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Abstract—Mobile visual search has undergone a wide devel-
opment and gained much progress in recent years thanks to
the ever-growing computational power of mobile devices. Most
visual search methods take a single image as query and generate
an image-level representation to implement image retrieval.
To form a compact and discriminative representation for the
query image, Fisher vectors (FV) have shown great advantage
in both discriminability and computational efficiency. However,
single image based visual search sometimes has unsatisfactory
performance as a number of quality degeneration situations like
limited view, uneven lighting, blur, occlusion and etc. may exist
in the query image, while a video clip could overcome these
shortcomings and contain more sufficient visual information for
better retrieval performance when serving as query. Towards
a compact yet discriminative representation of the query in
mobile visual search, we propose a temporal-spatial based Fisher
Vector (TSFV) for the query video with an equal length to an
image based FV. The TSFV introduces a selective local feature
aggregation scheme that employs interframe feature matching
in temporal terms combined with intraframe feature attributes
in spatial terms to evaluate video features’ discriminability and
select only the discriminative ones for aggregation. Evaluated on a
diversified dataset, our proposed TSFV for query video achieves a
significant performance improvement compared to typical image
based FV with no additional transmission load and query latency.

Index Terms—compact video representation, Fisher vector,
feature selection, local feature aggregation.

I. INTRODUCTION

With the popularization of camera embedded mobile devices

and wireless Internet services, nowadays there is an emerging

potential in mobile visual search and related applications.

Generally speaking, most state-of-the-art mobile visual search

systems follow a client-server architecture. The remote server

maintains a large-scale image database and the mobile user

captures an image as query. In a typical scenario, the query

image transmission from the mobile device to the remote

server is often over a relatively slow, bandwidth-constrained

wireless network. In such case, sending the entire image will

cause a heavy burden for the wireless network and a high query

latency. Coming with the ever growing computational power of

mobile devices, recent works have proposed to directly extract

low bit-rate visual descriptors on the mobile devices and send

the descriptors to implement image search.

The mobile visual search community have made a lot of

efforts towards low bit-rate image descriptors. In general, low

bit rate descriptors can be broadly categorized into two groups.

The first group is based on local descriptor, that includes the

Compressed Histogram of Gradients (CHoG) descriptor [1]

proposed by Chandrasekhar et al., compression schemes [2]

for SIFT [3] or SURF [4] are also well exploited in the liter-

ature. The second group is based on global descriptor, which

generate a compact image-level representation by aggregating

local descriptors. BoW [5] is the most popular method, which

quantize image local descriptors to BoW visual words and

form a BoW histogram at the mobile end. To improve the

retrieval performance and efficiency at much less memory

complexity, Perronnin et al. [6] introduced Fisher Kernel [7] to

image retrieval. Given an image, Fisher kernel aggregates the

local descriptors to form a Fisher vectors (FV) representation

of fixed-length. FV achieves stronger discriminative power by

employing higher order statistics compared to BoW and re-

duces the computational complexity significantly. Jegou et al.

[8] proposed a simplified FV, the Vector of Locally Aggregated

Descriptors (VLAD) and promising results have been reported.

To guarantee the descriptor’s discriminative power and

compactness, Gianluca et al. [9] put forward a feature selection

scheme, advocating to pack only the most informative local

features into the image descriptor and discard the noisy

ones. This scheme evaluates a feature’s discriminability by

estimating the probability that the feature will yield a correct

match in retrieval tasks. And the probability estimation is

based on several trained models with respect to features’

spatial attributes like scale, peak value, orientation and space

location. Similarly with this feature selection idea, Lin et al.

[10] proposed a robust Fisher vectors (RFV) representation,

implementing selective local feature aggregation, which has

incorporated a feature selection mechanism into the FV ag-

gregation stage based on feature attributes.

However, the image-based mobile visual search still can’t

meet the requirement of a good retrieval performance in
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Fig. 1. The proposed TSFV generation framework and the comparison with an image based visual search scheme.

many cases, as typical quality degeneration like blur, uneven

lighting, limited view, foreground occlusion as well as back-

ground clutter are unavoidable. All these factors lead to the

insufficiency of discriminative and stable feature points in the

query image. As a result, the image retrieval performance is

unsatisfactory.

