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ABSTRACT

Constructing discriminative feature descriptors is crucial towards ef-
fective image retrieval. The state-of-the-art powerful global descrip-
tor for this purpose is Vector of Locally Aggregated Descriptors
(VLAD). Given a set of local features (say, SIFT) extracted from
an image, the VLAD is generated by quantizing local features with a
small visual vocabulary (64 to 512 centroids), aggregating the resid-
ual statistics of quantized features for each centroid and concate-
nating the aggregated residual vectors from each centroid. One can
increase the search accuracy by increasing the size of vocabulary
(from hundreds to hundreds of thousands), which, however, it lead-
s to heavy computation cost with flat quantization. In this paper,
we propose a hierarchical multi-VLAD to seek the tradeoff between
descriptor discriminability and computation complexity. We build
up a tree-structured hierarchical quantization (TSHQ) to accelerate
the VLAD computation with a large vocabulary. As quantization
error may propagate from root to leaf node (centroid) with TSHQ,
we introduce multi-VLAD, which constructing a VLAD descriptor
for each level of the vocabulary tree, so as to compensate for the
quantization error at that level. Extensive evaluation over benchmark
datasets has shown that the proposed approach outperforms state-of-
the-art in terms of retrieval accuracy, fast extraction, as well as light
memory cost.

Index Terms— Image Retrieval, Hierarchical Quantization,
Multi-VLAD

1. INTRODUCTION

Image retrieval regards the discovery of images contained within a
large database that depict the same objects/scenes as those depicted
by query images. In general, state-of-the-art image search systems
are built upon a visual vocabulary with an inverted indexing struc-
ture, which quantizes local features (e.g., SIFT [1] or SURF [2]) of
query and database images into centroids. Each database image is
then represented as a Bag-of-Words (BoW) histogram [3] and is in-
vert indexed by quantized centroids of local features in the image.
Recently, the Vector of Locally Aggregated Descriptors (VLAD)
[4][5] and Fisher vectors [6] have extended the BoW by aggregat-
ing higher-order statistics of the distribution of local features. The
VLAD is generated by quantizing the set of local features with a
small vocabulary (64 to 512 centroids), aggregating the residual s-
tatistics of features quantized to each centroid and concatenating the
residual vector from each centroid. Compared to the BoW with a
large vocabulary (e.g., 1 million centroids), the VLAD have achieved
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(a) Flat VLAD (b) Hierarchical VLAD

(c) Hierarchical VLAD + MA (d) Hierarchical Multi-VLAD

Fig. 1. Several VLAD schemes. (a) Flat VLAD. (b) Hierarchical
VLAD. (c) Hierarchical VLAD with Multi-assignment. (d) Hierar-
chical Multi-VLAD. x1, x2, x3 refer to local features quantized to
centroids.

the state-of-the-art search performance at a much smaller vocabulary
[4][5][7].

Recent works have proposed to improve the VLAD represen-
tation by enhancing the residual statistics in the aggregation stage
after quantizing local features. For example, Tolias et al. [8] intro-
duced an aggregation approach that achieves orientation covariance
of residual statistics. Jégou et al. [9] presented democratic aggre-
gation to limit the interaction of unrelated local features in gener-
ating the residual vectors. Arandjelovic et al. [10] proposed intra
normalization of residual vectors to suppress bursty visual elements.
These improved aggregation strategies have shown promising result-
s. However, the descriptor discriminability of VLAD is yet limited
by the coarse quantization due to a small vocabulary.

An alternative solution is to directly increase the vocabulary
size, as a large vocabulary usually provides fine-grained partition
of feature space and improves the discriminability of centroids. For
instance, Tolias et al. [11] formulated image retrieval as a match
kernel framework and used a large vocabulary trained with flat k-
means, leading to state-of-the-art search accuracy. Unfortunately,
the computation cost with flat quantization is linearly increased with
the vocabulary size. This usually leads to slower VLAD extraction.

