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Abstract—In this paper, a group-sensitive multiple kernel
learning (GS-MKL) method is proposed for object recognition to
accommodate the intraclass diversity and the interclass correla-
tion. By introducing the “group” between the object category and
individual images as an intermediate representation, GS-MKL at-
tempts to learn group-sensitive multikernel combinations together
with the associated classifier. For each object category, the image
corpus from the same category is partitioned into groups. Images
with similar appearance are partitioned into the same group,
which corresponds to the subcategory of the object category.
Accordingly, intraclass diversity can be represented by the set of
groups from the same category but with diverse appearances; in-
terclass correlation can be represented by the correlation between
groups from different categories. GS-MKL provides a tractable
solution to adapt multikernel combination to local data distribu-
tion and to seek a tradeoff between capturing the diversity and
keeping the invariance for each object category. Different from the
simple hybrid grouping strategy that solves sample grouping and
GS-MKL training independently, two sample grouping strategies
are proposed to integrate sample grouping and GS-MKL training.
The first one is a looping hybrid grouping method, where a
global kernel clustering method and GS-MKL interact with each
other by sharing group-sensitive multikernel combination. The
second one is a dynamic divisive grouping method, where a hier-
archical kernel-based grouping process interacts with GS-MKL.
Experimental results show that performance of GS-MKL does
not significantly vary with different grouping strategies, but the
looping hybrid grouping method produces slightly better results.
On four challenging data sets, our proposed method has achieved
encouraging performance comparable to the state-of-the-art and
outperformed several existing MKL methods.

Index Terms—Dynamic divisive grouping (DDG), interclass
correlation, intraclass diversity, looping hybrid grouping, multiple
kernel learning (MKL), object recognition.
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I. INTRODUCTION

O BJECT RECOGNITION is an important yet challenging
task in image processing and computer vision. Research

from different aspects have been done to push the research of
object recognition forward. On one hand, many efforts have
been devoted to design robust features [24], [32], [33], [36]
and kernels [3], [15], [16], [33]. On the other hand, numerous
heuristic learning methods [5], [6], [13], [14], [19], [20], [37]
have been proposed to boost the performance of object recog-
nition. In addition, some institutes and organizations have been
actively constructed open benchmark data sets (e.g., Caltech101
[6], PASCAL VOC [7], WikipediaMM [9], and ImageNet [56])
for fair evaluation of distinct features and learning methods.
Although much progress has been made, most state-of-the-art
methods are still insufficient to tackle object recognition in gen-
eral and a practical data set of large size.

One of the essential difficulties of object recognition lies in
that the images within an object category usually exhibit diver-
sity, whereas the ones from different categories would have cor-
relations in visual appearance. For images from one object cat-
egory, many factors (e.g., variation of object pose, viewpoints,
and sources of data collection) may incur diverse feature distri-
butions and statistical properties. For instance, Fig. 1 illustrates
some typical images from WikipediaMM data set [9]. Given
an object category “bridges,” positive images can be grouped
into three subcategories, each of which demonstrates distinct
visual appearance. Meanwhile, images from two different ob-
ject categories (e.g., “bridges” and “buildings”) may share sim-
ilar feature distributions and visual attributes. In this paper, such
phenomena are referred to as “intraclass diversity” and “inter-
class correlation,” respectively. To elegantly recognize objects
over extensive and practical image data sets, we argue that, it
is meaningful to effectively model both intraclass diversity and
interclass correlation.

To overcome the issues of intraclass diversity and interclass
correlation, a lot of works have been done on designing features
[24], [32], [33], [36], [47], [50], which are highly invariant to
the intraclass variance and robust to classify a correlated object.
Despite some improvements, not all features are the same dis-
criminative for all object categories. Therefore, instead of using
one single feature, fusing a set of diverse and complementary
features is widely approved [5], [10], [19], [22], [37], [38]. In
particular, multiple kernel learning (MKL) methods [10], [22],
[30] have shown great advantages in this task recently (e.g., [5]
and [18]). Instead of using a single kernel in a support vector
machine (SVM) [21], MKL learns an optimal kernel combina-
tion and the associated classifier simultaneously, providing an
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Fig. 1. Illustration of intraclass diversity and interclass correlation of
“bridges.” The green line connects two images from the same category,
whereas the red line connects images from different categories.

effective way of fusing informative features and kernels. How-
ever, these methods basically adopt a globally uniform simi-
larity measure over the whole input space. When an object cat-
egory possesses high intraclass variation as well as correlation
with other categories in appearance, the importance of different
features/ kernels may vary among samples. Hence, performance
of these global MKL methods can be degraded due to the com-
plexity of data distribution.

Recently, there have been attempts [11], [19], [20], [29] to
learn samplewise kernel combination/ distance function to ac-
commodate the intraclass diversity. For example, a sample-spe-
cific ensemble kernel learning method is proposed in [29] to
explore the relative contributions of distinct kernels for each
sample. Frome et al. [11] proposed to learn per-sample dis-
tance by solving a convex optimization problem. In practice,
such methods have yielded promising performance. However,
expensive computation is incurred to learn sample-based sim-
ilarity measures. More importantly, several dominant samples
may overwhelm the intrinsic properties of an object category so
as to make the classifier less reliable.

In this paper, “group” is introduced between object categories
and individual images as an intermediate representation to seek
a tractable solution for the tradeoff between capturing the di-
versity and keeping the invariance. Given an object category,
the training corpus from the same category is partitioned into
groups. Samples within the same group belong to the same ob-
ject category and share similar appearance, corresponding to the
subclasses of the object category. Intraclass diversity can be rep-
resented by the set of groups of the same category with diverse
appearance. Interclass correlation can be represented by the cor-
relation between groups from different categories.

Accordingly, by incorporating “groups” into the MKL
framework, and a group-sensitive MKL (GS-MKL) method is
proposed for object recognition to adapt kernel combination
to the local data distributions for subcategories. In GS-MKL,
the image-to-image similarity is represented by a weighted
combination of multiple kernels, where the kernel weights
depend not only on the corresponding kernel functions but also
on the groups that the two comparing images belong to. Instead
of a uniform or sample-specific similarity measure, GS-MKL
learns group-sensitive multikernel combinations together with
the associated GS-MKL classifier, which has been shown

effective in dealing with both intraclass diversity and interclass
correlation.