A video clip could well overcome the shortcomings men-

tioned above of a single image query, as multiple frames within

a video can cover diversified photographing conditions and

avoid just taking an image of poor quality as query. What’s

more, a short video clip contains much more abundant visual

information about the target object by certain movement of

the camera or the target object during the process of pho-

tographing. Towards video content representation, there have

been a series of works. Chen [11] proposed to select a feature-

rich frame from a video clip and then initiate image querying

based on the selected frame. Mansour [12] has adopted a Non-

negative Matrix Factorization (NMF) method to compress the

features extracted from video frames. Sarkar [13] proposed to

extract keyframes from a video clip and use the keyframe set

to represent the video. However, there has been few work on

developing a compact global descriptor including the abundant

visual content of query video for efficient transmission and

retrieval.

In this paper, we propose a compact yet discriminative

Fisher vectors representation for query video, which is selec-

tively aggregated by features detected from multiple frames

of the query video. It includes much more abundant visual

information for better image retrieval performance, but has an

equal length to an image based FV descriptor. To select the

discriminative features of the query video for the FV aggrega-

tion and discard the noisy ones, making the FV descriptor

have a strong discriminative power, we introduce a novel

feature selection scheme, which employs interframe feature

matching in temporal terms combined with intraframe feature

attributes in spatial terms to evaluate a feature’s discriminabil-

ity and decide whether the feature will be involved in the FV

aggregation stage, forming a Temporal-Spatial based Fisher

Vector (TSFV). Experimental results show that our feature

selection approach is effective in improving the video FV

representation’s discriminative power and the TSFV of a query

video significantly outperforms the FV descriptor of a single

image in visual search performance with an equal bit rate.

The rest of this paper is organized as follows. Firstly we

review related works in section 2. Then the proposed algorithm

for TSFV aggregation and feature selection is presented in

section 3. Section 4 analyzes experimental results, followed

by the conclusions in section 5.

II. RELATED WORK

A. Image global descriptors

Global descriptors provide compact image-level represen-

tations, usually with a fixed length, efficient for transmission

and storage.

BoW. The bag-of-words (BoW) [5] is the most widely

adopted method for global representation. Each local feature

from an image is quantized to its closet visual word in a visual

vocabulary. BoW accumulates the number (0-order statistics)

of local features assigned to each visual word and form a

histogram based on the statistics data.

FV. The Fisher vector (FV) [7] extends the BoW by

computing higher-order statistics of the distribution of local

features, e.g., Gaussian Mixture Model (GMM). Specifically,

FV aggregates the gradient vector of each local feature’s likeli-

hood with respect to the GMM parameters (mean or variance)

for each Gaussian. FV is finally formed by concatenating the

1-order and/or 2-order statistics of all Gaussian components.

Compared to the BoW, FV achieved better retrieval perfor-

mance at a much smaller visual vocabulary.

To further improve the FV representation’s discriminative

power, Lin et al. proposed a robust Fisher vector (RFV) [10],

which incorporates a feature selection scheme in the stage of

local descriptor aggregation. RFV selects the most discrim-

inative local features to be involved in FV aggregation and

discard the noisy ones. The selective aggregation significantly

reduced the negative impact of noisy local descriptors on
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the FV discriminability and showed superior performance in

retrieval tasks.

VLAD. Jegou et al. proposed a simplified Fisher kernel rep-

resentation [8] with limited dimension, namely, the Vector of

Locally Aggregated Descriptors (VLAD), to aggregate residual

vectors (difference between local feature and its closest visual

word). VLAD has demonstrated promising results.

However, all the above global descriptors concentrated

on a compact and discriminative representation for a single

image, while few work has attempted to extract such a global

descriptor for a video clip to include the more abundant visual

information.

B. Feature selection

For a compact yet discriminative descriptor, a fundamental

problem is feature selection, as the original feature set detected

from an image or a video frame may include many noisy and

uninformative feature points, they can cause a negative impact

on the discriminative power of the descriptor and interrupt the

descriptor matching process.

