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Abstract— Video retargeting is a useful technique to adapt
a video to a desired display resolution. It aims to preserve
the information contained in the original video and the shapes
of salient objects while maintaining the temporal coherence
of contents in the video. Existing video retargeting schemes
achieve temporal coherence via constraining each region/pixel
to be deformed consistently with its corresponding region/pixel
in neighboring frames. However, these methods often distort
the shapes of salient objects, since they do not ensure the
content consistency for regions/pixels constrained to be coherently
deformed along time axis. In this paper, we propose a video
retargeting scheme to simultaneously meet the two requirements.
Our method first segments a video clip into spatiotemporal grids
called grid flows, where the consistency of the content associated
with a grid flow is maintained while retargeting the grid flow.
After that, due to the coarse granularity of grid, there still may
exist content inconsistency in some grid flows. We exploit the
temporal redundancy in a grid flow to avoid that the grids with
inconsistent content be incorrectly constrained to be coherently
deformed. In particular, we use grid flows to select a set of key-
frames which summarize a video clip, and resize subgrid-flows in
these key-frames. We then resize the remaining nonkey-frames
by simply interpolating their grid contents from the two nearest
retargeted key-frames. With the key-frame-based scheme, we
only need to solve a small-scale quadratic programming problem
to resize subgrid-flows and perform grid interpolation, leading
to low computation and memory costs. The experimental results
demonstrate the superior performance of our scheme.

Index Terms— Video retargeting, video warping, dynamic
programming, quadratic programming.

I. INTRODUCTION

V IDEO retargeting aims to resize a video to a desired
resolution or aspect ratio. With proliferation of accessing

videos on various devices with different resolutions and aspect
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ratios (e.g. PCs, TVs, Tablets and mobile phones), video
retargeting becomes an important tool to adapt a video to the
displays of these devices. It is also driven by the need of
convenient human-device interactions. For example, a viewer
might frequently change the size of display window, leading
to changes on resolution and aspect ratio of video. However,
existing video scaling schemes such as uniform scaling or
cropping often distort or discard salient object in practice.
To this end, much research effort [1]–[30] has been devoted
to content-aware retargeting, which non-uniformly deforms
a video/image, such that the shapes of salient objects are
preserved at the cost of distorting unimportant content.

The simplest approach to content-aware video retargeting
is to independently resize individual frames of a video in a
content-aware manner [16]. However, this inevitably intro-
duces temporal incoherence artifacts such as jittering, since
even small frame to frame changes incur noticeable temporal
discontinuity. To address this issue, the methods proposed
in [17]–[24] sequentially resize frames, where each frame is
constrained to be deformed similarly to several neighboring
frames to avoid jittering artifacts. However, since they only
utilize local temporal information in a time window to ensure
temporal coherence, they would make the same objects in
adjacent frames undergo visible incoherent deformation in and
beyond the time window, when the window is shorter than the
duration of camera/object motions.

In contrast, the methods proposed in [25]–[29] use infor-
mation extracted from the entire video clip to ensure tem-
poral coherence. Notably, recent works in [27]–[29] first
independently divide each frame into grids and align the
grids between consecutive frames via image registration.
Consequently, through the propagation of registration between
consecutive frames, each grid is automatically aligned to the
corresponding ones in other frames. Based on the alignments,
the methods formulate an optimization over all frames, which
constrains the aligned grids to be deformed coherently across
the entire video. Thanks to such a global manner, these
methods can achieve temporal coherence. The global manner,
however, often degrades the performance of preserving salient
objects for videos with significant motions, compared to the
results of independently resizing.

To keep good shape preservation results of independently
resized frames, regions/pixels, which are constrained to be
coherently deformed along the time axis, should exhibit
consistency in content. However, existing methods usually fail
to do so due to two limitations. First, they may wrongly
align regions/pixels containing inconsistent content between
consecutive frames. Although the works in [27]–[29] perform
motion estimation to align grids, their grid partitions ignore the
correlations between frames and thus lead to many inaccurate
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temporal alignments. That is, an object appearing in a grid
may be only partially covered by the grid’s aligned grids
in adjacent frames. Second, in the case of such inaccurate
temporal alignments, using all frames to guide the deformation
of pixel/region is inappropriate, since this will largely increase
the possibility that a region/pixel is improperly enforced to
be deformed coherently with ones containing inconsistent
content.

