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ABSTRACT

Fisher vectors (FV) have shown great advantages in large scale
visual search. However, traditional FV suffers from noisy local de-
scriptors, which may deteriorate the FV discriminative power. In
this paper, we propose a robust Fisher vectors (RFV). To fulfill fast
search and light storage over a large scale image dataset, we employ
a simple binarization method to compress RFV to generate com-
pact robust Fisher codes (RFC). Extensive comparison experiments
on benchmark datasets have shown that both RFV and RFC outper-
forms the state-of-the-art performance. The scalability of RFC has
been validated on a dataset of over 1 million images as well.

Index Terms— Fisher kernel, local descriptors aggregation,
large scale visual search

1. INTRODUCTION

The problem of large-scale image retrieval regards the search and
discovery of images contained within a large collection that depict
the same objects or scenes as those depicted by a query image. This
requires the database images to be processed for the creation of a
descriptor database which may be indexed. Search is performed by
the descriptors extracted from the query. The bag-of-features (BoF)
[1] is the most popular method. Given an image, the keypoints are
detected and their local descriptors (e.g. SIFT [2]) are extracted.
Each local descriptor is quantized to a visual word. Inverted index
file is build up to implement visual words based indexing and search.
However, inverted index file brings about heavy memory consump-
tion, e.g., 1.1 million images may incur a memory usage of 4.3GB
[3], which make it difficult to scale up to a large scale image dataset.

Many research efforts have been attempted to improve the per-
formance of traditional BoF. For example, a large vocabulary (1 mil-
lion visual words) [4][3] to make fine-grained quantization of the
descriptor space; soft assignment of descriptors to multiple visual
words to reduce quantization error [5]; query expansion [6] and ge-
ometric verification by RANSAC [3] to improve the initial retrieval
results. Unfortunately, the intensive computation renders the BoF
based retrieval less efficient, despite performance improvements.

To improve the retrieval performance and efficiency at much less
memory complexity, Perronnin et al. [7] introduced Fisher kernel [8]
to image retrieval. Fisher kernel is a powerful tool, which exhibits
the strength of both generative and discriminative models. Given
an image, Fisher kernel aggregates the local descriptors to form a
Fisher vectors (FV) representation of fixed-length. Jegou et al. [9]
proposed a simplified FV, the Vector of Locally Aggregated Descrip-
tors (VLAD). Promising results have been reported [7] [9].
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In this paper, we propose a robust Fisher vectors (RFV) repre-
sentation. The selective aggregation can significantly reduce the neg-
ative impact of noisy local descriptors on FV discriminative power.
Referring to Eq.1, the aggregation of traditional FV assumes that
local descriptors contribute to the FV representation equally. This
could be biased from the modeling perspective. As illustrated in
Figure 1, it is easy to imagine that FV mainly benefits from lo-
cal descriptors extracted from the regions of query object, while
the descriptors from background would deteriorate its discrimina-
tive power. Hence, it is crucial to consider a model that incorporate
the selection of local descriptors into the FV aggregation stage. In
this work, we propose to model the characteristics of keypoints for
selecting ”healthy” local descriptors to aggregate FV. Correct match-
ing keypoints are statistically associated with useful local descrip-
tors. The selection function may be modeled by matching pairs.

Our extensive experiments on two benchmark datasets (the
UKbench and Holidays) and a Graphics dataset taken by a mobile
phone, have shown the consistent superior performances of the
proposed RFV over the state-of-the-arts [10][9][7]. For example,
mean average precision (mAP) is improved from 59.5% to 67.1%
on Holidays dataset compared to the FV [10].

More importantly, to evaluate the RFV scalability over a large-
scale dataset, we employ a sign binarization approach [7] to com-
press RFV into small robust Fisher codes (RFC) for fast search and
much less storage. Our RFC significantly outperforms [7][10], e.g.,
recall@1 achieves around 43% (versus 31% reported in [7]) on the
Holidays dataset combined with 1 million distractor images.

2. RELATED WORK

Rather than BoF, our proposed RFC focuses on the FV based re-
trieval. Below we compare the BoF and FV based retrieval pipeline.
Related work on FV is reviewed to distinguish the proposed RFC.

BoF versus FV Both BoF and FV generate a compact image-
level representation by aggregating local descriptors. However,
FV employs higher order statistics to achieve more discriminative
power. BoF encodes the zero-order statistics by counting the oc-
currences of quantized local descriptors (visual words). Beyond
the occurrence statistics, FV extends BoF by encoding higher-order
statistics of local descriptors[10]. FV employs a Gaussian Mixture
model (GMM) to estimate the distribution of local descriptors over
a training feature set. Given an image, the gradient vectors of all
local descriptors w.r.t. the parameters of each Gaussian component,
are aggregated by computing their mean (1-order) and/or variance
(2-order). FV is finally formed by concatenating the 1-order and/or
2-order statistics of all Gaussian components.