The state-of-the-art feature selection method for descriptor

generation is based on the statistical modeling of features’

spatial attributes [9][10], such as scale, orientation, peak

strength and location in the image. Each of the attributes

conditions the likelihood that a feature may be matched up

correctly at query time by the off-line trained models. So a

feature ranking list can be generated by sorting the likelihood

to facilitate feature selection for descriptor generation.

Besides, Xin et al. [14] proposed a self-matching based

feature selection, which randomly applies an out-of-plane

rotation to the target image and match the original features

to the features extracted from the out-of-plane rotated image.

Then the importance of the features is ranked according to the

self-matching score and the top N features are selected. Cao

et al [15] put forward a feature selection method based on the

entropy of the image content, entropy of extracted features and

the Discrete Cosine Transformation (DCT) coefficients.

C. Video representation

A variety of video content representation methods have been

proposed in recent years, for applications like video retrieval,

video classification, landmark recognition, mobile augmented

reality and etc.

For an efficient representation of video playing on the

TV, Chen et al. [11] proposed to select a feature-rich frame

from the sequence of a short user-initiated query video clip.

The feature-rich frame is selected by calculating the image-

level Hessian score, which can reflect the number of robust

local features. But this method transforms video representation

into image representation by selecting a representative frame,

failing to include the numerous visual information contained

within multiple frames.

A typical approach for video content representation [12][13]

is to extract keyframes from the video, detect robust local

features from each keyframe and gather all the local features

into a total representation, followed by certain transformation

Algorithm 1 Generating a Discriminative Fisher Vectors Rep-

resentation for a Query Video.

Input:
Frame Corpus Vq={Is}Ss=1 of a Video Clip.

Output:
A Temporal-Spatial based Fisher Vector (TSFV).

1: Sample frames from Vq by an interval of τ , forming a

subset of frames as V̂q={Ikτ}Kk=1;

2: for each Ikτ ∈ V̂q do
3: Extracting local features {zkt }Tk

t=1 from Ikτ ;

4: Assign a discriminability score for each feature zkt by

Eq.11 ;

5: Sort features in descending order of discriminability

value in frame Ikτ as Eq.9 ;

6: Decide the sig(·) value of each feature by Eq.10 based

on the feature ranking list;

7: end for
8: Generate the temporal-spatial based Fisher vector (TSFV)

for query video by Eq.7 ;

or data compression to reduce the amount of data. However,

this kind of methods seem not appropriate for query video

representation in mobile visual search, because it is not

compact enough for mobile wireless transmission.

Another kind of approaches to represent the video content

are to extract features frame by frame, and to efficiently reduce

the transmission bit rate there have been works on interframe

predictive coding schemes [16][17][18], which exploit the tem-

poral correlation of local descriptors and location coordinates

between adjacent video frames. This kind of approaches may

take any individual frame as query for image retrieval and are

mainly designed for applications of mobile augmented reality

and feature tracking, but have not provided a compact global

signature of the whole video.

III. PROPOSED TSFV FOR QUERY VIDEO

In this paper, we extend the image based FV representation

to describe the visual content in a query video clip, generating

a compact Fisher vectors representation of query video for

mobile visual search. As shown in Fig.1, to improve the

discriminative power of the video FV representation, we inject

a featute selection scheme into the FV aggregation stage,

which employs the interframe feature matching in temporal

terms and intraframe feature attributes in spatial terms to

measure a feature’s discriminability and decide whether the

feature will be involved in the aggregation stage, forming a

temporal-spatial based Fisher vector (TSFV).

A. Brief review of FV

To formulate the problem of generating a Fisher vectors

representation for a video clip, we briefly review the traditional

image Fisher vectors representation. Let I = {zt}Tt=1 denote

a set of T local features extracted from image I , zt ∈ Rd ,

where d denotes the dimensionality of the local descriptor. The

local features are aggregated by an offline trained GMM with
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M Gaussian components: p(zt|λ) =
∑M

m=1 ωmpm(zt), λ =
{ωm, μm.σ2

m}, where ωm, μm and σ2
m denote the weight,

mean and diagonal variance matrix of Gaussian component

m, respectively. The GMM parameters λ are learned through

maximizing the likelihood of training images by the well-

known Expectation-Maximization (EM) algorithm. Then the

Fisher vectors representation is defined on the gradient vectors.