In this paper, we propose a hierarchical multi-VLAD to address
the problem of image retrieval using the state-of-the-art VLAD de-
scriptor with large vocabulary (see Fig. 1). Firstly, we adopt tree-
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structured hierarchical quantization (TSHQ) by hierarchical k-means
(HKM) [12] to greatly speed up the VLAD computation with a large
vocabulary (e.g., hundreds of thousands). One drawback of TSHQ
is that it brings about larger quantization error than flat quantization,
as TSHQ only visit a small number of nodes (centroids) to find the
nearest neighbor when propagating local feature from root to leaf
node. Thus, we propose multi-VLAD by constructing a VLAD for
each level of the vocabulary tree, to compensate for the quantization
error at that level. We show that the multi-VLAD performs better
than multi-assignment [13] in both retrieval accuracy and descriptor
storage saving. Extensive evaluation over benchmark datasets shows
that the proposed approach obtains superior retrieval accuracy than
various VLAD schemes and the state of the art, and provides over
100 times speedup than flat quantization.

The rest of the paper is organized as follows. In Section 2, we
first give a brief review of the flat VLAD (known as the original
VLAD). We present the proposed hierarchical multi-VLAD in Sec-
tion 3. Experimental results are presented in Section 4. We conclude
in Section 5.

2. FLAT VLAD

Jégou et al. [4] proposed the VLAD descriptor to produce a global
vector representation for image. The extraction pipeline of VLAD
descriptor is summarized as follows. Firstly, like BoW, a vocabulary
with K centroids C = {ci|i = 1, 2, ...,K} is trained off-line by
k-means clustering. Given an image with N local features, denoted
by X = {xn|n = 1, 2, ..., N}, each local feature xn is quantized to
the nearest centroid by flat quantization:

xn 7→ q(xn) = argmin
ci∈C

∥xn − ci∥2 (1)

For each centroid ci, a sub vector vi is obtained by accumulating
the residual vector between the centroid and local features quantized
to this centroid:

vi =
∑

x:q(x)=ci

x− ci (2)

Finally, the VLAD is formed by concatenating the residual vec-
tors from all centroids V = [vi], resulting in a d × K dimensional
descriptor, where d denotes the length of local features. It is shown
in [10] that intra L2 normalization on residual vector from each cen-
troid followed by L2 normalization on the whole VLAD descriptor
can suppress the visual “burstness” problem [13] and significantly
improve the retrieval accuracy.

Referring to Eq.(2), a residual vector vi is a zero vector in case
that there is no local feature quantized to the ith centroid. This mean-
s that the ith centroid is not selected for the aggregation step. Given
a set of local features detected from an image, the number of selected
centroids is relatively small, especially for large vocabulary size K.
For storage saving, we only need to store the residual vectors from
the selected centroids. Besides, an overhead of K bits is needed to
keep track of the centroids, each bit indicates if the corresponding
centroid is selected (1 means selected, otherwise, 0).

Multiple Assignment. The hard-assignment of local feature
to the nearest neighbor centroid brings about the quantization er-
ror problem. Therefore, multi-assignment [13] or soft-assignment
[14] have been proposed to reduce the quantization error, as local
feature is represented as a linear combination of multiple centroids.
Combining with multi-assignment, we can rewrite Eq.(2) as:

vi =
∑

x:ci∈Nγ(x)

x− ci, (3)

where Nγ(.) denotes γ nearest centroids of x. As quantization error
reduced with multi-assignment, the retrieval accuracy is usually im-
proved [13][11]. However, multi-assignment increases the number
of selected centroids for aggregation, bringing about extra storage
cost (as shown in Section 4).

3. HIERARCHICAL MULTI-VLAD

In this section, we firstly introduce the tree-structured hierarchical
quantization to boost the VLAD extraction speed, especially for
large vocabulary. Then we present the multi-VLAD representa-
tion to compensate for quantization error. We finally discuss the
relationship between multi-VLAD and multi-assignment.