Since there is no prior knowledge available about the sub-
classes of an object category, a clustering method is employed
for GS-MKL to partition training samples from the same cat-
egory into groups. Rather than solving sample grouping and
GS-MKL training independently, two grouping strategies, i.e.,
the looping hybrid grouping and the dynamic divisive grouping
(DDG) methods are proposed to integrate sample grouping and
GS-MKL training.

In the looping hybrid grouping method, GK-KMeans is
combined with GS-MKL directly. Given a group number,
unweighted multikernel combination (UMK) is first employed
by global kernel k-means (GK-KMeans) to initially partition
training samples from the same category into groups. The
GS-MKL classifier is optimized over the initially grouped
training samples together with group-sensitive multikernel
combinations learning. Then, sample grouping interacts with
GS-MKL by treating the newly learnt group-sensitive multik-
ernel combination as an updated kernel metric in GK-KMeans
to refine the grouping results. Such looping process iterates until
the object function reaches a local maximum. The best sample
grouping results are obtained by enumerating all candidate
group numbers and choosing the one with the best recognition
performance over the validation set. In DDG, a hierarchy of
training samples from the same category is built for each object
category to group training samples over different degrees.
The hierarchical kernel-based grouping process interacts with
GS-MKL by sharing the group-sensitive multikernel combi-
nations. Compared with the looping hybrid grouping method,
DDG provides a unified learning strategy where finding the
optimal group number and sample grouping are integrated
together with the GS-MKL training.

To evaluate the effectiveness of the proposed methods, ex-
periments are carried out over four data sets (i.e., Caltech101,
Pascal VOC2007, WikipediaMM, and Scene15). GS-MKL has
gained superior performance against several existing MKL
methods [18], [38], [39] and shown effectiveness to alleviate
the negative influence of intraclass diversity and interclass
correlation, coming up with a robust discriminative power for
object recognition.

Our main contributions can be summarized as follows.
• A GS-MKL method is proposed for object recognition,

where both intraclass diversity and interclass correlation
are taken into account. GS-MKL provides a general and
tractable solution to adapt MKL to local data distribution.
When the number of group declines to one, GS-MKL is
reduced to canonical MKL. When the number of group
reaches up to the number of training images, GS-MKL be-
comes a sample-specific MKL (SS-MKL).

• Two grouping strategies are proposed and evaluated for
GS-MKL. Experimental results show that the performance
of GS-MKL does not significantly vary with different
grouping strategies. A simple hybrid grouping strategy
can boost GS-MKL against other multiple kernel methods.
Furthermore, the looping hybrid grouping method, where
GK-KMeans is integrated with GS-MKL and the sample
grouping results are iteratively refined, provides slightly
better results than the other grouping strategies.
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• Promising experimental results comparable to the
state-of-the-art results have been obtained on Caltech101,
Pascal VOC2007, and Scene15 data sets, and significant
improvements have been achieved over several existing
MKL methods across the four data sets. A new bound
is established for the performance of the state-of-the art
MKL method on object recognition.

The remainder of this paper is organized as follows. Section II
briefs the related work. In Section III, the GS-MKL framework
is introduced for object recognition. The learning algorithm of
GS-MKL is presented in Section IV. Section V presents two
sample grouping strategies for GS-MKL. The experimental re-
sults are given in Section VI. Finally, Section VII concludes this
paper.

A preliminary version of this work has been published in
[53]. The main extensions include two grouping strategies,
where sample grouping interacts with GS-MKL training,
grouping strategy comparison, comparisons of GS-MKL and
other MKL methods, and more extensive experiments.

II. RELATED WORK

In the past decade, research efforts have been devoted to
characterizing visual statistics for a number of object categories
[2], [7], [13], [14], [19], [27]. Among them, the kernel method
[3], [5], [15], [16], [18] is one of the attractive research areas.
Generally speaking, the kernel method offers two advantages
in learning object categories: (1) A kernel explicitly defines a
visual similarity measure between image pairs and implicitly
maps the input space to the feature space [13], thereby avoiding
the explicit feature representation and the curse of dimension;
(2) Combined with SVM, the kernel method can find out the
optimal separating hyper-plane between positive and negative
samples efficiently. Hence, the SVM-based kernel method
has been applied to many recognition problems (e.g., object
detection [40] and image and video annotation [41]–[43]), in
addition to object recognition. Generally, SVM-based kernel
methods used in object recognition can be categorized into
four types, i.e., individual kernel designing, canonical MKL,
SS-MKL, and SVM ensemble. We brief the related works as
follows.

A. Individual Kernel Designing

Recently, many efforts have been made to delicately design
individual kernels for the similarity of an image pair. A kernel
based on a multiresolution histogram is introduced in [15] to
measure the image similarity at different granularities. A spa-
tial pyramid matching kernel (PMK) is introduced in [3] to en-
force the loose spatial information, which matches images with
spatial coordinates. A kernel based on the local feature distri-
bution is presented in [16] to model the image local context. A
chi-squared kernel based on the pyramid histogram of orientated
gradients (PHOG) is presented in [33] to capture the shape sim-
ilarity with spatial layout.

All these methods rely on the features that represent particular
visual characteristics. However, not all kernels play the same
role in differentiating object categories. Hence, kernel selec-
tion/fusion over a set of available kernels is usually desired for
generic object recognition. It is worthy to note that individual

kernels can be incorporated into the proposed GS-MKL frame-
work to investigate the corresponding contributions in object
recognition.

B. Canonical MKL

Recently, instead of using a single kernel, a classifier based on
multikernel combination has been introduced into object recog-
nition, yielding promising results [5], [18], [38], [45]. In [5]
and [18], multiple features (e.g., appearance and shape) and
kernels [e.g., PMK and spatial pyramid kernels (SPKs) with
different hyper-parameters] are employed and combined in the
MKL framework. Bosch et al. [45] strengthens MKL with a
cross validation strategy. The initial weights of multiple kernels
are learnt by an extended MKL [5] and then refined by an ex-
haustive search to minimize the classification error over a vali-
dation set. In [44], kernel alignment is utilized to optimize mul-
tikernel combination over color, shape, and appearance features.

Basically, these methods adopt a uniform multikernel combi-
nation over the whole input space. Hence, when training data
exhibit high intraclass variation and interclass correlation on
local training samples, these methods may suffer a degraded
performance due to the choice of global uniform multikernel
combination.

