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Abstract—Surveillance video is increasingly becoming
the ‘“biggest big data”. This presents an unprecedented
challenge for analyzing and mining the meaningful in-
formation (e.g., rare actions or events) in such a huge
amount of videos. Recent studies have shown that feature-
trajectories-based methods are effective to encode motion
information in video, consequently demonstrating superior
performance in action and event detection. However, in
existing methods, distance between two trajectories is often
measured by linear models, which may be not robust
enough when the lengths of trajectories are variable.
Moreover, due to the rare distribution of target actions
or events, the traditional classifier often tends to identify
all samples as negative, consequently producing heavy
performance bias. To address both two issues, this paper
proposes a trajectory descriptor, BoDT (Bag of Dynamic
Trajectories), and a multi-channel uneven SVM. By u-
tilizing the DTW (dynamic time warping) algorithm to
measure the similarity between two trajectories, BoDT
is robust for variable-length trajectory representation.
Meanwhie, as an extension of SVM with uneven margins,
the proposed multi-channel uneven SVM can successfully
identify rare events by adjusting a margin parameter to
make the classification boundary properly moved away
from the positive training examples. Extensive experiments
on several benchmark datasets including KTH, YouTube,
Olympic, MIT, QMUL and TRECVid demonstrate that
our approach is feasible and effective.

I. INTRODUCTION

Nowadays, surveillance cameras, especially high def-
inition (HD) cameras, are widely deployed all over the
world. No doubt this makes video quality better, while
the amount of video data is explosively increasing at the
same time. It is estimated that one single HD camera
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can approximately generate 0.7TB compressed video
data per month. What an unimaginable huge amount
of video data is generated by millions of HD cameras
day and night! Therefore, surveillance video data is
becoming the “biggest big data” [1], [2]. This presents
an unprecedented challenge for analyzing, extracting and
mining the meaningful information (e.g., rare actions or
events) in such a huge amount of videos.

Normally, action and event detection is treated as
a pattern recognition task. First, visual features are
extracted from consecutive video frames; then, classifiers
are utilized to determine whether the action or event
happens. Obviously, motions are the most valuable visual
clues for identifying an action or event. To effectively
encode motion information in actions or events, feature-
trajectories-based methods are proposed in recent studies
[3]-[6] and have shown exciting performance in action
and event detection. Basically, feature-trajectory-based
methods track interesting points in video frames to obtain
trajectories. Wang et al. [5] improved it remarkably
by estimating dense trajectories with sampling dense
points from video frames and tracking them based on
displacement information from a dense optical flow field.
After that, local features (such as histogram of gradients
(HoG), histogram of optical flow (HoF) and motion
boundary histogram (MBH)) are extracted from a 3D
video volume along the trajectory, concatenated into a
trajectory feature. Finally, the similarity between two
trajectories is measured by linear method with L2 norm.
However, we notice that lengths of feature trajectories
are quite different (as shown in Fig. 1). Consequently,
the commonly used linear method with L2 norm may

@) CO‘ pute
@ cor
\/ SOCIety



A. Running B. Handwaving

D. Boxing

C. Handclapping

Fig. 1.  Trajectories extracted from videos. Local descriptors are
computed along trajectories, and then concatenated together as spatio-
temporal features.

be not robust enough to measure the similarity between
two trajectories. It could be observed in Fig. 2(A) that
even two sequences of exactly the same type of action
cannot be matched if they are not aligned strictly.