In particular, FV significantly reduce the computational com-
plexity. The reasons are two-folds. Firstly, compared to BoF, FV
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achieves much better performance with a few hundred visual words
(Gaussian). Secondly, raw FV can be further compressed to generate
compact Fisher codes (FC), e.g., binarization (0/1 bits) [7] or prod-
uct vector quantization [10]. Compared to original FV, FC yields
comparable performance, while FC greatly improves the retrieval
efficiency due to very fast Hamming space computing (XOR opera-
tion and bit count), and reduces the storage of features. [7]. Distinct
from BoF, the FV based search don’t require any indexing files.

Fisher Kernel Representation Fisher kernel is a generic
representation[8], which has been successfully applied to a few
vision related tasks, such as image classification [11] and image
retrieval [7]. Recently, further improvements have been proposed,
such as incorporating spatial cues into FV [12][13], modeling the
relationship of local descriptors [14], combining FV with other fea-
tures to make efficient retrieval [15]. Distinct from previous work,
the proposed RFV employs the keypoint characteristics to perform
selective aggregation of local descriptors, which has significantly
improved the discriminative power of FV representation.

3. PROBLEM FORMULATION

3.1. Brief review of Fisher vectors

To formulate the problem of robust Fisher vector, we briefly review
the Fisher kernel principle. Let I = {xt}Tt=1 denote a set of T lo-
cal descriptors xt extracted from image I, xt ∈ Rd, where d denotes
the dimensionality of raw local descriptors or the processed local de-
scriptors after dimensionality reduction. We may assume that each
local descriptor xt is generated independently by an offline trained
GMM with K Gaussian components: p(xt|λ) =

∑K
k=1 ωkpk(xt),

λ = {ωk, µk, σ2
k}Kk=1, where ωk, µk and σ2

k denote the weight,
mean and diagonal variance matrix of Gaussian component k, re-
spectively. The GMM parameters λ are learned through maximizing
the likelihood of training images with the well-known Expectation-
Maximization (EM) algorithm. The log-likelihood of image I is ob-
tained by averaging the log-likelihood values of local descriptors as:

L(I|λ) =
1

T

T∑
t=1

log p(xt|λ) (1)

Accordingly, image I can be represented by the aggregated gra-
dient vectors of local descriptors with respect to the likelihood func-
tion of image I based on the learned parameter setting λ [8]:

GI
λ =

1

T
5λ L(I|λ) (2)

Fisher kernel [8] is elegantly defined on the gradient vector rep-
resentation. Fisher kernel function K(Ix, Iy) = GIx

λ

T
F−1
λ GIy

λ ,where
Fλ is the Fisher information matrix. Fλ = Ex∼p[5λL(I|λ)5λL(I|λ)T ].
Fλ is symmetric and positive definite, which can be decomposed
as F−1

λ = LTλLλ. Lλ can be considered as a normalization ma-
trix. Hence, we may rewrite K(Ix, Iy) as the form of dot product
between normalized gradient vectors GIλ with:

GIλ = LλG
I
λ (3)

, where GIλ is referred to as appearance FV [11] of image I.
Let GIk denote the d-dimensional gradient vector w.r.t. the pa-

rameter of Gaussian k. The analytical form of GIk is derived by:

GIk =
∂L(I|λ)

∂µk
=

1√
Tωk

T∑
t=1

βt(k)σ−1
k (xt − µk), (4)

Fig. 1. Keypoint matching between a query image with background
clutter (left) and the reference image (right). The bigger circles indi-
cate more effective local descriptors for FV aggregation.

, where βt(k) = ωkpk(xt)∑K
j=1 ωjpj(xt)

denotes the probability for local

descriptor xt being generated by Gaussian component k.
The appearance FV of image I GIλ is finally generated by con-

catenating the aggregated gradient vectors GIk of all Gaussian com-
ponents k = 1...K. Thus, the total length of appearance FV is Kd-
dimensional. Subsequently, we employ the power law (α = 0.6) to
normalize each dimension of GIλ.

3.2. Problem statement

We propose the selective gradient vector aggregation of local de-
scriptors to make robust Fisher vectors. We inject a selection func-
tion h(zt) of local descriptors xt into the Fisher kernel aggregation
framework. The selection function is defined over the detected key-
points’ features zt. Note that most exiting works do not elegantly
unify detection and description stages in robust representation.