C. SS-MKL

More recently, SS-MKL methods have been proposed in [23],
[27], and [29] by using sample-specific kernel weighting strate-
gies. The basic idea is that kernel weights depend not only on
the kernel functions but also on the samples themselves. Com-
pared with canonical MKL, SS-MKL tends to reflect the relative
importance of different kernels at the level of individual sample
rather than at the level of object category. Despite some perfor-
mance improvements, learning too many parameters may lead
to the expensive computation cost and the risk of overfitting.

It has to be noted that, although the proposed GS-MKL and
the methods [5], [18], [23], [27], [45] reviewed above are all ex-
tended from the MKL framework, GS-MKL provides a mech-
anism of evaluating multiple kernels over sample groups. From
this view, GS-MKL is a more flexible framework that can be
generalized to canonical MKL and SS-MKL by changing the
number of groups. GS-MKL provides a tractable solution to
adapt multikernel combination to the local data distributions for
sample groups.

D. Learning With Classifier Ensemble

Instead of a single classifier, classifier ensemble has been
proposed as an alternative technique to improve classification
accuracy. Classifier ensemble can take place at data, feature,
and classifier levels [46]. To cope with the diversity of data,
a straightforward classifier ensemble method employs a data
partitioning strategy where each base classifier is trained over
a distinct subset of the training data. Such divide and conquer
methods train multiple base classifiers that are experts in their
specific parts of the data space. However, base classifiers are in-
dependently trained, leaving out the other partitions of the data.
When such independence condition is not satisfied, it cannot be
assured that the decision of the base classifier will improve the
final classification performance.
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Fig. 2. Diagram of GS-MKL for object recognition.

Although both the classifier ensemble method and GS-MKL
partition training data into disjoint sets, the underlying as-
sumption and resulting model is different. Classifier ensemble
methods partition the whole training data set into sets and
assume each set to be independent of each other. Multiple
classifiers are trained over the disjoint sets independently and
further fused in the postprocessing. In GS-MKL, the training
corpus from the same category is partitioned into groups.
Accordingly, group-sensitive multikernel combinations are
learnt together with the GS-MKL classifier to adapt multikernel
combination to the local data distributions of sample groups.

III. FRAMEWORK OVERVIEW

The main objective of this work is to identify the presence/
absence of the predefined object categories within the image
with one-versus-all setting. Let rep-
resent the lexicon of the predefined object categories. Let

denote a training image corpus, where denotes
the th sample, stands for the binary label, and
is the number of training samples for a given object category

. Based on the labeled data set , we aim to train a
classifier for each object category based on the following
multikernel combination:

(1)

where stands for the basic kernel, is the total
number of basic kernels, and is the corresponding
kernel weight that adapts to the local data distribution.

Fig. 2 illustrates the diagram of the proposed GS-MKL with
the object category of “bridge.” At the training phase, kernel
similarities of an image pair in different low-level features (e.g.,
color, texture, and shape) are computed via multiple kernel
functions [e.g., PMK, SPK, and proximity distribution kernel
(PDK)]. These kernel matrices for the training corpus are saved
and fed to the following processes. The training corpus from
the same category is first partitioned into groups by a sample
grouping process (i.e., looping hybrid grouping method or
DDG). Based on the grouped training samples and their corre-
sponding group assignments, the GS-MKL classifier is learnt
together with the group-sensitive multikernel combinations.

Then, the newly learnt group-sensitive multikernel combina-
tions are shared to the following sample grouping process and
serve as the updated kernel metric. Iteratively, sample grouping
and GS-MKL training interact with each other to obtain a
local optimal training corpus partition and its corresponding
GS-MKL classifier. During the testing phase, the score of an
unseen image is predicted by the learnt GS-MKL classifier
with multikernel similarity between the testing sample and the
support vectors of the GS-MKL classifier.

IV. GS-MKL

In this section, a brief introduction of existing multikernel
combination and group-sensitive multikernel combination are
presented in Section IV-A. Learning of GS-MKL is subse-
quently presented in Section IV-B.

A. Multikernel Combination

Kernel-based SVMs have been proven to be efficient tools for
solving classification problems. The main idea is to map sam-
ples from the input space to a feature space where they are lin-
early separable. For binary classification, the decision function
of a kernel-based SVM is defined as

(2)

where is the number of training samples, and and
are the coefficients of the classifier, corresponding to the

Lagrange multipliers and the bias of the kernel-based SVM
problem. is the kernel function
corresponding to the inner product of samples in the feature
space . How to find the appropriate kernel function is an
important step of SVM training. Rather than enumerating all
candidate kernels by cross validation over the validation data
set, researchers [5], [18], [34] advocate to fuse multiple kernels
and learn the corresponding classifier together over the same
training set. In the following part, several multikernel combina-
tions widely used in object recognition are introduced together
with the proposed group-sensitive multikernel combination.

1) Global Constant Multikernel Combination: In recent
studies [5], [10], [18], [22], [34], it has been reported that using
multikernel combination instead of a single kernel can help
improve the classification performance. One straightforward
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Fig. 3. Three paradigms of object recognition using (a) Canonical MKL, (b) GS-MKL, and (c) SS-MKL. In the figure, images with green bounding boxes are
positive samples, whereas those with red bounding boxes are negative samples for “bridge.” Note that SS-MKL will learn two sets of kernel weights even for two
images with quite similar appearance (e.g., � and � ).

strategy is to assume that the kernel combination is constant
throughout the data space. The simplest choice is to use an un-
weighted sum of multiple kernels (UMK) in (3) as a substitution
of (1), i.e.,

(3)

In UMK, all basic kernels are treated equally. However, it is
usually the case that different kernels may have different contri-
butions in the recognition.

Alternatively, canonical MKL [10] [see Fig. 3(a)] is proposed
to employ a convex kernel combination. Thus

(4)

with and . are the kernel
weights of different kernels to evaluate the corresponding con-
tributions in the recognition. Accordingly, the decision function
of canonical MKL is given as

(5)

The coefficients and the kernel weights in (5) can be
obtained by solving in a joint optimization problem (details can
be found in [30])

s.t. (6)

One can also employ kernel alignment to optimize
and then solve the kernel-based SVM with the learnt multik-
ernel combination. The kernel alignment technique optimizes
problem

s.t. trace (7)

In (7), , where is the
target matrix for to align and is defined as . Details
about the solving process can be found in the literature [27],
[44].