Overall, to maintain temporal coherence without degrading
the performance on shape preservation of salient objects, it is
necessary for the retargeting methods to explicitly maximize
the content consistency of regions/pixels constrained to be
deformed coherently across a video. This was, however, rarely
considered in the existing methods to the best of our knowl-
edge. One effective approach is to segment a video into a set of
spatio-temporal regions, each of which representing an object.
Then the spatio-temporal regions are resized and recomposed
to adapt the video to a desired size. However, this needs
accurate video object segmentation which is computationally
expensive and technically challenging.

In this paper, we propose a novel video retargeting method
to efficiently maintain temporal coherence without degrading
shape preservation of salient objects. The contribution of the
proposed method is three-fold. First, we propose to divide
a video into spatio-temporal grids, namely, grid flows to
well represent spatio-temporal regions of visual contents, such
that content consistency among grids for each grid flow is
maximized during grid partitioning. Second, owing to the high
redundancy in temporal information, we propose a key-frame
selection scheme based on the Bayesian networks of grid
flows, such that the optimization of retargeting is performed
over a small set of key-frames, rather than over the entire
video. This does not only suppress the negative impact of
content inconsistency, but also greatly reduces memory and
computation costs. Third, we formulate the grid-flow-guided
retargeting for the selected set of key-frames as a convex
quadratic programming problem, and propose an efficient
iterative solver. We also propose to resize the remaining non-
key-frames by using simple grid interpolation to achieve fast
and high-performance retargeting.

The rest of this paper is organized as follows. Sec. II surveys
the recent image and video retargeting schemes. The prob-
lem formulation for the proposed framework is described in
Sec. III. Sec. IV elaborates the grid flow construction scheme.
Sec. V presents the proposed grid-flow-guided retargeting
scheme. Sec. VI reports the experimental results. Finally,
conclusions are drawn in Sec. VII.

II. RELATED WORK

Recently many content-aware image and video retargeting
methods have been proposed. Since most existing video retar-
geting methods are extensions of image retargeting algorithms,
we will briefly review the image retargeting methods first.

A. Image Retargeting

Generally speaking, there exist quite a few content-aware
image retargeting methods such as cropping, seam carving
and warping. Among these methods, cropping-based methods

[1]–[4] often adopt attention models to detect relatively impor-
tant image regions and then only crop the most important
region to display. In contrast, seam carving [5], [6] aims to
carve a group of seams with the lowest energy values itera-
tively from an image based on the energy map derived from
the image. In the warping-based methods [7]–[13], an image
is first segmented into pixels or regions (e.g., grids), which are
then non-uniformly deformed through an optimization process,
in which spatial constraints are imposed to minimize the
deformation distortion on important pixels/regions. In many
cases, these cropping, seam carving and warping methods can
achieve promising performance. However, they may fail when
encountering unexpected image contents. For example, seam
carving may distort a structural object while downsizing an
image, while cropping may fail when processing an image
containing several salient targets.

To address these problems, some hybrid methods put efforts
on combining several retargeting methods to overcome the
drawbacks of individual retargeting methods. For example,
Rubinstein et al. [14] proposed to combine different retarget-
ing methods including uniform scaling, cropping, and seam
craving to improve retargeting quality. Dong et al. [15] inte-
grated seam craving with scaling to preserve the structural
objects. In [31], seam carving was combined with warping for
thumbnails browsing.

B. Video Retargeting

Compared with image retargeting, video retargeting is much
more challenging due to the additional temporal dimension.
In video retargeting, video can be represented as a spatio-
temporal 3D volume while various 2D frames are tightly
correlated with each other as the same object may appear
in several neighboring frames. If each frame is retargeted
independently, an object may be incoherently deformed in
different frames, leading to serious temporal incoherence such
as waving and flickering artifacts which are visually annoying.
Therefore, it is necessary to maintain temporal coherence by
exploiting the temporal information.

Generally speaking, existing video retargeting methods can
be roughly grouped into two categories according to their
methodologies of using the temporal information. “Local”
methods only use temporal information from a few neigh-
boring frames, whereas “global” methods usually utilize the
temporal information from the entire video clip. For the
local methods, some methods [17]–[23] resize each frame
sequentially by using the cues from its previous or next frame.
For example, Zhang et al. [20] and Wolf et al. [17] proposed
pixel-based warping methods for video retargeting. When
warping a frame, its previous frame is used to build temporal
constraints, which constrains the pixels that lie in the same
locations in these two neighboring frames to undergo similar
location changes. In [22], image-based seam carving [5] was
extended by using the carved seams of each frame to modify
the energy map of its next frame. That is, areas that are similar
to the carved seams are assigned with lower energy while the
others are assigned with higher energy. In this way, the same
object can be carved coherently in consecutive frames. In [32]
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and [33], image cropping is applied to video by smoothing the
trajectory of the cropped window in adjacent frames. However,
the retargeting results heavily rely on the content of the first
frame and the salient objects in the following frames are often
distorted.