The log-likelihood of image I is obtained by averaging the

log-likelihood values of local descriptors:

L(I|λ) = 1

T

T∑
t=1

log p(zt|λ) (1)

Let GI
m denote the d-dimensional gradient vector with respect

to the mth Gaussian component. The analytical form of GI
m

is derived as:

GI
m =

∂L(I|λ)
∂μm

=
1√
Tωm

T∑
t=1

γt(m)σ−1
m (zt − μm) (2)

where γt(m) = ωmpm(zt)∑M
j=1 ωjpj(zt)

denotes the probability for local

descriptor zt being generated by the mth Gaussian component.

Finally, the Fisher vector GI is formed by concatenating the

aggregated gradient vectors GI
m of all Gaussian components,

m = 1...M .

B. Problem formulation

Given a query video clip of S frames Vq = [I1, I2, ..., IS ],
a large video feature set can be generated as

V = {{z1t }T1
t=1, {z2t }T2

t=1, ..., {zSt }TS
t=1} (3)

where zst denotes the tth local feature in the sth frame,

Ts represents the number of local features detected from

the sth frame. Therefore, for the video FV aggregation, the

log-likelihood of video V is obtained by averaging the log-

likelihood values of all the video features:

L(V |λ) = 1

Tall

S∑
s=1

Ts∑
t=1

log p(zst |λ) (4)

where Tall denotes the total number of features detected from

every frame.

Tall = T1 + T2 + ...+ TS (5)

Let GV
m denote the d-dimensional gradient vector with

respect to the mth Gaussian component. The analytical form

of GV
m is derived as:

GV
m =

∂L(V |λ)
∂μm

=
1√

Tallωm

S∑

s=1

Ts∑

t=1

γt(m)σ−1
m (zst − μm) (6)

Then the video Fisher vector GV is formed by concatenating

the aggregated gradient vectors GV
m of all Gaussian compo-

nents, m = 1...M .

However, there is heavy temporal redundancy as well as

many noisy feature points in the video feature set V . For a

discriminative FV representation of the video clip, also con-

sidering the computational efficiency, we inject a local feature

selection function sig(·) into the FV aggregation framework,

making the video FV only aggregate discriminative features

in V and discard the uninformative ones:

ĜV
m =

1√
T̂ ωm

S∑
s=1

TS∑
t=1

sig(zst )γt(m)σ−1
m (zst − μm) (7)

ĜV
m is the selectively aggregated gradient vector with respect

to the mth Gaussian component. sig(zst ) is a binary feature

selection function, which indicates zst will be involved in the

FV aggregation when it has the value of 1, otherwise zst will be

discarded when it has the value of 0. T̂ denotes the number

of features selected for FV aggregation from the originally

detected video feature set V .

C. Video feature selection

We adopt a two-step feature selection method to decide

which features to be aggregated for the video FV, the first

step is frame selection and the second step is feature selection

of the selected frames.

In the first place, for the purpose of removing heavy

temporal redundancy between adjacent frames, a subset of

frames, namely keyframes, are extracted from the original

video sequence. As the simplest way, we pick out a frame from

every fixed-length interval τ , and the step τ is a predefined

parameter and can be varied. As a result, the sampled frame

subset is represented as:

V̂q = [Iτ , I2τ , ..., IKτ ] (8)

Then feature selection will be implemented on the selected

K frames. For each Ikτ of the K frames, a set of local features

are detected as Ikτ = {zkτt }Tkτ
t=1, and each feature will be

assigned with a discriminability value d(zkτt ), which is mea-

sured by the approach we will introduce in the next subsection.

Then features in frame Ikτ are ranked in descending order of

discriminability value:

d(zkτ1 ) ≥ d(zkτ2 ) ≥ d(zkτ3 ) ≥ ... ≥ d(zkτTkτ
) (9)

the first N features in the ranking list of frame Ikτ will be

selected to be involved in the video FV aggregation. The

number N of selected features from each keyframe is a

predefined parameter and can be varied.