Let I = {(zt,xt)}Tt=1 denote a collection of local descriptors
xt and their detected keypoints’ features zt in image I. The average
log-likelihood of image I in Eq. 1 is rewritten as follows:

L̂(I|λ) =
1

T

T∑
t=1

log p(zt,xt|λ)

=
1

T

T∑
t=1

log h(zt)p(xt|λ),

(5)

where

h(zt) =

{
1 if S(zt) ≤ τ
0 if S(zt) > τ,

(6)

h(zt) is a binary function of keypoint zt to determine whether xt is
involved in appearance FV aggregation or not. S(zt) is a likelihood
ratio test function and τ is a constant threshold. If S(zt) ≤ τ , the
corresponding descriptor xt is adopted by appearance FV aggrega-
tion; otherwise, it is discarded. In this work, the keypoint feature
zt = (η, θ, v, ξ) is of four dimensions, where η, θ, v and ξ denote
scale, orientation, peak value in scale space and the distance from a
keypoint to the image center, respectively.

Accordingly, the selectively aggregated gradient vector GIk of
Gaussian k in Eq. 4 is updated as:

ĜIk =
1√
Tωk

T∑
t=1

h(zt)βt(k)σ−1
k (xt − µk). (7)

To generate the robust Fisher vectors ĜIλ, we concatenate the aggre-
gated gradient vectors ĜIk, k = 1...K of all Gaussians components.

1514



4. BAYESIAN ADAPTATION FOR KEYPOINT LEARNING

To fulfill the selective aggregation of local descriptors, we propose to
learn S(zt) from the perspective of determining robust keypoints for
patch-level descriptor matches. The learning procedure is to model
the keypoints’ characteristics of matching and non-matching key-
point pairs[16]. Given an image, for each keypoint zt, the learned
model can be employed to predict the probability of zt being cor-
rectly matched with a keypoint in the comparing image. With the
output probability, we employ a likelihood ratio test to come up with
the selection of local descriptors in aggregation:

S(zt) =
p(zt|H1)

p(zt|H0)

{
≤ τ accept H0

> τ reject H0,
(8)

where hypothesis H0 and H1 represent whether keypoint zt would
yield a correct match or not, respectively. p(zt|Hi), i = 0, 1, is the
probability density function for hypothesis Hi. τ ∈ (0,∞) denotes
the decision threshold to accept or reject H0. A smaller τ implies
that there would be less keypoints in an image to accept H0.

Constructing the training keypoint set BH1 and BH0 . Let
Ω = {〈Iln, Irn〉}Nn=1 denote N matching image pairs, (Zen,X

e
n) =

{(zenm,xenm)|e ∈ {l, r},m = 1...Mn} denote a collection of
keypoints zenm and the corresponding descriptors xenm extracted
from each image Ien. We employ a distance ratio test [2] be-
tween keypoint sets Xl

n and Xr
n to detect matching keypoint

pairs Dn = 〈Xl
n,X

r
n〉 = {〈xlnd,xrnd〉|d = 1...Dn} from an

image pair 〈Iln, Irn〉, which may remove many false matches from
background clutter. Subsequently, a geometric consistency check
like RANSAC [3] is applied to divide keypoint set Dn into inliers
D̂n = 〈X̂l

n, X̂
r
n〉 = {〈x̂lnd, x̂rnd〉|d = 1...D̂n} and outliers Dn\D̂n.

The inlier D̂n are finally considered as correct matches.
We construct the entire keypoint set BH1 = {zt|t = 1...B1, zt ∈

Zen, n = 1...N, e ∈ {l, r}}, including the matching keypoint (in-
lier) set BH0 = {zt|t = 1...B0, zt ∈ Ẑen, n = 1...N, e ∈ {l, r}}.
Ẑen denotes the keypoint set of X̂e

n. BH1 contains both matching
and non-matching keypoints, while BH0 is a subset of BH1 .

To establish the hypothesis model p(zt|H0) and p(zt|H1),
we first train a universal model p(zt|λH1) with parameters λH1

for hypothesis H1 over the entire keypoint set BH1 . Rather than
independently learning the model p(zt|λH0) for hypothesis H0,
we adopt Bayesian adaptation to derive λH0 by updating the well-
trained parameters λH1 of the universal model using the incoming
matching keypoint set BH0 . Bayesian adaptation is a popular mod-
eling approach in speech and speaker recognition [17]. In this work,
Bayesian adaptation is able to furnish sufficient prior knowledge
about the distribution of keypoints via the universal model, and
the consequent adaptation to matching keypoints may elegantly
guarantee desirable discriminative power of the likelihood ratio test.