Moreover, the rare distribution of target actions or
events makes the traditional classifier failed to detect
such rare actions or events. For example, in test set of
TREVid ED [7] (as shown later in table I), the ratio be-
tween typical events and ‘pointing’ (Fig.3 (a)) is 306.58
(122939 : 401), and the ratio between typical events and
‘CellToEar’ (Fig.3 (b)) reaches 1596.61 (122939 : 77).
When an action or event is rare, the classifier tends to
bias toward the majority class (i.e., identify them all as
typical). Over 99.9%, the classification accuracy is still
very high, but it is not the result we want. To address
this problem, a natural policy is data preprocessing [8],
such as oversampling [9]-[11] and undersampling [12],
to make the data distribution balancing. Another way is
to map the original data to some other spaces where the
distribution is not so unbalanced. Timothy et al. [13]
proposed a weakly-supervised joint topic model (WS-
JTM) to detect rare events and achieved state-of-the-art
results. They introduced a multi-class topic model with
partially shared latent structure and associated learning
and inference algorithms. Actually, the original uneven-
distributed data were mapped to a topic space, in which
the rare event could be identified. However, due to the
high model complexity, their method is difficult to scale
to large datasets.

To address both two problems, this paper proposes
BoDT (Bag of Dynamic Trajectories), a trajectory de-
scriptor, to represent variable-length trajectories and a
multi-channel uneven SVM to identify rare action or
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Fig. 2. The linear method compares points along trajectories one by
one, as shown in (A). Two trajectories even have the similar patterns
are considered to be dissimilar. The dynamic time alignment (DTW)
method can align trajectories dynamically, and similar patterns can
be recognized in a flexible way, see (B).

(a) Pointing

(b) CellToEar

Fig. 3. Typical and rare event examples in the TRECVid dataset.
The description of Pointing is that someone points, and CellToEar
means that someone puts a cell phone to his/her head or ear. Rare
event (red) usually co-occurs with numerous typical event (yellow).

events. In our approach, trajectories are estimated by
tracking densely sampled points in each frame [5] first.
Then, different kinds of trajectory features are extracted
at each point along a trajectory and the same kind of
features are concatenated together. Subsequently, a set of
trajectory models are learned as a codebook for each kind
of trajectory features by an unsupervised DTW based k-
medoids algorithm. As such, a compact representation
of video, named BoDT (Bag of Dynamic Trajectories),
can be constructed as a bag of feature representation of
trajectories on the codebooks.

Such a BoDT descriptor can be used to identify
actions or events. If the action or event is non-rare, a
multi-channel SVM with y? kernel can achieve good
performance. But when the action or event is rare, a
multi-channel uneven SVM, an extension of SVM with
uneven margins [14], [15], is proposed. Note that the
original SVM with uneven margins was proposed to
deal with the unbalance data distribution in Chinese
document categorization tasks. In this study, we extend
it to multi-channels so as to detect rare video actions and
cvents.

In order to evaluate the performance of our method,
two kinds of tasks are performed in our experiments, one



for the non-rare action detection task while the other
for the rare event detection task. Our objective is to
evaluate the detection performance and generality of our
method (including the BoDT descriptor and the MU-
SVM method) in both non-rare and rare detection tasks.
Extensive experiments are performed in six benchmark
datasets, including KTH, YouTube, Olympic, MIT, Q-
MUL and TRECVid. Experimental results demonstrate
that our approach is feasible and effective, and outper-
forms several state-of-the-art methods.

The rest of the paper is organized as follows: Section 2
describes the proposed approach in detail. Experimental
results are reported and analyzed in Section 3. Finally,
conclusions are given in Section 4.

II. THE PROPOSED APPROACH

The dense trajectories feature proposed in [5] has been
proved effective in human action recognition on some
benchmark datasets, i.e. KTH, YouTube, Hollywood2
and UCF sports. Therefore, our study is also to utilize the
dense trajectories feature for action and event detection.
First, we extract dense trajectories in 3D video volumes.
Then, a set of trajectory models are learned by using
dynamic time alignment (DTW) based k-medoids algo-
rithm. Treating these trajectory models as codebooks, the
BoDT descriptor can be constructed to represent video
sequences. At last, a multi-channel SVM with x? kernel
is used for non-rare action detection and a multi-channel
uneven SVM is used for rare event detection.