2) Sample-Specific Multikernel Combination: It can be also
assumed that multikernel combination is dependent on training
samples to compare. In [27], sample-specific multikernel com-
bination is obtained by solving a maximal problem with the
local target matrix for each training sample. During test, the
nearest neighbor of the test sample is located among training
corpus, and the SVM classifier with the corresponding sample-
specific multikernel combination is utilized during the classifi-
cation. However, such local method classifies a test sample ac-
cording to the multikernel combination of the nearest neighbor
and hence have a risk of overfitting caused by the noisy data.

As shown in Fig. 3(c), another strategy (i.e., SS-MKL) is to
assume that kernel combination depends on the sample pair to
compare

(8)
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Then, the decision function in (5) can be rewritten as

(9)

where are the samplewise kernel weights, and coef-
ficients and bias are similarly de-
fined as in canonical MKL. In [54], samplewise kernel weights
are learnt by semi-infinite linear program wrapping canonical
SVM solver. In [39], a gating model is employed to model
the sample-specific multikernel combination. However, these
methods are infeasible to the training classifier over a large
number of training samples.

3) Group-Sensitive Multikernel Combination: Instead
of learning a global constant multikernel combination or
sample-specific multikernel combination, we argue that mul-
tikernel combination should adapt to the data distribution of
groups. As shown in Fig. 3(b), the training corpus from the
same category is partitioned into groups (see Section V for
details). Let and be the group IDs of image and ,
respectively. The combined kernel form in (1) can be rewritten
as

(10)

where and are group-sensitive kernel weights of
and . Let denote the total group number, then

for . Accordingly, the
decision function in (5) can be reformulated as

(11)

where the coefficients and bias are the
same as those in canonical MKL. This decision function can be
derived from the GS-MKL primal problem discussed in Section
IV-C. Compared with kernel weights in the canonical MKL
case, the number of group-sensitive kernel weights rises up to

. The coefficients of the classifier and the group-sensitive
kernel weights can be optimized in a joint manner, which will
be discussed in Section IV-D.

GS-MKL can be generalized to canonical MKL and SS-MKL
by changing the group number. In the special case of

, all samples belong to the unique group and share a set of
kernel weights . In this case, GS-MKL is simplified
to canonical MKL [see Fig. 3(a)], where in (10) is equal to
the square root of in (4).

For the case of , each individual group is composed
of only one training sample, and thus, a sample-specific kernel
weighting strategy is employed. This way, only depends
on the kernel function and the sample . It has to be noted that

is equivalent to in localized MKL [23]. The number
of group-sensitive kernel weights increases to , where

. In this case, GS-MKL scales up to SS-MKL [see
Fig. 3(c)].

B. Learning GS-MKL-Based Classifier

1) GS-MKL Primal Problem: In GS-MKL, sample is trans-
formed via mappings from the input
space into feature spaces , where de-
notes the dimensionality of the th feature space. Each feature
map is associated with a weight vector . To allow the mul-
tikernel combination in (10), the decision function of canonical
MKL in (5) can be rewritten as follows:

(12)

Inspired by the SVM [21], the training procedure can be im-
plemented by solving the following optimization problem:

s.t.

(13)

In (13), is a regularization term that is inversely related
to the margin, is a slack variable for each training sample to
allow soft margin violation, measures the total classifi-
cation error, and is the misclassification penalty. The optimal

can be obtained by cross validation. The object function in
(13) maximizes the margin between positive and negative sam-
ples and minimizes the empirical classification error.

2) GS-MKL Dual Problem: Through introducing Lagrange
multipliers into the inequalities constraint in (13) and
formulating the Lagrangian dual function, which satisfies the
Karush–Kuhn–Tucker condition [10], the former optimization
problem reduces to a max-min problem as follows:

s.t. (14)

This max-min problem is called the GS-MKL dual problem.
is a multiobject function of and . When is fixed, min-

imizing over the coefficient is equivalent to minimizing
the global classification error and maximizing the margin be-
tween positive and negative classes. When is fixed, maxi-
mizing over the group-sensitive kernel weights is to maxi-
mize the intraclass similarity and minimize the interclass simi-
larity simultaneously.

3) Optimization Algorithm: Similar to the parameter
learning in canonical MKL, a two-stage alternant optimization
approach is adopted.
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a) Computation of given : Fixing , the classifier coef-
ficient can be estimated by minimizing under the constraint

and . Minimization of is
identical to solving the canonical SVM dual problem with the
multikernel combination in (10). Consequently, minimizing
over can be easily implemented as there exist several efficient
SVM solvers.

b) Computation of given : To optimize the group-sen-
sitive kernel weights with a fixed , the objective function in
(14) can be expressed as

(15)

where

(16)

When , corresponds to in canonical MKL
[22]. When , the samples within a group have the same
label based on the assumption that the intermediate rep-
resentation group is introduced to capture the local data distri-
bution for each subcategory. In this case, stands for the cor-
relation of group and over the th kernel function. When
and have the same label, maximizing over is to maximize
the intraclass similarity. When and have different labels,
maximizing over is to minimize the interclass similarity.
Correspondingly, the optimization of over can be rewritten
as

(17)

Note that the problem in (14) is not convex. Inspired by [23],
instead of solving directly, we use a normalized exponential
weighting function to approximate the nonnegative . Particu-
larly, is determined by statistical property of the group and the
parameters of the function, which are also learned from data. In
this paper, such weighting function is defined as

(18)

where and are the parameters of the function, and
corresponds to a certain statistical property for the th group
over the th kernel function. Let be the number of samples
in the th group. In this paper, is defined as

(19)

As stated in [31], is differentiable if the SVM solution
is unique. Such condition can be guaranteed by the fact that
all kernel matrices are strictly positive definite. Thus, we take

derivatives of w.r.t. , and use a gradient descent
method [cf. (20) and (21)] to train the weighting function. Thus

(20)

(21)

In (20) and (21), is 1 if and 0 otherwise. After up-
dating the parameters of the weighting function, we get a new

and then solve a single kernel SVM as in Section IV-C.1.
c) Summarization of the GS-MKL optimization process:

Algorithm 1 GS-MKL Training Algorithm

1: Initialize and with small random numbers for
and .