Therefore, the binary feature selection function sig(zst ) in

Eq.7 can be determined as:

sig(zst ) =

{
1, s = kτ and t ≤ N
0, otherwise

(10)

D. Temporal-spatial based feature discriminability measure-
ment

In this subsection, we introduce the measurement definition

of a video feature’s discriminability, which employs interframe

feature matching in temporal terms combined with intraframe

feature attributes in spatial terms, and this temporal-spatial

based measurement provides a novel criterion for feature

selection. For any feature zit in the ith frame of a video, its
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Fig. 2. An illustration of feature matching between neighboring frames.
zit is a feature detected from frame i, z̃i−1

t′ denotes its closest neighbor in

frame i-1, corresponding to the same keypoint of the target object, while z̄i−1
t′

denotes the second-closest neighbor in frame i-1. The closest and second-
closest neighbor are linked to zit respectively by a red and a green line.

discriminability value d(zit) is measured by a scoring function

as:

d(zit) = f(zit) ∗ h(zit) (11)

f(zit) is the interframe matching based score in temporal

terms, and it is also the key point we want to introduce in this

paper. h(zit) is the intraframe feature attributes based score in

spatial terms.

f(zit). As is often the case in a video clip, neighboring

frames have a high degree of overlap in visual content, that

is, they are very likely to depict the same object(s) with

only slight difference. Therefore, unlike noisy features, the

discriminative and stable features detected from the target

object can find their corresponding features with very similar

descriptors and locations in neighbouring frames, as illustrated

in Fig.2, a pair of corresponding features of the same keypoint

from two neighboring frames are linked by the red line.

For each of the detected features zit (no matter discrim-

inative or noisy features) in frame i, we find its closes-

t and second-closest neighbor in terms of SIFT descrip-

tor in the previous frame and calculate two quantities

about it, denoted as DDR(DescriptorDistanceRatio) and

NSD(NomalizedSpaceDistance) respectively,

DDR =
ρ(zit, z̃

i−1
t′ )

ρ(zit, z̄
i−1
t′ )

(12)

where z̃i−1
t′ , z̄i−1

t′ respectively represent the closest and

second-closest neighbor of zit in frame i− 1, ρ(·, ·) represents

the Euclidean distance of features’ SIFT descriptors. DDR
denotes the descriptor distance ratio between a feature to its

closest neighbor and to its second-closest neighbor, reflecting

a feature’s discriminability.

NSD =
d(zit, z̃

i−1
t′ )

1
T

∑T
t=1 d(z

i
t, z̃

i−1
t′ )

(13)

where d(·, ·) represents the space distance between two coor-

dinates, as shown in Fig.2, for the two features zit and z̃i−1
t′ :

d(zit, z̃
i−1
t′ ) =

√
(x1 − x′1)2 + (y1 − y′1)2 (14)

where (x1, y1), (x
′
1, y

′
1) respectively denote the coordinates of

zit and z̃i−1
t′ . NSD reflects the degree of closeness of a feature

Fig. 3. Probability for being a discriminative feature as a function of
quantized DDR value.

Fig. 4. Probability for being a discriminative feature as a function of
quantized NSD value.

to its nearest neighbor in space location, and also indicates the

feature’s stability.

Obviously, discriminative and stable features detected from

target object tend to have smaller values in these two quantities

compared to noisy features. We want to figure out the statisti-

cal models that demonstrate the percentage of discriminative

features account for in all features at different values of

DDR and NSD. Hence, when given a feature, by calculating

its DDR and NSD we can estimate the probability that

it is a discriminative feature, in other words, its estimated

discriminative power. For this goal, we have adopted a training

set containing 3756 image pairs to implement image pairwise

matching, each image pair including a video frame and a

relevant image depicting the same object. We employ ratio

test [3] followed by geometric consistency check based on

RANSAC [19] to detect inliers in the video frames. The inliers

will be taken as discriminative features, labeled as l = 1, and

the other detected features are taken as noisy features labeled

as l = 0.