A. Dense Trajectories and Trajectory Features

For each frame of a video, a pyramid is constructed
with different scales in each level and feature points are
sampled on multiple scale levels. Then, each point P; =
(x4, y¢) at frame ¢ is tracked to the frame ¢+ 1 by median
filtering in a dense optical flow field w = (uy, vy).

(D

where M is the median filtering kernel, and (%;,7,) is
the rounded position of (x4, y;). So, a series of tracked
points form a feature trajectory: (P, Piy1, Pit2,...). In
our experiments, we directly use the toolbox of dense
trajectories implemented by Wang et al. [5], which is
available online .

Samilar with what Wang et al. have done, local ap-
pearance and motion patterns are encoded by four kinds
of features, i.e. shape descriptor, histograms of oriented
gradients (HOG) [16], histograms of optical flow (HOF)

Pt = (1, Y1) = (w0, ye) + (M w)|(ff,§t)
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[17] and motion boundary histogram (MBH) [18] in our
approach. We use the default parameters as Wang et al.
used, except that we do not average the HOG, HOF
and MBH features along each trajectory. That means
features of each point will keep their original values in
the trajectory feature.

B. Similarity Estimation Between Trajectories

The DTW algorithm [19] is able to compare signal se-
quences or trajectories flexibly in applications of speaker
identification and handwriting recognition. Inspired by
this, we introduce the DTW distance to estimate the
similarity between two trajectories.

Given two trajectory features, X = (x1,X2,...,Xp)
and Y = (y1,y2,...,¥m), Where x; and y; could be any
kind of local descriptor (i.e. HoG, HoF and MBH) at
point 2, the DTW algorithm is to find the optimal warping
path which minimizes the accumulated distance between
X and Y. The DTW distance can be defined as follows:

N
1

DTW(X,Y) = min Ewid s Yo), 2

) w0 Wy = (4)d(Xy()> Yo@)s (2)

subject to

Y(i) <P +1) <yv@E)+1
(i) < 0(i+1) < 0(i) +1
(@) = 0(9)[| < @

where @) is a locality constant, eithor % or 6 stands
for a warping path, N denotes the length of the warp-
ing path, w(ﬁ) is a nonnegative weighting coefficient,
Wy >-; w(i) is a path normalizing factor and
d(xi,yj) = +/|[xi —y;||? is the L2 distance between
features. Obviously, trajectories are more similar when
their DTW distance is lower.

C. Learning Feature Trajectory Models

Based on the DTW distance, k-medoids clustering
algorithm is employed to learn the codebook (a set of
trajectory models) for each kind of trajectory features.
Given a trajectory set S = {s1, s2, ..., Sp}, Where s; is
any of trajectory features, k trajectories are selected from
S as models and they are considered to describe typical
local motion patterns. Let M = {my, ma, ..., my} be the
model set selected from S, and let C' = {¢1, ca, ..., cx } be
the cluster set corresponding to M. Here M is generated
as follows:

k
arg mj\}n Z Z DTW (sj,m;),

i=1 s;€c;

3)



where ¢; = {5, : DTW (s, m;) < DTW (sp, my), V1 <
v < k}, DTW is the DTW distance function defined
in Eq.(2). This problem can be solved using the Par-
titioning Around Medoids (PAM) [20] method. In our
implementation, the DTW distance between every pair
of all trajectories is calculated first, and then used for
finding new medoids at every iterative step [21]. This
DTW-based k-medoids clustering algorithm is described
in Algorithm 1.

