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Abstract

Conventional image and video communication systems are usually designed with the ob-
jective being to maximize the fidelity of reconstructed images measured by mean square
errors (MSE). It is well known that the fidelity metric MSE may not reflect the visual
quality perceived by human eyes. Recent advancements in image quality assessment tell
us that the structural similarity (SSIM), especially the gradient similarity, reveals the per-
ceptual fidelity of images more reliably. Inspired by this observation, this paper proposes a
new image communication approach, which conveys the visual information in an image by
transmitting the image gradients and recovers the image from the received gradient data at
decoder side using statistical image prior knowledge. In particular, we designed a gradient-
based image SoftCast scheme for wireless scenarios. Experimental results show that the
proposed scheme can produce reconstruction images with much better perceptual quality.
The advantage in perceptual quality is verified by the quality improvement measured by
the metrics SSIM and gradient signal-to-noise ratio (GSNR).

1 Introduction

Today, mean square error (MSE) is still widely used as the fidelity measure for the
design and optimization of image communication systems. For example, to predict a
pixel block from the neighboring pixels in already-reconstructed blocks, the predic-
tion mode is usually selected in such a way that minimal square prediction error is
achieved. Similarly, the rate-distortion optimization (RDO) is generally performed
using MSE as the distortion measure. In addition, we may interpret the adoption
of orthogonal (or nearly orthogonal) decorrelation transform (e.g. DCT or DWT)
in the existing image and video coding schemes as an example of using the MSE
metric implicitly. This is because an orthogonal transform keeps the MSE distortion
unchanged so that a good approximation in the transform domain is guaranteed to
be a good approximation in the signal domain, in terms of MSE.

MSE may be a very good distortion metric indeed for some signal processing tasks.
However, it exhibits weak performance in some other applications and has been widely
criticized for serious shortcomings, especially when dealing with perceptually impor-
tant signals [1,2]. Most pictures, still or moving, are meant to be viewed by people
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ultimately. Accordingly, the fidelity metric for image communication should be tai-
lored to the properties of human visual perception. Recently, a great deal of effort
has been put into the development of image quality assessment (IQA) methods. The
famous work of Wang et. al. [3] tells us that the structural similarity (SSIM) in-
dex is more correlated with the perceptual image quality than the widely used MSE
metric. In SSIM, the distortion/similarity of two signals is modeled by three compo-
nents, namely, the luminance similarity, contrast similarity and structural similarity.
The more recent works [4] and [5] suggest that image gradients convey important
visual information and hence gradient similarity is more relevant to image quality
assessment.

Based on the advancements in image quality assessment, some perceptual im-
age/video coding schemes were proposed in literatures (e.g. [6,7]). However, these
schemes usually focus on parameter selection or coding mode optimization, and do
not change the coding framework and coding tools. Inspired by the gradient-based
IQA metrics, this paper proposes a new image communication approach, which con-
veys the visual information in an image by transmitting the image gradients. The
approach reconstructs the image from the noisy gradient data at the receiver side,
using statistical prior knowledge about the gradient data or the image itself. In par-
ticular, we consider the wireless communication scenario and design a gradient-based
image SoftCast scheme. The proposed scheme has the same advantages as SoftCast
[8-10] that it achieves graceful quality transition for very wide channel SNR range,
and it can serve multiple receivers with different channel qualities simultaneously us-
ing a single signal transmission. More importantly, we expect the proposed scheme
to achieve better perceptual quality, since the scheme is designed with the objective
being to reproduce (as accurately as possible) the image gradients, which is believed
to highly relevant to the visual information perceived by human eyes.

The remainder of the paper is organized as follows. Section 2 describes the pro-
posed gradient-based image SoftCast scheme. Section 3 describes the gradient-based
image reconstruction algorithm. Experimental results are reported in Section 4 and
Section 5 concludes the paper.

2 Gradient Based Image SoftCast (G-Cast)

2.1 The G-Cast Sender

The proposed G-Cast scheme transmits an image over a noisy wireless channel using
one base-layer and one enhancement layer. The purpose of the base layer is to deliver
the DC and the low-frequency components of the image so that the receiver knows
the global luminance of the whole image and the local luminance of each region. The
base layer also provides a coarse reconstruction of the image which can be refined by
the gradient information in the enhancement layer. The base layer will be coded into
a binary representation of very low bit rate and sent out using digital transmission
techniques with strong protection so that the receiver can get the base layer with
very high probability, even when the channel SNR is very low. The purpose of the
enhancement layer is to deliver the gradient information of the image so that a viewer
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can observe the visual details. As stated before, the scheme strives to reproduce
the image gradients instead of the pixel intensities, as accurately as possible at the
receiver side. The enhancement layer will be represented by a stream of real numbers
and sent out using semi-analog transmission techniques, which can achieve graceful
quality transition when the channel SNR fluctuates.
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Figure 1: The G-Cast Sender.

