist of four 8-connected and four 4-
connected spatial neighbors of x(i, t) in the HR image, as and bs
are model parameters of diagonal and axial models, ζ× and ζ+ are
fusion weights to combine the modeling strength of the two PAR

models. Note that the side decoder is performed in the same way as
the Intra mode.

For Skip mode, LR pixels in the forward frame t − 1 can be
directly copied to the current sample grid to construct a quincunx
lattice. With the quincunx lattice, Skip mode performs spatial inter-
polation to estimate other missing pixels. The optimization formula-
tion is the same as Eq. (4), while with 2L inequality constraints since
two times LR samples can be available. The increased constraints
can provide more accurate estimation from the solution space.

For Inter-P and Inter-B mode, motion information is available to
facilitate the task of resolving intensity uncertainty of video signals
by exploiting the fundamental tradeoff between spatial and tempo-
ral correlation. The current pixel is approximated as the weighted
combination of samples within its spatial neighborhoods as well as
the temporal neighbors aligned by motion vectors. The task of up-
conversion can be stated as the following constrained least squares
problem:

min
x,a,b


ζ×

∑
i∈W

∥∥x(i, t)− (aTs s×(i, t) + aTt t(i, t))
∥∥2+

ζ+
∑
i∈W

∥∥x(i, t)− (bTs s+(i, t) + bTt t(i, t))
∥∥2

+λ ‖y − DHx‖2

 ,

(5)
where as and bs are spatial model parameters along diagonal and
axial direction; at and bt are temporal model parameters along the
motion vector; t(i, t) is temporal reference sample set including for-
ward reference sample for the Inter-P mode and bi-directional refer-
ence samples for the Inter-B mode.

3.3. Model Parameters Estimation

The accuracy of model parameters estimation directly influence the
quality of reconstructed frames. Let us consider how to estimate the
model parameters. For 2D-PAR model, according to the fact that the
second order statistics of natural images tends to be invariant across
different scales [5][6], we learn model parameters as and bs from
decoded image by solving the following two least-square estimation
problems:

a∗s = min
as

{ ∑
i∈W

∥∥y(i, t)− aTs s
×
y (i, t)

∥∥2 }
,

b∗s = min
bs

{ ∑
i∈W

∥∥y(i, t)− bTs s
+
y (i, t)

∥∥2 }
.

(6)

where s×y and s+y are samples along diagonal and axial direction
in the LR frame y. Clearly, we can obtain a closed form solution
for the above equation. As formulated in Eq. (4), we use ζ× and
ζ+ to combine the modeling strength of the two PAR models. We
can exploit the squared errors associated with the solutions of two
objective functions in Eq. (6) to determine these two fusion weights:

ζ× =
e+

e+ + e×
, ζ+ =

e×

e+ + e×
. (7)

These weights are optimal in least squares sense if the fit errors of
the two models are independent.

For 3D-PAR, according to 2D-3D duality between edge contour
and motion trajectory, the model parameters are adaptively estimated
within a localized spatio-temporal window in the current side de-
scription video sequence. Similarly, the derivation a = [as,at] and
b = [bs,bt] follows the standard LS formulation:



a∗ = min
[as,at]

{ ∑
i∈W

∥∥y(i, t)− (aTs s
×
y (i, t) + aTt ty(i, t))

∥∥2 }
b∗ = min

[bs,bt]

{ ∑
i∈W

∥∥y(i, t)− (bTs s
+
y (i, t) + bTt ty(i, t))

∥∥2 }
(8)

We also can obtain a closed form solution for the above equation,
and can obtain ζ× and ζ+ in a similar way with Eq. (7).

Once the PAR model is constructed, soft decoding can be per-
formed efficiently by constrained linear least-square estimation. For
convenient representation we rewrite Eq. (4) and Eq. (5) in matrix
form:

x∗ = min
x

{
ζ×

∑
i∈W
‖x−C1x‖2 + ζ+

∑
i∈W
‖x−C2x‖2

+λ ‖y − DHx‖2

}
(9)

where C1 and C2 are two matrixes containing PAR model parame-
ters. The objective function can be further written in quadratic form
as:

min
x

r(x)T r(x), (10)

where the residue vector r(x) is defined as:

r(x) =


√
ζ×(I −C1)x√
ζ+(I −C2)x√
λ(y − DHx)

 . (11)

And the objective function in Eq.(10) is a linear least square problem
that can obtain a close-form solution as

x = (FTF)−1FTG (12)

with

F =


√
ζ×(I −C1)√
ζ+(I −C2)√
λDH

 . (13)

and

G =

 0
0

−
√
λy

 . (14)

4. EXPERIMENTAL RESULTS

In this section, experimental results are presented to verify the per-
formance of the proposed video coding scheme with respect to rate-
distortion performance and subjective quality. For thoroughness and
fairness of our comparison study, we selected six video sequences as
test ones, including Akiyo (CIF), Foreman (CIF), Mother&Daughter
(CIF), and City (4CIF), Crew (4CIF), Ice (4CIF). These sequences
are with frame rate 30Hz, and each sequences contains 100 frames.