Algorithm 1 Dynamic Time Alignment K-medoids
Clustering Algorithm
Input: Cluster number k, trajectory set S
Output: Model set M
1. Randomly select k& trajectories from S
{s1, 82, ..., 8n} as medoids, M = {mq, ma, ..., my };
2: while AM < threshold do
33 forp=1tondo
4: if DTW (sp,m;) < DTW (sp,my), V1 < v <
k then
5 set sp € ¢;3
6 end if
7. end for
8
9

for i =1 to k do
for s; € ¢; do

set m; = 8j;
11: cost =37 .. DTW (sp,m;);
12: end for
13: select m; which minimizes cost;
14:  end for

15: end while

D. BoDT (Bag of Dynamic Trajectories)

Based on the learned codebook, a bag-of-feature rep-
resentation, BoDT (Bag of Dynamic Trajectories), can be
generated. Given a trajectory set Syiq = {81, 82, .-, Sn}
extracted from video wvid, its BoDT (histogram of trajec-
tories) is defined as follows:

BoDTyiq =< hi,ha, ..., hy, ...

ZSPES,,M /’L(Spa M; 7’)
hi - n )

1hk >,
4)

where p is a function defined as:

1 s, €¢
u(sp,M,z')={ v

0 otherwise '
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E. Multi-channel Uneven SVM

Generally speaking, the BoDT descriptor can be used
in any action or event detection task on videos. Neverthe-
less, different classification methods should be adopted
according to the different sample distributions.

For non-rare action and event detection, a non-linear
SVM with a x2-kernel [22] can be employed. Like [23],
different descriptors are combined in a multi-channel
approach. The kernel function of multi-channel SVM is

defined as
1
K (zi,2;) = exp (— ratt x§>> .G
c
where D(zf, z§) is the x? distance between z; and z;
with respect to the c-th channel. A€ is the mean value of
x? distances between the training samples for the c-th

channel [22]. The optimal problem of the multi-channel
SVM is the same form as the standard SVM in Eq. (6) .

l

o1
minguewtCd (6)
subject to
woz® 4+ & +b>1, if gy =+1;
wozr® —g+b< -1, if y =—1;
& >0, for i=1,...,m.

For rare event detection, we use the kernel function
defined in Eq. (5), and introduce a margin parameter
7 [14] to make the classification boundary properly
moved away from the positive training examples. Thus,
the optimize problem of the multi-channel uneven SVM
(MU-SVM) is defined in Eq. (7), which is similar to Eq.
(6) of the original SVM.

l

subject to
woz® +&+b>1, if oy =+1;
wom(i)—£i+b§—7', if y;=-1;
& >0, for i=1,...,m

where C; HTTC, T is the ratio of the negative margin
to the positive margin of the classifier. For imbalanced
classification tasks, set 0 < 7 < 1 and the classification
hyperplane will be close to the negative margin, thus
improving the classification performance towards the
minority (positive) samples. In [14], a theorem was



(h) rare 1

(i) rare 2

(g) typical

Fig. 4. Typical and rare event examples in the (a)-(c) MIT, (d)-(f)
QMUL and (g)-(i) TRECVid datasets.

proved to obtain the solution of the uneven SVM with
any margin parameter 0 < 7 < 1 from its corresponding
solution of the standard SVM. Let (w7,b7,&7) be the
solution of Eq. (6). Then, the solution of Eq. (7),
(w3, b3, &5) could be obtained as follows [14]:

’LUQZ B) ’w]_

1+7 1—71
b = b} 8
> 5 1+ 5 (8)
& = —5—¢f

III. EXPERIMENTAL RESULTS

In this section, experimental results are reported and
analyzed. Two kinds of tasks are performed in our exper-
iments so as to evaluate the performance of our method,
one for the non-rare action detection task while the other
for the rare event detection task. Note that here our
objective is to evaluate the detection performance and
generality of our method (including the BoDT descriptor
and the MU-SVM method) in both non-rare and rare
detection tasks. It does not mean that our method cannot
be used for the non-rare event detection or rare action
detection task.