3.1. Tree-Structured Hierarchical Quantization (TSHQ)

To work with large vocabulary, we employ TSHQ to speed up feature
quantization. A hierarchical vocabulary tree TN

K , with depth N and
branches K, is trained off-line by hierarchical k-means clustering.
We denote the nodes at ith level as Ci = {cij |j = 1, 2, ...,Ki},
each node is considered as a centroid. During quantization, each
local feature walks from root node to leaf node of the tree TN

K . At
ith level, a local feature is assigned to the nearest neighbor node
cij from Ci, then the feature is propagated down to the next level
started from the node cij . Finally, the VLAD is extracted from the
leaf nodes (centroids). We refer to the VLAD extracted with TSHQ
as Hierarchical VLAD (HVLAD) from here on.

Descriptor Matching. When the number of local features is far
less than the vocabulary size, the HVLAD exhibits the so called spar-
sity. Following [6][15], the descriptor matching between HVLADs
Vq and Vr is computed as a normalized similarity on their overlapped
centroids:

Sim(Vq, Vr) =

∑KN

i=1 fq
i f

r
i σ(v

q
i , v

r
i )√∑KN

i=1 fq
i

∑KN

i=1 fr
i

, (4)

where σ(., .) is match kernel [11] to measure the similarity between
residual vectors of HVLAD (e.g., L2 distance, cosine distance).
fq
i = 1 means the ith centroid is selected for image q, 0 otherwise.
fr
i has the same meaning for image r. According to the similari-

ty equation, similarity is only computed based on the overlapping
centroids between Vq and Vr .

3.2. Multi-VLAD Representation

There exists quantization error when assigning local feature to the
nearest centroid with flat quantization. This issue becomes worse
for hierarchical quantization, as the number of visited centroids are
largely reduced comparing with flat quantization (i.e., the path traced
by a local feature contains only a small number of nodes for TSHQ).
One can simply apply multi-assignment at each level to alleviate the
quantization error at that level, but as aforementioned, it leads to
extra storage cost. Thus, we propose a multi-VLAD representation
to take both quantization error compensation and descriptor storage
into consideration. The basic idea is to extract a VLAD descriptor at
each level independently, each VLAD can compensate for the loss
from the corresponding layer.
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Fig. 2. A sample of generating VLAD with (a) Multi-assignment and
(b) Multi-VLAD representation. For Multi-VLAD, the number of
selected centroids (marked as red) is smaller than multi-assignment
scheme, resulting in light descriptor storage.

For the hierarchical vocabulary tree TN
K with depth N and

branches K, we construct N VLAD descriptors V = {V i|i =
1, 2, ..., N}, where the ith VLAD V i = [vij ] is extracted at the
ith level of the tree Ci = {cij |j = 1, 2, ...,Ki}, following the
same procedure introduced in Section 2. Note that the multi-VLAD
scheme can be combined with the multi-assignment. Thus, we can
rewrite Eq.(2) and Eq.(3) as:

vij =


∑

x:qi(x)=cij

x− cij , if HA

∑
x:cij∈Ni

γ(x)

x− cij , if MA
, (5)

where HA and MA denotes hard-assignment and multi-assignment,
respectively. qi(x) refers to the quantizer at ith level of the vocabu-
lary tree and N i

γ(x) the top γ nearest neighbor centroids (nodes) for
local feature x.

Descriptor Matching. For the descriptor matching between
multi-VLADs, we firstly compute the normalized similarity between
the VLAD at each level, then power weight the similarity scores and
fuse them by multiplication. Specifically, given the multi-VLAD
descriptors Vq = {V i

q |i = 1, 2, ..., N} from image q and Vr =

{V i
r |i = 1, 2, ..., N} from image r, the similarity Simm(Vq, Vr) is

defined as:

Simm(Vq, Vr) =

N∏
i=1

Sim(V i
q , V

i
r )

αi , (6)

where Sim(., .) is the normalized similarity equation defined in
Eq.(4) and αi is the weighting factor to control the impact of the
ith VLAD. In general, the VLAD at high level of the tree is more
discriminative than low level. Thus, we empirically set the weights
as αi = i in this paper.