Then, the percentage of discriminative features account for

in all features at different clustered DDR/NSD values can

be calculated as:

p(l = 1|ddr ∈ DDRi) =
Num(l = 1 ∩ ddr ∈ DDRi)

Num(ddr ∈ DDRi)
(15)
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Fig. 5. Sample items from different categories of the dataset.

p(l = 1|nsd ∈ NSDi) =
Num(l = 1 ∩ nsd ∈ SDi)

Num(nsd ∈ SDi)
(16)

where ddr and nsd respectively represent a certain value of

DDR and NSD , DDRi and NSDi represent the ith clus-

tering center of the DDR and NSD quantities. Plots of the

statistical results respectively with respect to DDR and NSD
are shown in Fig.3 and Fig.4. And the interframe matching

based score f(zit) of feature zit is obtained by referring to the

two statistic models based on feature’s calculated ddr and nsd
and multiply them.

f(zit) = p(l = 1|ddr ∈ DDRi) ∗ p(l = 1|nsd ∈ NSDi) (17)

h(zit). h(zit) is the intraframe feature attributes learned

score for zit , which is a likelihood function involving features’

spatial attributes quantities. In this work, we focus on SIFT

features, and a feature zit = (η, θ, υ, ξ) is of four dimensions,

where η, θ, υ and ξ denote scale, orientation, peak value in

scale space and the distance from a keypoint to the image

center, respectively. In [9] it has been demonstrated that each

of these quantities conditions the probability that a feature is a

discriminative feature and will be correctly matched at query

time. The probability statistical models with respect to the four

attributes are also off-line trained.

Therefore, the attributes learned score h(zit) can be obtained

by multiplying the four conditional probabilities:

h(zit) = rs(z
i
t) · ro(zit) · rp(zit) · rd(zit) (18)

where rs(·), ro(·) ,rp(·), rd(·) represent the individual con-

ditional probability based on feature scale, orientation, peak

value and space location, respectively.

IV. EXPERIMENTS

Dataset and Evaluation metrics. To evaluate the perfor-

mance of our proposed TSFV of query video, we carry out

retrieval experiments on a dataset that consists of 230 query

video clips depicting 115 items (2 video clips of each item),

TABLE I
STATISTICS OF THE ADOPTED DATASET IN THE EXPERIMENTS

Data category
# of query # of query # of database

images videos images
Antiques 100 20 10

Books 50 10 5
Common objects 50 10 5

Cosmetics 100 20 10
Documents 100 20 10
Landmarks 250 50 25

Packaged cosmetics 50 10 5
Paintings 100 20 10

Signs 50 10 5
Supermarket foods 150 30 15

Wine labels 150 30 15
UKBench - - 10,200
In Total 1150 230 10,315

which can be divided into 11 categories, including books,

cosmetics, common objects, landmarks in Peking University

and etc. These videos are captured with hand-held mobile

phone cameras with different amounts of camera motion,

zoom, pan, rotation and perspective changes. Each video is

about 150 frames long, recorded at 30fps with resolution of

640×480. Besides, each query video corresponds to an average

number of 6 query images captured at the same time depicting

the same object, for performance comparison of image based

visual search and video based visual search. And for each item

of the query set, a correspondence database image is provided

and the groundtruth annotation is precisely established. The

above dataset is constructed by ourselves, as those commonly

used benchmark datasets like INRIA Holidays and UKBench

can’t provide corresponding query videos and query images

of a query item at the same time for performance comparison.

And to fairly evaluate the retrieval performance over a larger

dataset, we use the UKBench (containing 10200 images,

similar to our experiment dataset which also contain many

items of small objects) as the distractor dataset to be mixed

with the reference images. Details about the experimental

dataset are illustrated in Table 1 and Fig.5.

The retrieval performance is measured by Recall@R, suc-
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Fig. 6. The retrieval performance comparison in terms of Recall@R of the
6 baselines.

Fig. 7. The retrieval performance comparison in terms of successful rate for
top R match of the 6 baselines.

cessful rate for top R match and mean Average Precision

(mAP). Recall@R denotes the ratio between the number of

relevant items among the identified items and the total number

of relevant items at some given cut-off rank R. Top R match

represents that there has relevant image been identified among

the top R returning results. mAP is the mean precision of a

batch of queries, each of which reveals its position-sensitive

ranking precision:

mAP =
1

Q

Q∑
q=1

(

∑M
r=1 P (r) ∗ rel(r)

#of relevant images
) (19)

where Q is the number of queries, M is the size of retrieved

image list for the ith query, P (r) is the precision at r and

rel(r) is a binary function that it has the value of 1 only

when the rth returning result is a relevant image.