The detail of the proposed scheme is illustrated in Fig. 1. In the base layer, the
whole input image is first transformed into frequency domain using discrete Fourier
transform (DFT) or discrete cosine transform (DCT). Then a small set, say M x M,
of low-frequency coefficients are retained while all the other coefficients are discarded.
The retained coefficients are then quantized and encoded into a bitstream using en-
tropy coding techniques. An alternative coding scheme for base layer, if DCT is used
to produce the coefficients, is to convert the retained M x M low-frequency coefficients
back to a small (M x M) image using an inverse DCT of size M x M (see [11,12]), and
then code the small image to a high quality using a state-of-the-art image coder (such
as HEVC Intra). The coded bitstream is then sent to the OFDM module for trans-
mission, using FEC codes for error protection and quadrature amplitude modulation
(QAM) (such as BPSK, QPSK, etc.) for modulation.

In the enhancement layer, the image gradient is first extracted from the input
image using a gradient transform (GT). Then the gradient image (as shown in Fig. 2)
is processed by Walsh-Hadamard transform (WHT) to reduce the peak-to-mean ratio
(PMR) of the gradient data stream. The WHT-transformed gradient data is directly
modulated to a dense constellation (e.g. 64k-QAM) for raw OFDM transmission,
in the same way as done in SoftCast [8-10]. For each OFDM sub-carrier, a pair of
numbers is extracted from the WHT-transformed gradient data stream and mapped
to a point in the constellation, using the two numbers as the I- and the Q- components
respectively, which ultimately controls the amplitude and phase of the sub-carrier.

2.2 The G-Cast Receiver

Signals transmitted in the air will be influenced by the interferences from other
transceivers. The G-Cast receiver recovers the image from the noisy OFDM sig-
nal via a base layer decoder and an enhancement layer decoder, as illustrated in Fig.
3. The base layer decoder reconstructs the DC and low-frequency coefficients of the
image (or equivalently, the corresponding low-resolution image), by first recovering
the base layer bitstream via demodulation and FEC decoding and then performing
entropy decoding and dequantization. The enhancement layer decoder first retrieves
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Figure 2: The gradient image of Lena (gray, 512 x 512). Left: the horizontal gradient.
Right: the vertical gradient. The data for both images are shifted by +128 for display.

the gradient data from the noisy OFDM signal via demodulation and inverse WHT
transform. It then creates a final estimation of the image via a gradient based recon-
struction (GBR) procedure, utilizing both the gradient information at the enhance-
ment layer and the low-frequency coefficients provided by the base layer. The GBR
procedure will be described in the next section.
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Figure 3: The G-Cast Receiver.

3 Gradient Based Image Reconstruction

3.1  The Owverall Reconstruction Procedure

Suppose u is the lexicographically stacked representation of the original image, g(") =
D™y and g = DMu are the horizontal and the vertical gradient of u, respectively.
The matrices D™ and D) represent the gradient operators in the horizontal and
the vertical directions, respectively. Suppose m = T™u denotes the low-frequency
coefficients of u, where T is the DFT or DCT transform matrix and 7™ is the
M x M rows of T', corresponding to the retained M x M low-frequency coefficients.
The G-Cast sender encodes m in the base layer and transmits g™ and g(*) in the
enhancement layer. The G-Cast receiver gets m, g™ and g*) due to the quantization
effect and the existence of channel noises. For the convenience of discussion, we write
D = [D®™ DM g = [gM gV] and g = [g g§V)]. For any vector v (or matrix V),
we use v; (or V;) to represent its i*" element (or row).

The GBR procedure recovers u from g, ) and m. To reduce the influence of
channel noise, this paper considers the statistical feature that gradient data usually
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conforms to zero-mean Laplacian distributions. The optimization objective can be
formulated as:

mm—ZHD all,+ 5 (1D = g+ [ DYu - gVI) + 57— |

(1)
with p; = 2‘[, [ = %5, pg = % Here 03 and o2 are the variance of gradient data

and the channel noise . Tespectively, @ is the quantization step for coding m.

This above optimization problem is complicated and difficult to solve directly. But
it can be solved with the assistance of variable splitting and augmented Lagrangian
methods (see [13] and the references therein). Using the auxiliary variable g = Du,
(1) can be reformulated as

m1n—Z||gz||1+ lg — &% + MSHT —m|} st.g=Du (2

The augmented Lagrangian function for (2) is

MZngHHr g — &lI3 + 52 |7 —

+; (5 1D g~ V(D) ®)

Here the Lagrangian variable v has the same dimension with g. The problem (2) can
be solved by an iterative algorithm, minimizing (3) with respect to u and g and then
updating v; by v; < v; — (D;u — g;) in each iteration. The minimization of (3) can
be easily handled by solving the following two sub-problems.