Multi-VLAD vs. Multi-assignment. Both multi-VLAD and
multi-assignment aim to reduce the quantization error at each level of
the tree. One drawback of multi-assignment is that it is hard to deter-
mine the optimal number of assignments (i.e., γ). Smaller γ leads to
insufficient quantization error reduction, while larger γ brings noise
into quantization. Compared to multi-assignment, multi-VLAD has
two advantages: (1) multi-VLAD is parameter free and shows su-
perior retrieval accuracy, as shown in Section 4; (2) multi-VLAD
offers light storage. We observe that the storage of multi-assigned

VLAD increases with the parameter γ, while multi-VLAD is stable.
On the other hand, as the vocabulary size exponentially increases
with depth, for multi-VLAD, the number of selected centroids at in-
termediate level is much smaller than high level. This means that
the storage of VLAD extracted from intermediate level is fewer than
multi-assignment (see Fig. 2).

4. EXPERIMENTS

4.1. Datasets and Baselines

We evaluate the proposed method on two benchmark datasets, INRI-
A Holidays [16] and UKBench [12]. The Holidays dataset consists
of 1491 images and 500 of them are used as query images. Each
query has about 1∼12 relevant images undergoing various changes.
The UKBench dataset contains 2550 objects, each containing 4
images taken from differen viewpoints. Mean Average Precsion
(mAP) is used to evaluate retrieval performance. We compare
several VLAD schemes, including: (1) FVLAD. The flat VLAD in-
troduced in Section 2. (2) HVLAD. The VLAD extracted from leaf
nodes with TSHQ. (3) HMVLAD. The proposed multi-VLAD rep-
resentations extracted from all levels with TSHQ. For all schemes,
multiple assignment (denoted as MA) is adopted for performance
comparison. We implement MA as follows: MA = 4 nearest neigh-
bors on all query sides and MA = 2 on database side if stated.

We use a variant of SIFT descriptor, RootSIFT [17], which sim-
ply applies L2-normalizaiton and square root to each componen-
t of SIFT. Following [4][5][6] closely, the dimension of RootSIFT
is reduced from 128 to 32 by applying PCA dimension reduction.
We evaluate the performance of all VLAD schemes from a smal-
l vocabulary (i.e., 128 centroids) to large ones (i.e., 403 = 64k,
503 = 125k). The vocabulary is trained by HKM (with depth 3
branches 40, and depth 3 branches 50). Correspondingly, for H-
MVLAD, there are three VLAD descriptors with vocabulary size
{40, 1600, 64k} and {50, 2500, 125k}. Finally, L2-normalization
[10] is applied to the residual vector computed from each centroid.
Aggregated selective match kernel [11] is used as the match kernel.

4.2. Performance Comparison

Table 1 compares the mAP of various VLAD schemes over both Hol-
idays and UKBench datasets. Firstly, it is shown that the retrieval
accuracy of VLAD is significantly improved by increasing the vo-
cabulary size, for example, +20% in mAP on Holidays from 128 to
403 centroids. Secondly, the proposed HMVLAD significantly out-
performs HVLAD and HVLAD combined with multi-assignment
(MA). For instance, HMVLAD yields the best retrieval accuracy,
e.g., mAP 83.16% on Holidays dataset vs. 81.74% for HVLAD vs.
82.29% for HVLAD+MA, with vacabulary size 403. The perfor-
mance gap on UKbench is larger between HMVLAD and the base-
lines. When combine HMVLAD with MA, the retrieval accuracy is
slightly better than HMVLAD. It seems that multi-VLAD and MA
are not complementary to each other. Thirdly, HMVLAD obtains
a comparable mAP with FVLAD and FVLAD+MA. For example,
83.89% for FVLAD+MA vs. 83.55% for HMVLAD on Holidays
with vacabulary size 503. Finally, the HMVLAD achieves competi-
tive retrieval accuracy compared to state-of-the-art methods (82.2%
on Holidays in [11] and 90% on UKBench in [13]).