Instead of using only the information from the previous or
next frame, some methods proposed to utilize several neigh-
boring frames to achieve better performance. For instance,
Krähenbühl et al. [18] and Greisen et al. [19] improved the
method in [17] by estimating the pixel importance through
averaging the saliency maps of several adjacent frames. In
[21], the pixel importance was calculated in a similar manner
and the traditional image warping algorithm was extended
by coherently deforming the video content at the same loca-
tions between consecutive frames. Nevertheless, these methods
usually fail to process a video with large motions when the
number of used neighboring frames is too short to cover the
duration of camera/object motion.

To sum up, the local methods can achieve high computing
efficiency since they only require a few frames at a time.
However, a main drawback of these methods lies in the fact
that the temporal information in a local window may be
insufficient to ensure satisfactory temporal coherence in the
retargeted video.

To overcome this problem, the global methods propose
to use the temporal information from the entire video to
extend image retargeting methods such as cropping, seam
carving and warping to video. For example, global video
cropping methods [34], [35] extended image cropping to
video by smoothing the trajectory of cropped windows over
the entire video. However, the common drawback of video
cropping methods is that important video contents (e.g. salient
objects) may be cropped out and false camera motions may
be introduced.

Rubinstein et al. [25] extended seam carving [5] to video by
designing temporal constraints over the entire video clip. In
terms of the temporal constraints, the simultaneously carved
seams were required to be continuous between consecutive
frames, so as to form a spatial-temporal surface across the
video. However, such temporal constraints often cause tempo-
ral artifacts and distortion of salient objects due to inaccurate
temporal alignments.

In [26]–[29], image-based warping methods were extended
to warp a video by maintaining consistent deformation of
aligned pixels/grids across the entire video clip. Moreover,
motion estimation is performed to align pixels/grids which
contain the same video content. For example, Yen et al. [26]
employed feature-based camera motion estimation to align
pixels across a video shot. Then, an image-based warping
method was extended to warp a video at pixel-level, i.e., non-
uniformly scaling pixels in each frame while constraining the
aligned pixels to be scaled coherently. Different from [26], all
frames are divided by predefined grids in [27]–[29]. In [28]
and [27], motion estimation (e.g., camera motion estimation) is
also performed to align grids between two consecutive frames.
Then, an optimization was formulated over all grids of the
video to simultaneously warp all frames, where deformation
differences of aligned grids are penalized between each pair

of consecutive frames. By propagating temporal constraints
through consecutive frames, the deformation of each grid
would be influenced by all frames in the global optimization.
In contrast to [27], [28], the method proposed in [29] utilizes
flow estimation to aligned grids across the entire video, and
then directly constrains the aligned grids to undergo consistent
deformation.

Although the above-mentioned global warping methods can
achieve temporal coherence for most videos, a common prob-
lem of these methods is that they usually may not achieve satis-
factory shape preservation of salient objects because they may
wrongly enforce different contents to be deformed coherently
between frames. Besides, their performances are sensitive
to pixel/region alignment inaccuracy. To better preserve the
shapes of salient objects, cropping was further combined with
warping in [28] and [29]. Yet, the problem of cropping such as
creating false camera motion is also introduced. In addition,
most global warping methods are computationally expensive,
since these methods need to solve optimal retargeting of
individual pixels/regions for the entire video.

In this work, we propose a novel video warping method,
which is different from existing methods in two aspects.
First, unlike the traditional two-step methods that first inde-
pendently segment each frame into regions/pixels, and then
align regions/pixels between frames, our method segments
a video into spatio-temporal grid flows, for which content
consistency between grids is maximized. Second, instead of
using local or global temporal information, we use information
from selected key-frames which summarize information of
a video to maintain the temporal coherence of retargeted
video. In this way, the proposed key-frame-based retargeting
scheme significantly reduces the computational complexity
while successfully maintaining temporal coherence and shape
preservation.

III. PROBLEM FORMULATION

Let I = {I t }NT
t=1 denote a video, where I t is the t-th frame

and NT is the frame number. Our goal is to maintain temporal
coherence without degrading shape preservation of salient
objects when retargeting I to a desired size. We formulate
this task as the following optimization problem:

min
NT∑

t=1

Dt
S +

NT∑

t=1

NT∑

t ′ �=t

Dt,t ′
T , (1)

where Dt
S is a spatial distortion function measuring the shape

deformation distortion of salient objects in I t , and Dt,t ′
T is a

temporal distortion function measuring the temporal incoher-
ence between retargeted frames I t and I t ′ .