3.2 The g Sub-problem

With u fixed, the problem (3) is reduced to

i _Ml H2 ~ 112 ﬁ \Z
; — g “lDu—g —
rngm ZZ: ( 5 Igill, + 5 g — &l + 5 H u— g 5

which has a closed-form minimizer
p128i + B(Dju — %) T

po + 8 "2(u2 + )
Here the shrinkage operation is defined by Shrink(v,s) = max(||v]| —s,0) -

g; = Shrink(

) ()

v
lIvil®

3.3 The u Sub-problem
With g fixed, the problem (3) is reduced to

2

L -2, B A&
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The second term in (6) is exactly (5/2) |/ Du —g — v/8]|3. By writing t = g — v/f3
and reorganizing t; (for all 7) into t™ and t") (6) can be reformulated as

min 52 [T =+ 5 (DO = e+ [0 =) )

This is a simple least square problem. Since both the operators D™ and D) are con-
volutions, they can be efficiently calculated in the frequency domain. To be specific,
if we use periodic extension at signal boundary, the convolution can be calculated by
pointwise multiplication in the DFT domain. Also, we note that 7T is essentially
data masking in the frequency transform, the problem (7) can be solved in frequency
domain, by

oy (ETOBO) T + STOD0) o T4 T 0T 0T
= BTE(DM™) o T(DW) + BTE(DM) o T(DM) + pusTE(TW) o T(TM)

(8)

Here T is the forward DFT transform and 7Y is the inverse DFT transform. 7 is

conjugate of the forward transform. If we use DCT (instead of DFT) as the transform

in base layer and employ symmetric extension for the convolution D™ and D™, the

problem can be similarly solved in the DCT domain [14], with minor changes to (8).

4 Experimental Results

To evaluate the performance of our proposed scheme, we compare it with two anchor
schemes. One anchor is the direct transmission (DirectTz) scheme, in which the
pixels are directly sent out using analog transmission, without any transform and
power allocation. This is similar to the traditional analog-TV. Another anchor is the
SoftCast scheme in [8,9], which employs DCT transform and power allocation. For
our G-Cast scheme, we set M = 8 (i.e., the base layer includes 8 x 8 DCT coefficients).
To make the comparison fair, the transmission in DirectTx and SoftCast is performed
twice (and averaged at the receiver side) so that they send the same amount of data
as G-Cast does. The three schemes are tested under various channel SNR conditions,
ranging from -3dB to 15dB. For simplicity, the OFDM transmission is simulated by
an Additive White Gaussian Noise (AWGN) channel.

Fig. 4 shows the PSNR results of the reconstructed images. The proposed scheme
turns out to be better than DirectTx, but inferior to SoftCast, in terms of PSNR
values. This is not surprising because our scheme is not optimized w.r.t. MSE. In
fact, we are more interested in the perceptual quality or structural similarity. Fig.
5 shows the SSIM results of the reconstructed images. Clearly, G-Cast outperforms
both SoftCast and DirectTz for all CSNR conditions. The advantage of G-Cast
over SoftCast is particularly significant at low CSNR conditions. To gain deeper
insight, we also evaluate the schemes by gradient SNR (GSNR). In other words, we
transform both the original image and the reconstructed image into gradient domain
and measure the signal fidelity by the signal-to-noise ratio in the gradient domain.
Fig. 6 shows the GSNR results of the reconstructed images. We can see that G-Cast
outperforms both SoftCast and DirectTr in GSNR values, for all CSNR conditions.
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Figure 4: The PSNR results of reconstructed images.

That means, under the same channel condition, the G-Cast scheme preserves the
gradient information more accurately than both SoftCast and DirectT.

Perceptual quality is the ultimate target of our design. Fig. 7 shows the recon-
structed images of the three tested schemes, under the channel condition CSNR=0dB.
We see that the output of DirectTx contain white noises while the output of SoftCast
contain low-frequency noises. The output of G-Cast are much clear, with most of im-
age details reserved and most noises removed. Experiments on more test images give
similar observations. Based on this, we argue that the proposed gradient-based image
SoftCast scheme is desirable for perception oriented wireless visual communication.

5 Conclusions and Discussions

Recent advancements in image quality assessment indicate that the perceptual fidelity
of images can be measured more reliably by the gradient similarity than the widely
used conventional distortion metric mean square error. This suggests that the per-
ceptible visual information of an image can be described by the image gradient more
efficiently than the pixel intensity itself. Inspired by this observation, we proposed a
gradient-based image transmission scheme which communicates an image signal by
sending its gradient data with its achievable minimum distortion. Experimental re-
sults show that the proposed scheme provides very promising perceptual quality for
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Figure 5: The SSIM results of reconstructed images.

wireless visual communication.

In order to reconstruct the original image from the noisy gradient data, this paper
utilized a very simple image prior model to reduce the influence of channel noises. In
future works, we will consider more advanced image prior models to further improve
the efficiency of the proposed scheme.
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Figure 7: Perceptual quality comparison for the three evaluated schemes (CSNR=0dB).
Left: the DirectTr scheme. Middle: the SoftCast scheme. Right: the G-Cast scheme.
Enlarge the figures for visual details.
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