2: While the termination criterion is not met do

3: Calculate kernel weights as (18)

4: Calculate

5: Solve using the canonical SVM with

6: for and

7: for and

8: end while

The training algorithm of GS-MKL is summarized in Alg. 1.
It simultaneously optimizes the coefficients of the classifier
and the group-sensitive kernel weights . The termination cri-
terion of the algorithm is that the minimal distance of between
two loops is below a predefined threshold or the count of the it-
eration process reaches the maximal iteration number. In Alg.
1, the step size of each iteration, and , can be fixed as
a small constant or determined with a line search method that
needs additional canonical SVM optimizations for better con-
vergence. Optimizing the classifier coefficients and group-sen-
sitive kernel weights is a gradient descent wrapping canonical
SVM solvent process. Note that the proposed algorithm does
not guarantee convergence to the global optimum, and the ini-
tial parameters and may affect the quality of the solution.

V. GROUPING SAMPLES FOR GS-MKL

By partitioning training corpus from the same category into
groups, GS-MKL learns the group-sensitive multikernel combi-
nations together with the associated GS-MKL classifier. Unlike
the classifier ensemble method [46], GS-MKL partitions sam-
ples from the same category into “natural” groups (subclasses)
rather than the entire training data set. Accordingly, similar sam-
ples from the same category are partitioned into the same group,
which corresponds to the subcategory of the object category. In-
traclass diversity can be represented by the set of groups of the
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same category but with diverse appearance. Interclass correla-
tion can be represented by the correlation between the groups
from different categories.

Since prior knowledge about the optimal group (subclass)
number and sample grouping for GS-MKL is not available, a
clustering method is employed as a heuristic grouping strategy.
One straightforward solution is the simple hybrid grouping
method, which combines the clustering method and GS-MKL
directly and empirically identifies the optimal group numbers
over a validation data set. Such strategy is based on the assump-
tion that ideal data partition for GS-MKL can be approximated
by enumerating the group number of the clustering method.
Rather than solving sample grouping and GS-MKL training
independently, two more compact grouping strategies are pre-
sented for GS-MKL. Details of these two grouping strategies
are discussed as follows.

A. Looping Hybrid Grouping Method for GS-MKL

A simple grouping strategy for GS-MKL is the hybrid
grouping method, which combines the clustering method (e.g.,
KMeans, Meanshift [57], and probabilistic latent semantic anal-
ysis (pLSA) [25]; cf. Section VI-C1) with GS-MKL directly
and solve sample grouping and GS-MKL training indepen-
dently. Different from such simple hybrid grouping method,
we propose a looping hybrid grouping method where sample
grouping interacts with GS-MKL training iteratively via shared
kernel metric. Given a predefined group number, the training
corpus from the same category is first partitioned into groups
by the kernel-based clustering method, where UMK serves as
initial kernel metric. GS-MKL is then trained over the grouped
training samples and their group assignments. The newly learnt
group-sensitive multikernel combinations go on to serve as the
updated kernel metric and engage in the refinement of group
assignments by the kernel-based clustering method. Accord-
ingly, GS-MKL is trained over the newly grouped training
samples and their corresponding group assignments. Such
looping process iterates until reaching a predefined looping
count or the object function in (15) reaching a local maximum.
The optimal group number can be identified by enumerating all
candidate group numbers and choosing the one with the best
recognition performance over the validation set. As shown in
the experiments, such looping hybrid method gains advantage
against simple hybrid grouping methods.

In the implementation, GK-KMeans [55] is employed to
cluster training corpus from the same category into groups.
Generally speaking, GK-KMeans provides three advantages as
follows.

1) GK-KMeans, which makes use of kernel functions to map
data from the input space to the feature space, is capable
of identifying nonlinearly separable clusters in the input
space.

2) GK-KMeans provides a near globally optimal clustering
solution robust to the initialization and local minima.

3) To deal with the -clustering problem, subproblems with
groups are incrementally solved, making it

useful to seek the best group number.

Suppose that one has a positive training set
of object category c to be clustered into groups (i.e.,

) and the kernel matrix over . According to
[55], the clustering error can be computed by

where

(22)

Algorithm 2 GK-KMeans

Input: Kernel matrix, number of groups

Output: Final grouping results over sample points

1: For subclustering problems to do

2: For all sample points , do

// suppose

3: Run kernel k-means with initial groups

and output groups

4: Evaluate the clustering error in (22) for the output
groups

5: End for

6: Find the grouping result

with the minimal

7: End for

The algorithm of GK-KMeans can be summarized in Alg.
2. In Alg. 2, GK-KMeans initiates a clustering procedure with
only one group. A new group is iteratively added by globally
searching the best initial sample with the lowest clustering error
as the new group and starting kernel k-means with the initializa-
tion consisting of existing clusters and the newly added group.

B. DDG for GS-MKL

In the looping hybrid grouping method, the optimal group
number with the best performance over the validation set is iden-
tified by brutal search over all candidate group numbers. To al-
leviate the cost of enumerating all candidate group numbers, we
propose the DDG method, which integrates the search of group
number, partition of training corpus, and GS-MKL training. In
DDG, a hierarchy of the training samples is maintained for a
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given object category by iteratively splitting the samples at a leaf
group into two disjoint new leaf groups. Given the hierarchies
of training corpus, GS-MKL is trained over all training sam-
ples with their leaf group assignments. The learnt group-sensi-
tive multikernel combination then serves as kernel metric, which
goes on to be utilized in GK-KMeans to split the corresponding
leaf group.

Algorithm 3 DDG

Input: Multiple Basic Kernel matrix

Output: GS-MKL classifier and final clustering results over
sample points

1: Assign training samples from the same object category to the
same group. Initiate and with small random numbers
for and .

2: Optimize and with Alg. 1.

3: while the termination criterion is not met do

4: Breath-firstly choose a leaf group

5: Partition samples within the leaf group into two new
leaf groups with Alg. 2 using multikernel combination in (10)

6: Update group assignment over samples of group

7: Fix and optimize in (15) by the method in
Section IV-B3b.