The challenge of solving (1) lies in that minimizing Dt,t ′
T

may negatively influence the minimization of Dt
S . In particular,

to minimize Dt,t ′
T , we need to align regions/pixels between

frames and constrain them to be deformed coherently. Conse-
quently, the scaling of each frame (i.e., Dt

S) is not only guided
by the importance of its regions/pixels, but also influenced by
the aligned ones (i.e., the correspondences) in other frames.
However, the scaling of a pixel/region may contradict the guid-
ance of its importance, when its corresponding pixels/regions
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Fig. 1. The framework of the spatiotemporal grid flow for video retargeting.

in neighboring frames contain inconsistent contents. Such
contradiction would cause shape deformation distortion of
salient objects.

To avoid degrading shape preservation, we should ensure the
aligned regions/pixels contain consistent contents. In addition,
since pixel-wise alignments are computationally expensive,
we propose to perform alignments at the grid level rather
than at the pixel level. To this end, as illustrated Fig. 1,
we divide a video into spatio-temporal grid flows so that
content consistency is maintained among the grids in each grid
flow. To construct such grid flows, we partition grids for each
frame according to the contents of grids in the previous frame.
A set of grids covering consistent contents between frames are
aligned to form a grid flow. Under such a circumstance, new
grid flows are created if new content appears in a frame.

With the proposed grid flows, we can resize a video like a
global method. That is, we formulate an optimization over all
frames, where grids in each frame are non-uniformly deformed
to preserve salient contents, whereas grids in each grid flow
are coherently deformed to ensure temporal coherence. Let

gi = {gt
i }

t e
i

t=t s
i

denote the i -th grid flow, where gt
i is the grid

in I t , ts
i and te

i respectively denote the frame indices of the
initial and final frames containing gi . We reformulate (1) as

min
NT∑

t=1

∑

i

st
i · D′

S(gt
i , g̃t

i ) +
NT∑

t=1

∑

t ′ �=t

∑

i

D′
T (g̃t

i , g̃t ′
i ), (2)

where g̃t
i is the deformed version of gt

i in the retargeted
video, D′

S(gt
i , g̃t

i ) a spatial distortion function measuring the
deformation discrepancy between gt

i and g̃t
i , and D′

T (g̃t
i , g̃t ′

i )
the temporal distortion function measuring the deformation
discrepancy between g̃t

i and g̃t ′
i , st

i the weight (i.e., the
importance) of grid gt

i .
However, due to the coarse granularity of grids, there still

may exist content inconsistency in some grid flows. Using such
global temporal information to ensure temporal coherence
may negatively influence shape preservation of salient objects,
since it increases the possibility that regions/pixels containing
inconsistent content are constrained to be deformed coherently
between frames. To address the problem, we exploit temporal
redundancy. That is, according to grid flows we select a set of
key-frames which summarize the major information of video,
and then reformulate the optimization problem in (2) over the

set of key-frames as

min
∑

t∈R

∑

i

st
i · D′

S(gt
i , g̃t

i ) +
∑

t∈R

∑

t ′ �=t

∑

i

D′
T (g̃t

i , g̃t ′
i ), (3)

where R represent the key-frames.
The rest of non-key-frames are subsequently resized via

simple grid interpolation based on the retargeted results of
their two nearest key-frames at low computational complexity.

IV. GRID FLOWS CONSTRUCTION

We construct the grid flows of a video based on Bayesian
networks. We accordingly formulate the grid flow construction
as a problem of finding the longest path in a directed graph,
which can be efficiently solved via dynamic programming.
The details are elaborated below.

A. Formulation of Grid Flow Construction

Suppose the first frame I 1 is divided into n grids g1
1, . . . , g1

n .
We initialize grid flows as gi = {g1

i }. Then we sequentially
determine grid gt+1

i for I t+1 according to the content covered
by gt

i , and update grid flows gi = gi
⋃

gt+1
i by aligning the

grids. Sequentially, we construct new grid flows gn, gn+1, . . .,
once new content appears in I t+1.

Suppose G = {gi }N
i=1 represents the complete set of grid

flows in a video, where N is the number of grid flows. We
assume that gt+1

i depends on I t , I t+1 and gt
i only, and grid

flows are mutually independent. Based on the assumption, we
model the process of constructing grid flows by a Bayesian
network as shown in Fig. 3. To specify the Bayesian network,
we need to formulate the construction of a grid flow, and
determine when to terminate an existing grid flow and when
to initiate a new one.