Non-rare Action Detection. For non-rare action de-
tection, the multi-channel SVM with a x2-kernel with
our BoDT descriptor is used. We evaluate our method on
three datasets (i.e. KTH [24], YouTube [25] and Olympic
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TABLE 1
CLIP NUMBER OF RARE EVENTS DETECTION DATASET

MIT
Total typical rare 1 rare 2
Train 200 1 1
Test 280 16 18
QMUL
Total typical rare 1 rare 2
Train 100 1 1
Test 198 10 4
TRECVid

Total typical rare 1 rare 2
Train 2000 65 71
Test 122939 401 77

sports [26]). The influence of different parameter settings
in our method is also evaluated in the experiment. As
what the related studies do, we report average accuracy
over all classes of KTH and YouTube, and mean average
precision (mAP) over all classes of Olympic sports.

Rare Event Detection. For rare event detection, we
evaluate the proposed Multi-channel Uneven SVM (MU-
SVM) in three real-world surveillance datasets: MIT
dataset (1.5 hours) [13], QMUL dataset (1 hour) [13],
and TRECVid dataset (7 hours, randomly selected from
the 100 hours TRECVid ED 09 training dataset) [7]. The
rare events are as follows: left-turn (rare 1, Fig. 4(b)) and
right-turn (rare 2, Fig. 4(c)) in the MIT dataset, U-turn
(rare 1, Fig. 4(e)) and near-collision situation (rare 2,
Fig. 4(f)) in the QMUL dataset, and Pointing (rare 1,
Fig. 4(h)) and CellToEar (rare 2, Fig. 4(i)) in TRECVid
dataset. The clip numbers of different events for training
and testing are listed in Table 1.

For the MIT and QMUL dataset, results are evaluated
with classification confusion matrix (i.e., the mean along
the diagonal of the normalized confusion matrix). But for
the TRECVid dataset, we use Normalized Detection Cost
Rate (NDCR) [7] to evaluate the algorithm performance.
NDCR is a weighted linear combination of the system’s
Missed Detection Probability (Pj;ss) and False Alarm
Rate (Rp4) (measured per unit time). The smaller the
NDCR, the better the performance.

NDCR(S, E) = Pyiss(S, E)+ Betax RpA(S, E) (9)

where S is the evaluated system, F is the interest event
and Beta is composed of constant values that define the
parameters of the surrogate application.



A. Parameter selection

The trajectory length L is an important factor which
impacts the performance greatly. In [5], Wang et al.
reports that an increase of L improves the performance
up to a certain point (L=15 or 20), and then decreas-
es slightly. We note that while L was set to 10, 15
or 20, dense trajectories give better results in Wang’s
work. Therefore, the three values are all kept to extract
variable-length trajectories in our approach.

An important factor of the BoDT descriptor is the con-
straint parameter () of the DTW algorithm. ) adjusts the
flexibility of trajectories alignment. Each point (or de-
scriptor) xy on trajectory X can be dynamically matched
at any point (or descriptor) among [k — @, k + Q] along
trajectory Y by meeting the requirement of distance-
minimization. In this experiment, we empirically select
the best value of Q in the three action detection datasets,
which is then used in both action and event detection
tasks. Comparison with different constraint parameter )
values is shown in Fig. 5. The performance climbs while
@ increases up to a certain point () = 5 or 6). The best
result is 97.6% on the KTH dataset when Q = 5. On
the YouTube dataset, we get 86.8% at Q = 5. While
Q = 5,6, the maximum accuracy 77.7% is acquired on
the Olympic sports dataset. Therefore, we use Q = 5 in
the other experiments.

B. Experimental results on non-rare action detection

The proposed BoDT descriptor could robustly repre-
sent trajectories with variable lengths, which is important
in action or event detection in video. In this experiment,
we first compare the BoDT descriptor with the baseline
algorithm, 1.2 k-means (dense trajectories by k-means
with L2 norm distance), by using a multi-channel SVM
with the x?-kernel [17]. The length of trajectories is
set to 15. Then the BoDT descriptor is evaluated with
variable-length trajectories. On all datasets, about 100K
trajectories are randomly selected for training, and the
number of clusters is fixed to 2,000 for both BoDT and
baseline.