8: if

9: Undo current loop

10: else

11: Optimize and with Alg. 1

12:

13: End if

14: End while

The algorithm of DDG is summarized in Alg. 3. In par-
ticular, all samples from the same category are first assigned
to the same leaf group and feed for GS-MKL training. Then,
the learnt group-sensitive multikernel combination is utilized
in GK-KMeans to partition the unique leaf group into two
new leaf groups. Iteratively, GS-MKL is trained over training
samples with their leaf group assignments, and a leaf group is
breath-firstly chosen to split into two new leaf groups with the
newly updated group-sensitive multikernel combinations. Such
procedure iterates until splitting any leaf group further results in
a decreased value of the object function in (15). Two examples
of hierarchies for bicycle and aero plane are illustrated in Fig. 4.
It can be observed that leaves with diverse appearances can be
viewed as the subclasses of the object category.

VI. EXPERIMENTS

In the experiments, object recognition is treated as the multi-
class classification problem in one-versus-all setting. Since prior
knowledge is not available about the subcategories of the object
category, we empirically evaluate the optimal number of groups.

Fig. 4. Hierarchies of bicycle and aero plane from Pascal VOC2007. For better
viewing, we demonstrate samples from the leaves only.

Then, the proposed GS-MKL is compared with several existing
MKL methods on the four data sets. Finally, the performance
of GS-MKL is compared with the results of the state-of-the-art
methods.

A. Data Sets

Extensive experiments are performed on Caltech101 [6],
Pascal VOC2007 [7], WikipediaMM [9], and Scene15 [58]
data sets. Caltech101 involves 102 object categories, where
each category contains 31 to 800 images. Pascal VOC2007
consists of 9963 images from 20 object categories, where 2501
images are provided for training, 2510 for validation, and 4952
for test, respectively. WikipediaMM data set contains 150 000
real-world web images from Wikipedia that cover 75 object
categories. In our experiment, 33 categories, each of which
contains more than 60 positive samples, are employed. Note
that some categories not only share similar visual appearances
but also produce semantic correlations, e.g., “house architec-
ture” versus “gothic cathedral” and “military aircraft” versus
“civil aircraft.” Scene15 data set contains 15 scene categories.
Each category has 200 to 400 positive samples with an average
size of 300 by 250. Compared with the other three data sets,
WikipediaMM exhibits higher intraclass diversity and interclass
correlation with more background clutter and less alignment.

On Caltech101, WikipediaMM, and Scene data sets, we
follow the experimental setups proposed by the designer,
respectively [6], [9], [58], and adopt the recognition rate as
the performance metric. Training and testing processes are re-
peated ten times, and the corresponding average performances
are reported. On Caltech101 and WikipediaMM data sets, the
numbers of randomly selected positive training samples are
10, 15, 20, 25, and 30 for each object category. The number
of testing samples for each object category is fixed at 15. For
object categories that have less than 45 images, training images
are duplicated to maintain the balance of training samples. On
Scene15 data set, 100 positive training samples are randomly
selected for each category and the rest for testing. On Pascal
VOC2007 data set, positive and negative training samples for
each object category are provided by the data set designer
[7]. For fair comparison with existing works [8], [28], [34],
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[35], [48], [49], training and testing processes are conducted
without repetition, and the official performance metric, average
precision (AP) [7], is employed for performance evaluation.

B. Features and Kernels

Several feature descriptors are involved in the experiments.
Two local appearance features (dense-color-SIFT (DCSIFT)
and dense-SIFT (DSIFT) [3]) and two shape features (self-sim-
ilarity (SS) [32] and PHOG [33]) are used. In particular,
DCSIFT is computed in CIE-lab 3-channels over a square
patch of radius with the spacing of . We take and
pixels to allow scalability. Likewise, DSIFT is calculated in
gray channel. An SS descriptor is used to capture a correlation
map of a 5 5 patch with its neighbors at every fifth pixel.
The correlation map is quantized into ten orientations and three
radial bins to form a 30 dim descriptor. We employ k-means to
quantize these descriptors to obtain codebooks of size (say,
400), respectively.

For PHOG, two SPKs of gradient orientation are calculated to
measure the image similarity in shape. PHOG-180 employs 20
orientation bins, and PHOG-360 uses 40 orientation bins. For
the other feature descriptors, we implement two kernel functions
(i.e., SPK [3] and PDK [16]). For SPK, an image is divided into
cells, and the features from the spatially corresponding cells are
matched across two images. The resulting kernel is a weighted
combination of histogram intersections from coarse to fine cells.
A four-level pyramid is used with the cell number of 8 8, 4

4, 2 2, and 1 1, respectively. For PDK, local feature dis-
tributions of the -nearest neighbors are matched across two
images. The resulting kernel combines the local feature distri-
butions at multiple scales, e.g., , where is set to
(8, 16, 32) ranging from the finest to the coarsest neighborhood.

C. Experimental Results

Three set of experiments are carried out. First, effects of
different grouping strategies are evaluated over the validation
sets. Second, several existing MKL methods are imple-
mented as baselines and compared with the proposed method.
Finally, we conduct comparison of the proposed method to the
state-of-the-art methods.

1) Comparison of Different Grouping Strategies: A valida-
tion set is utilized during the evaluation of grouping strategies.
On Caltech101 and WikipediaMM data sets, 20 positive sam-
ples are randomly selected for training and 10 positive samples
for validation to find out the optimal grouping results for each
object category. On Pascal VOC2007 data set, 2501 training
samples and 2510 validation samples are employed to find
out the optimal grouping results as official setting in [7]. On
Scene15 data set, 60 positive samples are randomly selected
for training and 40 positive samples for validation. To evaluate
the effects of different grouping strategies on GS-MKL, five
sample grouping strategies for GS-MKL are involved in the
experiments over the validation set, including

• Hybrid_K-Means: Hybrid grouping method (Hybrid_K-
Means) combines K-Means and GS-MKL directly;

• Hybrid_pLSA: Hybrid grouping method (Hybrid_pLSA)
combines pLSA [25] and GS-MKL directly;

• Hybrid_GK-Kmeans: Hybrid grouping method (Hy-
brid_GK-KMeans) combines GK-KMeans with GS-MKL
directly;

• Looping-Hybrid: Looping hybrid grouping method
(Looping-Hybrid) combines GK-KMeans with GS-MKL
and iteratively conducts two processes with the
shared group-sensitive multikernel combination (cf.
Section V-A);

• DDG: Dynamic divisive grouping (DDG) method main-
tains a hierarchy of training samples and integrates
GS-MKL training with the grouping procedure (cf.
Section V-B).