Constructing a grid flow: As shown in Fig. 2, we deter-
mine gt+1

i by finding out the rectangular region in I t+1

containing the most consistent content as gt
i . Thus, searching

for gt+1
i is to estimate the displacement of gt

i from I t and
I t+1:

P(gt+1
i |gt

i , I t , I t+1) s.t . gt+1
i = �(gt

i , o), (4)

where P(gt+1
i |gt

i , I t , I t+1) is the posterior probability of gt+1
i

given I t+1, I t and gt
i , o stands for the 2D spatial displacement
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Fig. 2. Illustration of constructing grid flows, where two grid flows are
indicated in different colors. We uniformly divide the first frame into grids.
Then we track each grid and generate grids for the successive frames according
to grid motion. New grid flows are created if new content appears (See the
red grid flow).

vector, �(gt
i , o) represents the grid obtained by translating gt

i
with o.1

For gt ′
i = �(gt

i , o), we measure P(gt ′
i |I t , I t ′, gt

i ) which
is the visual content similarity between grid gt

i and gt ′
i .

More specifically, we represent the content in a grid by
using color histogram. We then employ histogram intersec-
tion to measure the visual similarity between grids. Let
Ht

i = [H t
i (1), . . . , H t

i (d)] denote the color histogram of gt
i ,

P(gt ′
i |I t , I t ′ , gt

i ) is calculated by:

P(gt ′
i |I t , I t ′ , gt

i ) =
d∑

j=1

min(H t ′
i ( j), H t

i ( j))

‖ Ht
i ‖1

, (5)

where L1-norm ‖ Ht
i ‖1 counts the number of pixels in gt

i ,
and the number of color bins d is set to 80 empirically.

Terminating a grid flow: When the content represented by
gi completely disappears in I t+1, the evolution of gt

i in I t+1

does not exist. In this case, we shall terminate gi , if

P
(

gt+1
i = �(gt

i , o)|gt
i , I t , I t+1

)
< ε ∀o, (6)

where ε is a small positive value.
Initiating a new grid flow: If new content appears in I t+1,

a new grid flow should be initiated to represent and track the
new content. Suppose gnew contains new content in I t+1, any
grid in I t would yield small P(gt+1

i = gnew|gt
i , I t , I t+1).

Therefore, we initiate a new grid flow with the prior proba-
bility as follows:

P(gt+1
n′+1) = 1 − 1

n′
n′∑

i=1

P(gt+1
i = gnew|gt

i , I t , I t+1), (7)

where n′ is the number of grid flows after I t+1 is processed,
gt+1

n′+1 the initial grid of new grid flow gn′+1.
Objective function: We formulate the Bayesian network

(See Fig. 3) accordingly. Given I and g1
1, . . . , g1

n , constructing
an optimal G∗ is to maximize the following log posterior

1For the sake of simplicity, we apply the translation motion model. More
complex motion models can be utilized, but at the risk of increased complexity.

Fig. 3. Bayesian network for grid flow construction, where nodes represent
variables (e.g. grid gt

i , frame I t ), both dashed arrows and solid ones represent
conditional dependencies between these variables.

probability:

G∗ = arg max
G

log P(g1, . . . , gN |g1
1, . . . , g1

n, I)

= arg max
G

∑

i=1

∑

t=t s
i

log P(gt+1
i |gt

i , I t , I t+1)

+
∑

i=n+1

log p(g
ts
i

i ) s.t . ∀o gt+1
i = �(gt

i , o). (8)

After initializing the grid partition in the first frame, we can
perform exhaustive search to solve this problem. However,
exhaustive search is computationally expensive due to enor-
mous candidates. Specifically speaking, to find out an optimal
solution, we have to determine the grid displacements of
each frame for each grid flow. For example, let [−ux , ux ]
and [−uy, uy] denote the ranges of horizontal and vertical
displacements, respectively. The total number of candidates is
around O(N ·(2ux )NT ·(2uy)

NT ) given a video with NT frames
containing N grids flows, which is computationally prohibitive
to find the optimal solution.

B. Simplified Grid Flow Construction

We propose to simplify the grid flow construction by
formulating it as finding the longest path in a directed graph.
The simplification consists of three operations as follows:

(a) From I t to its following frame I t ′ , we estimate a
dominant displacement for all grids in I t , rather than the
individual displacements of each grid. With the estimated
dominant displacement and gt

i , we locate gt ′
i in I t ′ , and align

gt
i and gt ′

i to construct grid flows. We then refine the grid
alignments for those grids whose displacement is inconsistent
with the dominant displacement.

(b) Given I t , we employ the motion vectors of grids to
estimate the grids for I t+m(m > 1). We hence generate
the grids only for a subset of frames in a tracking manner.
It is unnecessary to generate grids frame by frame, since
camera/object motion is typically continuous, making the
relocation of content slow and continuous between consecutive
frames.