Implementation details. In our experiments the parameters

are set as: frame sampling step τ=25, which is a trade-off

between the coverage of video contents and computation com-

plexity, the number of selected features from each keyframe

N=300, based on the experience of MPEG-7 Compact De-

scriptors for Visual Search (CDVS) standard [20].

Fig. 8. The retrieval performance comparison in terms of mAP of the 6
baselines.

To improve the search efficiency and reduce descriptor

storage, we compress the high-dimensional raw Fisher vectors

into binary codes by an optimized Fisher vector binarization

method [21], which is adopted in the MPEG CDVS standard.

Baselines. To compare the retrieval performance between

the image based retrieval and video based retrieval, and also

to demonstrate the feature selection’s positive impact on the

discriminative power of the aggregated FV representation,

we implement the following baseline experiments: (1). FV
of Image(FV-I): Aggregating all features detected from an

image to form the image Fisher vectors representation. (2).

Spatial based selective FV of Image(SFV-I): Based on image

features’ spatial attributes, implement feature selection, and

aggregate the selected features to form the image Fisher

vectors representation. (3). FV of video(FV-V): Aggregating

all features detected from keyframes to form the video Fisher

vectors representation. (4). Temporal based selective FV of
video(TFV-V). Only based on interframe feature matching to

implement video feature selection and aggregate the selected

features to form the video FV representation (5). Spatial based
selective FV of video(SFV-V). Only based on intraframe feature

attributes to implement video feature selection and aggregate

the selected features to form the video FV representation. (6).

Temporal-Spatial based selective FV of video(TSFV-V). Based

on both interframe feature matching and intraframe feature

attributes to implement feature selection and aggregate the

selected features into a video FV representation.

Performance comparison. The retrieval performance com-

parison of the 6 baselines in terms of Recall@R, successful

rate for top R match and mAP are shown in Fig.6, Fig.7 and

Fig.8, respectively. It can be seen that our proposed TSFV for

qurey video significantly outperforms the conventional SFV

of a single query image by a 7.16% promotion in mAP, under

the condition that they all occupy the same descriptor length.

By comparing baseline TSFV-V, TFV-V, SFV-V and FV-V,

we can see that feature selection plays an important role in

enhancing the discriminative power of the video Fisher vectors

representation and improving the image retrieval performance.

Besides, interframe feature matching has a similar effect
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Fig. 9. Three groups of retrieval performance of TSFV-V in comparison
to SFV-I. Of each group, the above: TSFV-V; the below: SFV-I. Each line
corresponds to a query with top 5 dataset images returned. Green boxes
indicate relevant image.

with the feature spatial attributes on video feature selection

when used alone respectively. And when combining the two

scoring criterion for feature selection, we obtained the best

visual search performance and that is a 2.36% promotion in

mAP compared to the state-of-the-art attributes based feature

selection method.

Case study. Figure 9 illustrates three groups of exemplar

image retrieval results, each group including two lines of

results which are respectively queried by TSFV of a query

video and SFV of a single query image. In these cases, the

image query failed to find the relevant image at the top of the

retrieved list, while a video query succeeded in recognizing

the relevant image as the top return. It’s obvious that our

proposed TSFV of query video achieves significant retrieval

performance promotion compared to conventional SFV of a

singe query image.

V. CONCLUSION

This paper has provided a new mobile visual search solution

that takes a short video clip as query and generates a compact

yet discriminative temporal-spatial based Fisher vector (TSFV)

for the query video. For the TSFV’s generation, we have

presented a novel selective local feature aggregation scheme,

which employs interframe feature matching combined with

intraframe feature attributes to evaluate features’ discriminabil-

ity and select only discriminative features for aggregation.

Experimental results show that our proposed TSFV of a query

video significantly outperforms traditional FV representation

of a single query image for image retrieval, without incurring

increase in transmission bit rate.
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