It can be seen from Table II that when using the same
kind of trajectories with the fixed length of 15, BoDT
outperforms L2 k-means for most kinds of features on
the three datasets. Moreover, the performance of BoDT
can be further improved when using variable-length
trajectories (i.e., with the length of 10, 15 and 20). These
results definitely confirm the advantage of the proposed
BoDT descriptor.

Compared with the BoDT descriptor, the main disad-
vantage of the baseline algorithm, L2 k-means, is that
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TABLE II
COMPARISON OF L2 K-MEANS AND BODT FOR DIFFERENT
FEATURES ON THE KTH, YOUTUBE AND OLYMPIC DATASETS.
WE REPORT AVERAGE ACCURACY OVER ALL CLASSES FOR KTH
AND YOUTUBE, AND MEAN AP OVER ALL CLASSES FOR

OLYMPIC. (SL MEANS SOLO-LENGTH TRAJECTORIES OF 15

FRAMES, AND ML MEANS VARIABLE-LENGTH TRAJECTORIES OF
10, 15, AND 20.)

KTH
SL+L2 k-means SL+BoDT ML+BoDT
Trajectory 89.4% 91.7% 92.1%
HOG 85.6% 83.8% 83.8%
HOF 93.5% 93.5% 95.8%
MBH 95.4% 96.3% 96.8%
Combined 95.8% 96.8% 97.7%
YouTube
SL+L2 k-means SL+BoDT ML+BoDT
Trajectory 68.1% 70.2% 72.1%
HOG 75.4% 75.4% 75.8%
HOF 72.3% 72.6% 74.3 %
MBH 83.9% 84.6% 85.8%
Combined 84.5% 85.6% 86.8%
Olympic
SL+L2 k-means SL+BoDT ML+BoDT
Trajectory 61.8% 62.7% 62.9%
HOG 65.4% 65.7% 66.2%
HOF 58.3% 58.8% 59.5%
MBH 72.6% 72.4% 73.1%
Combined 74.4% 75.5% 77.7%
TABLE 111
COMPARISON RESULTS WITH STATE-OF-THE-ART METHODS.
KTH YouTube Olympic
Laptev [17] 91.8%| Liu [25] 71.2% |Niebles [26] 72.1%
Kovashka [27] 94.5%| Ikizler [28] 75.2%| Zhou [29] 71.0%
Wang [5] 94.2%| Wang [5] 84.2%| Liu [30] 74.4%
Sadanand [31] 98.2% - - |Brendel [32] 77.3%
Our Method 97.6% | Our Method 86.8% | Our Method 77.7%

its results are not robust when trajectories can not be
aligned strictly. That is, if two trajectories are identical
but one of them is shifted slightly along the time axis,
then they may be judged as two different patterns by
using the L2 distance. Instead, the BoDT descriptor
can successfully overcome this limitation by making
use of the DTW distance to evaluate the similarity
between variable length trajectories. As a result, it can
produce more robust trajectory representation for video
sequences.

In Table III, we also compare BoDT with some state-
of-the-art methods on the three datasets. Note that results
on the KTH and YouTube datasets are reported in [5]
using dense trajectories and L2 k-means method. We
can see that, our BoDT shows the superior performances
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Fig. 5. Results for different constraint parameter values on the KTH,
YouTube and Olympic datasets.

over these state-of-the-art methods on the YouTube and
Olympic datasets, and only slightly performs worse that
Sadanand et al. [31]. These results demonstrate that our
BoDT descriptor is feasible and effective on the action
detection task.

C. Experimental results on rare event detection

This experiment is to evaluate the performance of
our method on the rare event detection task. In this
experiment, our method is based on the multi-channel
uneven SVM (MU-SVM) with the BoDT descriptor.
The baseline system is the normal SVM with dense
trajectories. A state-of-the-art method, WS-JTM [13], is
also involved in this experiment.