(c) We further restrict the range of dominant displacements,
such that we can select key-frames in a reasonable motion
range based on grid tracking. Specifically, from the current
key-frame I t to the next one I t+m , the horizontal dominant
displacement of grids from I t is m1 · w, and the vertical
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Fig. 4. Illustration of building a directed graph for the simplified model of
grid flow construction.

displacement is m2 ·h, where m1 and m2 are non-zero integers,
and w and h respectively denote the width and height of the
grid (See Fig. 4). Through such restriction, compared to I t ,
the next selected I t+m would contain new content which can
be covered by at least a colume/row of grids, and the distance
between two key-frames m is usually much greater than one.
Hence, the number of key-frames is much smaller than the
total number of video frames, whereas key-frames can well
summarize the major video contents.

Through the above simplifications, grid flow construction is
reduced to be the problem of simultaneously selecting key-
frames and constructing sub-grid-flows via tracking over key-
frames. Let Q = {qk} denote the set of all possible values of
dominate displacement, where qk is the k-th value, R = {rn}
the set of key-frames, where rn indexes the n-th key-frame, ōrn

i
the dominate displacement of grn

i from I rn to I rn+1 , Ḡ the sub-
grid-flow set in key-frames. Equation (8) can be rewritten as

{R, Ḡ}∗ ≈ arg max
G

∑

i

∑

r∈R

log P(grn+1
i |grn

i , I rn , I rn+1)

= arg max
G

∑

r∈R

∑

i∈ur

log P(grn+1
i |grn

i , I rn , I rn+1)

⎧
⎪⎨

⎪⎩

grn+1
i = �(grn

i , ōrn
i ); ōrn

i ∈ Q
ōrn

i = ōrn
j ; i, j ∈ urn

rn+1 − rn > 2,

(9)

where urn denotes the set of the indices of all grids in I rn .
Building directed graph: As shown in Fig. 4, we construct

a directed acyclic graph �, where each node represents a
frame, and arc ak,t,t ′ indicates a grid moving by the dominant
displacement qk from I t to I t ′ . Let δt,t ′

k denote the weight of
ak,t,t ′ , which represents the probability that all grids move by
the dominant displacement ōt

i = qk from I t to I t ′:

δt,t ′
k =

∑

i∈ut

log P(gt ′
i |gt

i , I t , I t ′)

s.t . gt ′
i = �(gt

i , ōt
i ); ōt

i = qk . (10)

We reformulate (9) in terms of the arcs’ weights as

{R, Ḡ}∗ ≈ arg max
R,Ḡ

∑

r∈R

∑

i∈ur

log P(grn+1
i |grn

i , I rn , I rn+1)

= arg max
R,Ḡ

∑

r∈R

δ
rn,rn+1
k . (11)

Algorithm 1 Grid Flow Construction Algorithm

As a result, the grid flow construction is formulated as a
problem of finding the longest path in the directed graph.

Removing unnecessary arcs: To improve searching effi-
ciency, we remove unnecessary arcs. We only connect arcs
from I t to a few following frames I t ′ , where t+a < t ′ ≤ t +b,
and a and b are set to be 2 and 22 empirically. In addition,
between two nodes, we keep the arc with the highest weight
and remove the rest, since the arc with the highest weight is
most likely the optimal one.

Refining grid alignments: The displacements of some
grids may be inconsistent with the dominant displacement ōt

i .
Consequently, if we directly align gt

i with gt ′
i (i.e. gi =

gi
⋃

gt ′
i ) after we determine the grids on I t ′ according to ōt

i ,
inaccurate temporal alignments may be incurred. Therefore,
these grid alignments need to be refined. Specifically, for gt

i ,
we look for a grid on I t ′ which contains the most consistent
content with the content of gt

i by

gt ′ ∗ = arg max
gt ′∈ξ(gt

i )
P(gt ′ |I t , I t ′, gt

i ), (12)

where ξ(gt ′
i ) denotes the neighborhood of of gt ′

i .
Then we add gt ′ ∗ to grid flow gi and denote gt ′ ∗ as gt ′

i .
The proposed graph is a directed graph with no negative-

valued edges, which can be efficiently solved by the dynamic
programming algorithm listed in Algorithm 1. Then, given
the selected key-frames and estimated displacements, we can
construct sub-grid-flows for key-frames. For the rest of non-
key-frames, their sub-grid-flows can be constructed by grid
interpolation as explained in Sec. V-B.