In particular, K-Means and GK-KMeans, which are
two widely used clustering methods based on explicit dis-
tance/kernel metric, are utilized to partition training samples
into groups in Hybrid_K-Means and Hybrid_GK-KMeans,
respectively. Compared with K-Means, GK-KMeans provides
three main advantages (details can be found in Section V-A). In
Hybrid_K-Means and Hybrid_GK-KMeans, UMK is utilized
as distance/kernel metric. Hybrid_pLSA employs PLSA to
investigate data distribution in the latent topic space. As a
generative model, PLSA does not rely on any explicit dis-
tance/kernel metric. Bag-of-words representations [6], [13]
over different types of low-level features are employed, and
a sample is assigned to the most prominent topic as its group
assignment. In Looping-Hybrid and DDG, group-sensitive
multikernel combination is employed as kernel metric and
updated during the iteration. The first four grouping strategies
identify the optimal group number by enumerating. The po-
tential group number of each object category ranges from 2
to 5, and the optimal group number is identified by empirical
evaluation over the validation set. DDG does not need to tune
the number of group, since the optimal group number and the
corresponding grouping result are obtained together with the
GS-MKL classifier over the same training data set.

In the first three methods, GS-MKL is trained directly over
the partitioned training corpus obtained by different clustering
methods. Hence, these methods are referred to as simple hy-
brid grouping methods where sample grouping and GS-MKL
are independently solved. In the last two methods, sample
grouping is integrated with GS-MKL training, providing a
more compact solution. Three simple hybrid grouping strate-
gies mentioned above serve as baselines to compare with two
proposed grouping strategies. The best recognition results for
five grouping strategies are listed in Table I. From the table,
several observations have to be emphasized.

1) Five grouping strategies produce comparable perfor-
mances, showing that different grouping strategies do not
affect the performance of GS-MKL significantly.

2) PLSA in Hybrid_pLSA, which does not need explicit dis-
tance measure, seems more robust against K-Means using
UMK.

3) Two hybrid grouping methods based on GK-KMeans ob-
tain better performances against Hybrid_K-Means and Hy-
brid_pLSA across four data sets, which substantiates the
advantage of GK-KMeans.

4) Two proposed grouping methods (i.e., Looping-Hy-
brid and DDG) consistently outperform three baseline
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TABLE I
COMPARISON OF FIVE GROUPING STRATEGIES OVER THE VALIDATION SETS OF FOUR DATA SETS

TABLE II
COMPARISON OF SVMS WITH INDIVIDUAL FEATURE/KERNEL AND GS-MKL WITH

MULTIPLE FEATURES/KERNELS OVER THE VALIDATION SETS OF FOUR DATA SETS

methods, showing that a sample grouping strategy where
sample grouping interacts with GS-MKL training is more
effective against that based on the common clustering
method.

5) Looping-Hybrid obtains the best performance among five
grouping strategies. This indicates that the performance of
GS-MKL can be further improved if the grouping results
are iteratively refined according to the newly learnt group-
sensitive multikernel combinations.

6) The performance of DDG is a little lower than that of
Looping-Hybrid. Although DDG adopts a more compact
integration of sample grouping and GS-MKL training, de-
ficiency can be drawn from the top-down divisive grouping
strategy.

According to the results over the validation sets, Looping-
Hybrid is employed as the only grouping strategy for GS-MKL
in the following experiments, and the optimal group numbers
derived from the validation sets are employed without further
optimization.

To further demonstrate the effectiveness of GS-MKL, perfor-
mances of GS-MKL over the validation sets are also compared
with those of SVMs using individual features/kernels. In partic-
ular, the parameter of is tuned over the validation set taking
the values with 0.01, 0.1, 1, 10, and 100. As shown in Table II,
GS-MKL consistently outperforms SVM by using group-sensi-
tive multikernel combination.

2) Comparison with Other MKL Methods: We conduct com-
parisons between the proposed method and four baselines mul-
tiple kernel methods, including:

• UMK: Unweighted multikernel combination (UMK)
adopts flat distribution for multikernel weights, and an
SVM classifier is learnt for each object category;

• MKL: Canonical MKL (MKL) trains single classifier to-
gether with class-specific multikernel combination (imple-
mented as [30]);

• SS-MKL: Sample-specific MKL (SS-MKL) trains single
classifier for each object category with sample-specific
multikernel combination;

• MKL-ES: MKL Ensemble (MKL-ES) partitions training
image corpus into disjoint subsets and trains the MKL clas-
sifier over each subset as base classifier independently.

Under the same experimental setting, these four MKL
methods are implemented as baselines. For fair comparison,
we also compare the performance of the proposed method
with the reported results of existing methods in Section VI-C3.
Tables III–V and Fig. 5 list the comparison results over four
data sets, respectively. Several observations can be drawn as
follows.

1) On four data sets, GS-MKL outperforms four baseline
methods. This demonstrates the advantage of GS-MKL
against existing MKL methods by taking into account
group-sensitive multikernel combination. However, on
Caltech101, the advantage of GS-MKL against SS-MKL
is less substantial when the number of the positive training
sample is 10. This may be caused by the inefficacy of
sample grouping strategy when training samples are too
sparse. Performances of MKL, UMK, and MKL-ES are
successively descent.

2) On Caltech101, WikipediaMM, and Scene15 data sets,
GS-MKL obtains different improvements over the other
four methods when the positive training sample number is
larger than 10. It can be expected that GS-MKL is more
effective in adapting multikernel combination to local data
distribution when more training samples are available.

3) Two methods (i.e., GS-MKL and SS-MKL), taking into
account intraclass variance, consistently outperform the
methods using the global constant multikernel combina-
tion (i.e., MKL and UMK). This indicates that multikernel
combination, which is adaptive to local data distribution,
is more discriminative than the global constant multikernel
combination.
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Fig. 5. Performance comparison of different MKL methods (i.e., MKL-ES, UMK, MKL, SS-MKL, and GS-MKL) on Pascal VOC2007. The resulting MAPs are
50.0, 52.5, 54.5, 57, and 63.4, respectively.