The classification confusion matrices on the MIT and
QMUL datasets are shown in Table IV and Table V
respectively. It can be observed that MU-SVM shows
better performance than other two approaches. Not sur-
prisingly, the normal SVM has failed to identify any rare
event, and identified almost every rare event as typical.
It also should be noted that the performance of MU-
SVM is lower than WS-JTM on the QMUL “rare 2”
event (i.e., near-collision situation). The possible reason
is that the QMUL “rare 2” event (as shown in Fig.
4(f)) typically denotes the situation that at least two
trajectories, each representing the movement of a car,
tend to collide with each other, while the proposed MU-
SVM is only based the features from one trajectory while
not specially designed to deal with the events that are
related to the interaction between several trajectories.

Results on the TRECVid dataset are listed in Table
VI and Table VII, where “Targ” means the number of

TABLE 1V
CLASSIFICATION CONFUSION MATRICES AFTER ONE-SHOT
LEARNING ON THE MIT DATASET. T: TYPICAL, R1: RARE 1, R2:
RARE 2.

t].987 |.002 .011 | ¢|.89 |[.07 [.04 | t|1.0 [.00 [.00
r1{.063 1.937 |.00 |r1{.19 |81 [00 |rl1|1.0 [.00 [.00
12|.333 .00 |.667 | r2|.39 |[.00 [61 |r2(1.0 [.00 [.00

t rl 2 t rl r2 t rl r2
(a)MU-SVM (b)WS-JTM (©)SVM
TABLE V

CLASSIFICATION CONFUSION MATRICES AFTER ONE-SHOT
LEARNING ON THE QMUL DATASET. T: TYPICAL, R1: RARE 1, R2:
RARE 2.

t[.992 {.003 [.005 | t|.59 [26 |.15 t (1.0 [.00 [.00
r1[.10 {90 |.00 |r1{.10 [90 |.00 |rl{1.0 |.00 [.00
2[.50 [.00 |50 |[r2{.00 [33 [.67 |r2{1.0 [.00 [.00
t rl 2 t rl 2 t rl 2

(QMU-SVM (b)WS-ITM (©)SVM

interest event instances, “Sys” is the number of system
outputs, “CorDet” is the number of correct detected
instances, “Miss” is the number of missed instances,
and “NDCR” is the normalized detection cost rate. We
can find that on the two rare events, the NDCR of MU-
SVM is smaller than other two approaches. These results
further validate the superior of the proposed MU-SVM
and the BoDT descriptor.

IV. CONCLUSION

In this paper, we propose BoDT, a bag of feature tra-
jectory descriptor to represent variable-length trajectories
in video, and a multi-channel uneven SVM to detect
rare action or event from surveillance video big data.
Experimental results show that BoDT outperforms L2

TABLE VI
RESULTS OF “POINTING” EVENT DETECTION ON THE TRECVID
DATASET.
Pointing | Targ | Sys | CorDet | FA | Miss | NDCR
SVM 401 | 492 16 476 | 385 | 1.3001
WS-JITM | 401 | 317 34 283 | 367 | 1.1174
MU-SVM | 401 | 107 35 72 | 366 | 0.9641
TABLE VII
RESULTS OF “CELLTOEAR” EVENT DETECTION ON THE
TRECVID.
CellToEar | Targ | Sys | CorDet | FA | Miss | NDCR
SVM 77 | 125 1 124 | 76 | 1.0756
WS-JTM | 77 | 88 4 84 | 73 | 1.0081
MU-SVM | 77 | 43 5 38 | 72 |0.9622




k-means, especially when using variable-length trajecto-
ries. For the non-rare action detection task, our BoDT
shows the superior performances over several state-of-
the-art methods on the YouTube and Olympic datasets,
and can achieve comparable performance on the KTH
dataset; while for the rare event detection task, our
MU-SVM, together with the BoDT descriptor, provides
excellent detection performance on the MIT, QMUL and
TRECVid datasets. These results demonstrate that our
approach is feasible and effective.
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