V. GRID-FLOW-GUIDED VIDEO RESIZING

In this section, we describe how to use grid flows to resize
individual frames. As detailed in Appendix A, we first resize
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key-frames via quadratic programming. Then each non-key-
frame is resized via grid interpolation based on the contents
of its two nearest resized key-frames.

A. Optimization for Resizing Key-Frames

We formulate key-frame retargeting as a quadratic program-
ming problem, for which we design an objective function
to preserve the shape of salient objects. Moreover, in order
to coherently deform an object between frames, we impose
temporal coherence constraints and measure grid importance
by considering temporal information.

The objective function: We employ the objective function
proposed in our previous work [10] to optimally allocate
resizing budgets of key-frames to the grids, according to grid-
wise importance. To preserve the shape of salient objects, the
objective function aims to maintain less deformation for the
grids with higher importance as follows:

min
N∑

i=1

∑

t∈R

D(gt
i ) · st

i , (13)

where D(·) denotes the grid distortion metric, st
i the impor-

tance of grid gt
i .

Grid Importance: The content importance of a single
frame may not be meaningful for video. To measure the grid
importance over a video clip is preferred. In our previous work
[10], the importance of a grid is calculated from the current
frame, and thus is limited to spatial importance. In this work,
we propose to compute the importance of a grid by averaging
the spatial importance values of those grids belonging to the
same grid flow in key-frames as

si = 1

Ni

∑

gt
i ∈gi ,t∈R

∑

k,e∈gt
i

imt
k,e, (14)

where Ni is the number of grids belonging to the same
grid flow in key-frames, imt

k,e the spatial importance of the
(k, e)-th pixel of I t . In this work, we combine the saliency
map obtained using the method in [36] and face detection
results using the method in [37], to generate the importance
map like [28], [29].

Distortion energy of a grid: We present a grid distortion
energy function, which is different from that of conventional
grid-based methods (e.g. [28] and [29]). Specifically, we
restrict the shape of retargeted grids to be rectangular instead
of arbitrary quadrilateral. We hence simply measure the distor-
tion energy of a grid by the change of grid’s aspect ratio due
to retargeting. Furthermore, the rectangular restriction enables
all retargeted grids in each row/column to have the same
height/width. Thus, we represent the change of grid’s aspect
ratio in terms of the height of grid row and the width of grid
column, rather than vertices. The distortion energy of gt

i is
defined as follows:

D(gt
i ) = ‖w · h̃(lt

i ) − h · w̃(ct
i )‖2, (15)

where w and h are the width and height of the grid, respec-
tively, ct

i and lt
i the column and row indices of gt

i , w̃(ct
i ) the

resized width of grid column ct
i , and h̃(lt

i ) the resized height
of grid rows lt

i .

Note, the energy function brings two advantages: (a) reduc-
ing the extent of freedom of grid deformation, avoiding
severe shape distortions due to serious grid deformation [9],
[11]; and (b) reducing the computational complexity of the
optimization, since it leads to much fewer variables than those
of vertex-based schemes (e.g. [28] and [29]).

Spatial coherence constraints: The size of each retargeted
frame is constrained to meet the target size budget. Suppose
a key-frame consists of Nc × Nr grid and the target size is
W ′ × H ′, the following spatial coherence constraints are
imposed:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑Nc
ct

i =1
w̃(ct

i ) = W ′, ∀t ∈ R
∑Nr

lt
i =1

h̃(lt
i ) = H ′, ∀t ∈ R

w̃(ct
i ) > 0, ∀ct

i = 1, . . . , Nc,∀t ∈ R
h̃(lt

i ) > 0, ∀lt
i = 1, . . . , Nr ,∀t ∈ R.

(16)

Temporal coherence constraints: We further impose two
temporal constraints to ensure temporal coherence. The first
constrains the grids in each grid flow to be deformed coher-
ently between key-frames. Given gi , the deformation of its
grids satisfies

{
w̃(ct

i ) = w̃(ct ′
i ), ∀t, t ′ ∈ R,∀gt

i , gt ′
i ∈ gi

h̃(lt
i ) = h̃(r t ′

i ), ∀t, t ′ ∈ R,∀gt
i , gt ′

i ∈ gi .
(17)

Due to the coarse granularity of grid flows, some grid flows
may exhibit content inconsistency. Specifically, let Et ′

i denote
the evolution of content in grid gt

i in frame I t ′ . The temporally
aligned grid gt ′

i may cover only part of Et ′
i , and the rest of

Et ′
i may be covered by spatially adjacent grids of gt ′

i . To
further ensure temporal coherence, we set the second temporal
constraint to penalize the deformation discrepancy between gt

i
and the spatially adjacent grids of gt ′

i , according to the extent
of content consistency between gt

i and gt ′
i :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b = P(gt ′
i |I t , I t ′ , gt

i )