The following video codecs will be used as benchmarks to eval-
uate the performance of the proposed codec.

• H.264-Motion: This codec is performed on JM16.0 [7] in
main profile exploiting spatial and temporal redundancy (i.e.,
intra and inter prediction are both selected). The GOP size is
6 with IBPBPB structure. The RD optimization is done in the
high-complexity mode. The loop filter is enabled. Entropy
coding is performed in CABAC mode, and the search range
of motion estimation is set to 32. It can be considered as the
state-of-the-art encoder-centralized video codec.

• H.264-Zero Motion: We use JM16.0 main profile to code the
GOP of 24 frames with the first frame coded as I frame and
all other frames coded as predictive frames, for which the rest
settings are the same as H.264-Motion except that the range
of motion search is set to 1. It is often used as a benchmark in
comparison for non-ME based low complexity video codecs.

Since DVC and H.264-Intra give too poor RD performances, we
have not included their results into comparison. The performance
comparison among our method and other methods in the literature
can be indirectly reflected by H.264/AVC standard codecs. Through
comparisons with these two standard codecs motioned above, results
are shown that serve to support the efficiency of the proposed scheme
for low bit-rate coding.

4.1. Encoder Complexity Comparison

Fig. 5. Encoder complexity comparison

We first give the encoder running time comparison of the com-
pared three codecs on six test sequences. The compared codecs are
run on a typical computer (2.5GHz Intel Dual Core, 4G Memory).
For each sequence, we keep the bit-rates of three codecs almost the
same. As illustrate in Fig. 5, it is easy to find the proposed method
achieves lowest encoder complexity, the running time is even lower
than H.264-Zero Motion. The running time is about 1/4 of that
of H.264-Motion, because the video data needed to be compressed
reduces to 1/4 of original ones by downsampling. These results
demonstrate our method can provide a lightweight encoder, which
is attractive for resource-deficient wireless video communications.

4.2. Rate-distortion Performance Comparison

To verify the performance improvement of the propose scheme at
low bit rates, we use coarse quantization parameters (QP) to obtain
rate-distortion curves shown below. And the comparisons shown
here are all for approximately the same average bit rate over the en-
tire sequence and therefore can be readily compared in terms of the
PSNR values. The RD curves of six video sequences are plotted in
Fig. 4. We can find for all six test sequences the proposed scheme
can achieve better RD performance at low bit-rate compared with
other two codecs. The gain is up to 1.5dB for CIF sequences and
1.2dB for 4CIF sequences compared with H.264-Motion, which is
regarded as the state-of-the-art video codec. Compared with H.264-
Zero Motion, which is also with a low-complexity encoder, the gains
are obvious and is up to 1.5dB for CIF sequences and 3dB for
4CIF sequences. According to the trend of RD curves, the proposed
method outperform H.264-Zero Motion at a wide range of bit-rate.



Fig. 4. Rate-distortion performance comparison

4.3. Subjective Performance Comparison

The advantage of the proposed scheme is not only limited to low bit-
rates. We also give the subjective comparison results at medium bit-
rates. As illustrate in Fig. 6 and Fig. 7, we show the decoded frames
of two 4CIF sequences by H.264-Zero Motion, H.264-Motion and
the proposed side and central decoders. For clearly comparison,
the corresponding PSNR values and bit-rates are also given. From
the results, we can find H.264-Zero Motion produces objectionable
visual artifacts (e.g., jaggies and ringings) in edge areas, H.264-
Motion performs better but still suffers from annoying blurring ar-
tifacts along the edges. The proposed schemes on side and cen-
tral decoder are both largely free of those defects. Even when the
bit rate gets higher and H.264-Motion starts to have higher PSNR
than the proposed method, its visual quality still appears inferior, as
demonstrated by examples in Fig. 6 and Fig. 7. This is due to the
fact quantization in H.264/AVC standard is uniform and there is no
special mechanism to preserve edges that are important for human
visual perception. The proposed side decoder achieves a lower but
still acceptable subjective quality, and the quality is significantly en-
hanced at the central decoder. The results are visually compelling
in reconstructing edges and textures. The produced edge and texture
are clean and sharp, and most visual artifacts appeared in the results
of H.264-Motion are eliminated in the proposed method. These re-
sults demonstrate the proposed method can efficiently favors the re-
construction of edges. The superior visual quality of the proposed
method is due to the good fit of the piecewise autoregressive model
to edge structures and the fact that human visual system is highly
sensitive to phase errors in reconstructed edges.

5. CONCLUSION

In this paper, we presented an efficient and standard-compliant low
bit-rate video coding scheme for wireless visual communications.
The encoder is designed to be relative simple, where multiple low-
resolution descriptions are generated by temporal multiplexing and

spatial adaptive downsampling. At the decoder, the mode-dependent
soft-decoding is performed to jointly estimate the model and the
original frame. Simulations results show the proposed method out-
performs H.264/AVC at low bit-rates.
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Fig. 6. Subjective quality comparison of reconstructed second frame in City sequence with (PSNR, Bit Rate) pairs.

Fig. 7. Subjective quality comparison of reconstructed second frame in Ice sequence with (PSNR, Bit Rate) pairs.