TABLE III
PERFORMANCE (REG. IN %) COMPARISON OF DIFFERENT MKL METHODS

(I.E., MKL-ES, UMK, MKL, SS-MKL, AND GS-MKL) ON CALTECH101

TABLE IV
PERFORMANCE (REG. IN %) COMPARISON OF DIFFERENT MKL METHODS

(I.E., MKL-ES, UMK, MKL, SS-MKL, AND GS-MKL) ON WIKIPEDIAMM

TABLE V
PERFORMANCE (REG. IN %) COMPARISON OF DIFFERENT MKL METHODS

(I.E., MKL-ES, UMK, MKL, SS-MKL, AND GS-MKL) ON SCENE15

4) On Scene15, the relative improvements of GS-MKL and
SS-MKL against the other three methods are less than
those on Caltech101, Pascal VOC2007, and WikipediaMM
data sets. This shows that different MKL methods yield
comparable performances, when intraclass diversity and
interclass correlation are not significant in the image
corpus.

5) MKL yields higher performances than UMK on four data
sets. This can be caused by the effectiveness of MKL in
depressing noisy basic kernels.

6) MKL-ES yields performances comparable to UMK on
WikipediaMM data set and the lowest performances on
the other three data sets. Compared with the other four
methods, MKL-ES does not gain any advantages. This can
be attributed to the fact that learning base MKL classifiers
over data partitions independently causes the insufficiency
of training samples. GS-MKL learns group-sensitive mul-
tikernel combination and the classifier over the corpus
of training data, obtaining a much higher recognition
performance against MKL-ES.

To better understand the effectiveness of different MKL
methods, we illustrate in Fig. 6 the mean probabilities of the
top- nearest neighborhoods for a testing sample that are from
the same category on Pascal VOC2007 training set. Distance
of two samples is computed by the learnt multikernel combi-
nation. From the figure, it can be observed that performance of
GS-MKL is almost comparable to that of SS-MKL when the
size of neighborhood is smaller than five. As the neighborhood
becomes larger, GS-MKL obtains the highest probability for
the sample neighborhood being the same class. This shows that
GS-MKL is more effective against the other MKL methods in
local adaptive multikernel combination learning when more
training samples are available.

3) Comparison With Methods in the Literature: In Fig. 7,
the performance of GS-MKL on Caltech101 is compared with
the state-of-the-art results published in the literature [2], [3], [6],
[11], [12], [18], [26], [27], [33], [49], [51], [52]. As shown in the
figure, GS-MKL has achieved promising results comparable to
the top performances of the state-of-the-art methods [26], [33].
When the number of positive training samples for each object
category is equal to 10, GS-MKL obtains the perfor-
mance of 66.5%, which is a bit lower than the best reported
one (69.5%) [26]. When , GS-MKL has obtained
better performance against other reported results. When
is set to 30, the average recognition rate of GS-MKL reaches up
to 84.4%, which is 3.56% higher than the best reported perfor-
mance (81.5%) [26].

Table VI compares the performances of GS-MKL on Pascal
VOC2007 to some other recently published methods [8], [28],
[34], [35], [48], [49], and [50]. It is worthy to note that the ap-
proach INRIA_genetic [8] obtained the best performance in the
Pascal VOC2007 challenge using nonlinear SVMs. The mean
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Fig. 6. Comparison of different multikernel combinations. x-Axis corresponds
to the top-� nearest neighbor of a query sample. y-Axis denotes the mean per-
centage of the corresponding nearest neighbor being the same class of the query
sample.

Fig. 7. Performance of GS-MKL and other recent methods on Caltech101 data
set. GS-MKL: number of training samples (average recognition rate), 10 (66.5),
15 (74.5), 20 (81.0), 25 (83.5), and 30 (84.4).

AP of GS-MKL is 63.4%, which is better than that of [8], [28],
[34], [35], [48], and [49] and slightly lower than that (63.5%)
of [50]. To our best knowledge, [50] obtained the best ever re-
ported result on Pascal VOC2007 by combining the classifi-
cation system [8] and the costly sliding-window-based object
localization. GS-MKL has obtained the best results for 10 out
of 20 categories. Particularly, in the category of “chair,” which
exhibits significant intraclass diversity, GS-MKL has achieved
over 10% relative improvements against the other methods.

On Scene15 data set, an average recognition rate of 81.0%
is reported in [3] using the SIFT feature and SPK. The hybrid
method [59] obtains an average recognition rate of 83.7% by
fusing the pLSA model [25] and SVM. On the same data set,
GS-MKL achieves an average recognition rate of 86.5%, which
is slightly better than that in [3] and [59].

In summary, compared with the state-of-the-art results,
GS-MKL obtains comparable or even better performances on
Caltech101, Pascal VOC2007, and Scene15 data sets. This

TABLE VI
AP (IN %) OF GS-MKL AND OTHER METHODS ON

THE PASCAL VOC2007 DATA SET

shows that exploring the contribution of multiple kernels
over the groups of training data in a local adaptive manner is
promising for object recognition.

D. Time Complexity

We implemented GS-MKL in C++. In each iteration of
Algorithm 1, we need to solve a canonical SVM problem
with the group-sensitive kernel weights optimized by a gra-
dient descent method. The time complexity of the gradient
calculation is ignorable compared with the SVM solver. As
those in canonical SVM solvers, using hot-start (i.e., providing
previous as input) may accelerate the training process. Given
the convergence termination criteria, the number of iterations
before convergence depends on the training data and the step
sizes. During training each category over 5000 image samples
on Pascal VOC2007, the canonical MKL needs about 20 min,
and GS-MKL needs 40–60 min to converge on a PC server
(8 Corel 3.0 GHz, 8-GB RAM).

VII. CONCLUSION

In this paper, we consider the problem of object recognition
and argue that both intraclass diversity and interclass correla-
tion among images are crucial to improve the discriminative
power of an object recognition method. To this end, “group” is
introduced into the MKL framework as an intermediate repre-
sentation between the object category and individual samples.
GS-MKL is proposed to learn both the parameters of group-
sensitive multikernel combinations and the classifier in a joint
manner.

Rather than using simple hybrid grouping strategies that
solve sample grouping and GS-MKL training independently,
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two sample grouping strategies are proposed to integrate the two
processes. It has been shown that the performance of GS-MKL
does not significantly vary with different grouping strategies.
A simple hybrid grouping strategy can boost GS-MKL against
other multiple kernel methods. Furthermore, the performance
of GS-MKL can be further improved using two proposed
grouping strategies, respectively. On four benchmark data sets,
promising results, which are comparable to the state-of-the-art,
have been obtained by GS-MKL using existing visual fea-
ture/kernels, and significant improvements have been achieved
over several existing MKL methods.
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