Estimating model p(zt|λH1). Given the training set BH1 , we
adopt a GMM model to learn the distribution of keypoint features zt
as: p(zt|λH1) =

∑C
c=1 ω̃cpc(zt), where λH1 = {ω̃c, µ̃c, σ̃2

c}Cc=1,
C the number of Gaussian components. The covariance matrices are
assumed to be diagonal and the variance vector is denoted as σ̃2

c . We
learn the parameters λH1 by maximizing the likelihood of BH1 .

Estimating model p(zt|λH0). Given the match keypoint
set BH0 and the learnt universal model p(zt|λH1), we perform
Bayesian adaptation [17] in twin-stage iteration. The first step is
identical to the expectation step of EM algorithm, which uses B0

keypoint samples zt from BH0 to calculate the sufficient statistics

about the GMM parameters of weight, mean and variance:

nc =

B0∑
b=1

γb(c) (9)

Ec(zt) =
1

nc

B0∑
t=1

γt(c)zt (10)

Ec(z
2
t ) =

1

nc

B0∑
t=1

γt(c)z
2
t , (11)

where γt(c) = ω̃cpc(zt)∑C
č=1 ω̃čpč(zt)

denotes the soft assignment of key-
point zt to Gaussian c.

The second step is to apply the above sufficient statistics from
BH0 to update the parameters {ω̃c, µ̃c, σ̃2

c}. The adapted parameters
λH0 = {ω̂c, µ̂c, σ̂2

c}Cc=1 is derived as follows:

ω̂c = αwc nc/B0 + (1− αwc )ω̃c (12)
µ̂c = αscEc(zt) + (1− αsc)µ̃c (13)

σ̂2
c = αtcEc(z

2
t ) + (1− αtc)(σ̃2

c + µ̃2
c)− µ̂2

c , (14)

where αwc , αsc and αtc are adaptation coefficients to control the im-
pact of universal model on parameters updating. For example, when
αsc is large, the statistics Ec(zt) from matched keypoints tend to
dominate in Eq. 13. In this work, we define the coefficients αρc , ρ ∈
{w, s, t} as the ratios αρc = nc

nc+πρ
, where πρ is a constant relevance

factor for parameter ρ and nc is defined in Eq. 9.
Discussion. When we select a threshold to make the likeli-

hood ratio test τ → ∞, the RFV model degenerates to standard
FV. Both RFV and FV have K(1 + 2d) parameters for the appear-
ance model, and the descriptor sizeKd. However, RFV model intro-
duces 2C(1+2z) more parameters for the hypothesis models, where
z = 4 is the dimension of keypoint features zt. In our experiments,
we adopt C = 32 Gaussian components for the hypothesis mod-
els, and we will show that a few additional parameters bring about
significant performance improvements.

5. EXPERIMENTS

5.1. Datasets and experiment setup

Datasets: We conduct comparison experiments over two popu-
lar benchmark datasets and a public available dataset from MPEG
CDVS evaluation framework.

The UKbench dataset contains the images of 2,550 objects, each
with 4 images taken from varied viewpoints. All the 10,200 images
are indexed as reference images. The retrieval performance is mea-
sured by mean average precision (mAP) of all 10,200 queries. Also,
we report the average numberNs of relevant images in top 4 returns,
which is the commonly used measure over this dataset [4].

The Holidays dataset is a collection of 1491 holiday photos.
There are 500 image groups where the first image of each group
is used as a query. The retrieval performance is measured by mAP.

The Graphics dataset is a subset of the Stanford mobile visual
search dataset, involving 5 categories (CDs, DVDs, books, text doc-
uments and business cards). There are 1500 queries and 1000 refer-
ence images. The retrieval performance is measured by mAP.

To setup large-scale experiments, we use a FLICKR1M dataset
containing 1 million distractor images collected from Flickr. This
distractor set is merged with other testing datasets to evaluate the
retrieval performance and efficiency over a large scale dataset. The
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Fig. 2. Influence of the decision threshold τ on performance, and
comparison of RFV and FV [7] on Graphics and UKbench datasets.
K = 64 Gaussian components are used in all experiments.

performance is measured by Recall@R, i.e. the rate of relevant im-
ages in top R returns. A higher recall rate indicates a better shortlist
for subsequent geometric verification or other re-ranking process.