Table 2 shows the comparison of VLAD extraction time and av-
erage number of selected centroids between various VLAD schemes.
One can see that HVLAD and HMVLAD is over 100 times faster
than FVLAD. This demonstrates that our HMVLAD can largely re-
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Fig. 3. Two sample queries (Left) from the Holidays dataset and
their retrieval results obtained by HMVLAD (Middle) and HVLAD
(Right).

duces the extraction time, while without incurring retrieval accracy
loss. In addition, the number of selected centroids of HMVLAD is
significantly fewer than HVLAD+MA. This leads to smaller storage
as we only have to store the sub VLAD vectors of selected centroid-
s. Fig. 3 shows sample results on the Holidays dataset obtained by
HVLAD and HMVLAD.

Dataset Holidays UKBench
Vocabulary Size 128 403 503 128 403 503

FVLAD 63.75 83.24 83.06 79.68 86.84 86.15
FVLAD+MA - 83.66 83.89 - 87.62 86.82

HVLAD - 81.74 82.01 - 86.23 84.97
HVLAD+MA - 82.29 82.5 - 86.64 85.57

HMVLAD - 83.16 83.55 - 88.53 87.9
HMVLAD+MA - 83.41 83.83 - 89.04 88.46

Table 1. Performance comparison on Holidays and UKBench be-
tween various VLAD schemes.

Vocabulary Size 403 503

Methods Time (ms) Centroids Time (ms) Centroids
FVLAD+MA ∼4500 1833 ∼10400 1883
HVLAD+MA 46 1819 63 1870

HMVLAD 47 1586 63 1693

Table 2. Comparison of VLAD extraction time (excluding local fea-
ture detection and description) and average number of selected cen-
troids (related to descriptor storage). Experimental results are mea-
sured on a server with 2.6GHz CPU and 32G RAM.

4.3. Large Scale Experiments

To evaluate the scalability of our proposed approach in large scale
image retrieval, a FLICKR1M dataset containing 1 million images
is used as distracters, combined with the Holidays and UKbench
database images. Considering the slow floating-point computation
and heavy storage with very high-dimensional VLAD descriptors
over large scale dataset, local features are selected to a maximum
of 500 [18] and sign binarization is applied to compress VLAD into
binary codes, followed by inverted file structure to index the codes.
The vocabulary with size 403 is used to construct descriptors. For

(a) Holidays

(b) UKBench

Fig. 4. Performance comparison in terms of mAP between HVLAD,
HVLAD+MA and our HMVLAD, as distracter size changes.

HMVLAD, the 3rd level’s VLAD is indexed by inverted file and
used for a first stage retrieval to generate 1000 candidate images,
the 1st and 2nd levels’ VLAD are subsequently combined to re-rank
the candidate images. Fig. 4 illustrates the performance of various
VLAD schemes at varied distracter size. We can see that HMVLAD
obtains better retrieval performance than other schemes in all differ-
ent distracter sizes, which proves that our approach is superior.

5. CONCLUSION

In this paper, we propose to generate VLAD descriptor by tree-
structured hierarchical quantization (TSHQ). A high discriminative
representation can be extracted in milliseconds even with a very
large vocabulary. Furthermore, we propose to generate a VLAD at
each level of the vocabulary tree and form multi-VLAD for reducing
the negative effect of quantization error caused by TSHQ. Experi-
mental results show that our approach achieves the state-of-the-art
performance. Meanwhile, low extraction time and light storage are
offered. More research work on how to incorporate feature selection
[18][19] and rate-adaptive descriptor coding [15] will be included in
our future work.
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[4] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick
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