Experiment setup: All the images are resized with the longer
dimension of less than 640. SIFT descriptors are extracted by the
VLFeat library. For fair comparison, we reduce the dimension of
SIFT feature from 128 to d = 64 using Principal Component Anal-
ysis (PCA), like the state-of-the-arts works [9][7][10]. Independent
image datasets including the Oxford building and the Caltech build-
ing, are employed in all training stages.

5.2. Experiments on non-binarized RFV

The influence of τ . We first study the impact of varying decision
thresholds τ on retrieval performance. As shown in Figure 2, the
optimal τ for two datasets is slightly different. For instance, on the
Graphics dataset, τ = 0.3 yields the best mAP 85.7%, while τ =
0.5 is optimal on the UKbench dataset. In hyphothesis ratio test,
smaller τ leads to less keypoints. In Graphics, most queries depict
complex scene, such as CD covers with background clutter, smaller
τ may remove noise keypoints from clutter. In UKBench, the images
usually consist of simple object and clean background, larger τ may
filter in more keypoints of query objects to improve performance (i.e.
more than 600 keypoints, versus 300 in Graphics).

RFV vs. FV Figure 2 shows that the proposed RFV outper-
forms FV significantly on both Graphics and UKbench datasets. For
instance, on Graphics dataset, RFV yields the mAP 85.7% with τ =
0.3 for the best and 68.9% with τ = 0.9 for the worst, while FV
achieves only 61.8%. To make clear the advantage of our RFV, we
produce the results of FV aggregation by randomly sampling 300
SIFT descriptors from each query (FV Rand 300). We can see that
the mAP of FV Rand 300 is much worse than standard FV, e.g.
34.8% vs. 61.8% on Graphics dataset. This demonstrates the power
of keypoint learning in selective aggregation of RFV as well.

Comparison with the state-of-the-art. Table 1 compares the
performance of RFV with BoF, VLAD [9] and FV [10][7] on two
benchmark datasets: UKBench and Holidays. The proposed RFV
outperforms BoF significantly. Compared to VLAD [9] and the stan-
dard FV [7][10], the results of RFV is much more precise when us-
ing comparable number of visual words or Gaussian components.
For instance, when K = 64, our RFV achieves a mAP of 67.1% on
Holidays dataset, while [9] reports 55.6% and [10] reports 59.5%.

5.3. Large scale retrieval experiments on binarized RFC

Figure 3 compares our RFC with the state of the arts [10][7] over
Holidays dataset combined with distractor FLICKR1M, in terms of
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Fig. 3. Comparison of the proposed RFC and the state-of-the-arts
[10][7], in terms of Recall@R over Holidays+FLICKR1M.

Descriptor dimension UKbench Holidays
BoF K = 20, 000 [10] 20,000 2.87 43.7
BoF K = 200, 000 [10] 200,000 2.81 54.0
VLAD,K = 64 [9] 4096 3.28 55.6
FV K = 64 [10] 4096 3.35 59.5
FV K = 256 [10] 16384 n/a 62.5
our RFV K = 64 4096 3.44 67.1
our RFV K = 256 16384 3.58 72.6

Table 1. Comparison of RFV with the state-of-the-arts [10][9], mea-
sured by mAP for Holidays and Ns score for UKbench. K denotes
the number of visual words (or Gaussian components).

recall@R . There are two variants of FC in [10], the first one adopts
PCA to reduce the dimension of FV (K = 64)from 4096 to 96 (PCA
96); the second one uses Product Quantization [18] to subdivide the
FV (K = 256) into 256 subvectors where 210 visual words are used
to produce each subvector (256 × 10), the distance between query
and database image is measured by Asymmetric distance computa-
tion (ADC). Both RFC and [7] employ sign binarization to compress
FV (K = 64, binarized). As shown in Figure 3, the proposed RFC
yields much better results than those reported in [7][10] forK = 64,
especially for smaller R. For instance, for K = 64, our RFC yields
a recall@1 of around 43% while [7] reports close to 31% .

Timing Over 1 million image set, our RFC costs less than 0.5s
per query on average for K = 64, due to the very fast Hamming
distance computing. In contrast, the BoF with K = 200, 000 vi-
sual words costs more than 0.6s per query on average. Moreover,
the RFC based search avoids the time-consuming construction of in-
verted index file in the BoF retrieval framework.

6. CONCLUSION

We have proposed a robust Fisher code to improve the discriminative
power of traditional Fisher vectors. The promising retrieval perfor-
mance has been demonstrated over large-scale benchmark datasets.
Moreover, the proposed RFC brings about the benefits of higher effi-
ciency and lower memory complexity. Possible future work involves
how to enhance the relevance between returned images and user in-
tentions by taking the social network into consideration [19].
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