1
φ1(b) ≤ w̃(ct

i )

w̃(ct ′
i ±1)

≤ φ1(b) ∀t, t ′ ∈ R

1
φ2(b) ≤ h̃(lt

i )

h̃(lt ′
i ±1)

≤ φ2(b) ∀t, t ′ ∈ R,

(18)

where P(gt ′
i |I t , I t ′ , gt

i ) measures the extent of content con-
sistency between gt

i and gt ′
i , φ1(b) ≥ 1 and φ2(b) ≥ 1 when

0 ≤ b ≤ 1. We simply determine the spatially adjacent grids
of gt ′

i according to the row and column indices: given gt ′
i at

row lt ′
i and column ct ′

i , its spatially adjacent grids are located
at row lt ′

i ± 1 or column ct ′
i ± 1.

Global Optimal Solution: To determine the optimal retar-
geted grids, we minimize the objective function in (8) subject
to the spatial coherence constraints in (16) and the temporal
coherence constraints in (17) and (18). We employ the active-
set method [38] to solve this optimization problem. With the
initial guess W ′

Nc
, . . . , H ′

Nr
, . . . satisfying the equality constraint,

the nonlinear program can be solved iteratively to figure out
the global optimal solutions in a feasible region. It is worth
noting that the optimization is kind of convex quadratic pro-
gramming. Specifically, the objective function is a quadratic
one. The solutions satisfying the equality constraints and
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Fig. 5. Illustration of resizing non-key-frames, where all blue grids belong
to grid flow gi .

inequality constraints form a convex set, since all the equality
and inequality constraints are linear and can be regarded as
concave functions. Therefore, the global optimal solution is
obtained when a local solution is resolved.

Complexity Analysis: Since the Hessian matrix of the
objective function is positive semidefinite, and the optimiza-
tion is a convex programming problem, similar to linear
programming, the complexity of our optimization depends
on the number of the model parameters and the number of
constraints. In other words, our optimization can be solved in
polynomial time [39].

B. Grid Interpolation for Resizing Non-Key-Frames

Suppose that the content of a non-key-frame can be pre-
dicted from its nearest key-frames, we propose to retarget
non-key-frames based on the retargeting results of the neigh-
bor key-frames. Considering short time interval between two
nearest key-frames, we assume the trajectory of grids moves
linearly frame by frame between two key-frames. Thus, we
employ linear interpolation to resize each grid in non-key-
frames in between two key-frames.

Since some grids may not fully cover the non-key-frames,
we propose to resize grids based on the location of their top-
left vertices rather than widths/heights. As shown in Fig. 5,
let ṽ t

i,x and ṽ t
i,y denote the x and the y indices of the top-

left vertex of a resized grid gt
i , respectively. Suppose I t is a

non-key-frame, I t ′ and I t ′′ (t ′ ≤ t ≤ t ′′) are its nearest key-
frames. According to gt ′

i and gt ′′
i we calculate the vertices of

the retargeted version of gt
i :

⎧
⎨

⎩
ṽ t

i,x = ṽ t ′
i,x + ṽ t ′′

i,x −ṽ t ′
i,x

t ′′−t ′ (t − t ′)

ṽ t
i,y = ṽ t ′

i,y + ṽ t ′′
i,y −ṽ t ′

i,y
t ′−t ′′ (t − t ′),

(19)

where ṽ t ′
i,x = ∑ct ′

i −1
j=1 w̃( j), ṽ t ′

i,y = ∑rt ′
i −1

k=1 h̃(k), and ṽ t ′′
i,x , ṽ t ′′

i,y
are calculated likewise.

Compared to those methods working out optimization to
resize all frames, grid interpolation brings about two advan-
tages: (a) the interpolation tends to smooth grid motion,
securing continuous motion of pixels across retargeted frames
to avoid jittering artifacts; (b) the interpolation drastically
reduces the computational cost, since the grid interpolation is

of low computational complexity and non-key-frames occupy
a major proportion of a video.

VI. EXPERIMENT

We first validate that constructing grid flows and selecting
key-frames can reduce the inconsistent content which have
been constrained to coherently deform between frames; we
then compare our method to the state-of-the-art approaches.
The computational complexity will be evaluated as well.

A. Validations

The more regions/pixels involving different contents are
constrained to be deformed coherently cross frames, the more
shape preservation would be degraded. We show that the
proposed key-frame-based grid flow can effectively address
such problem.

To quantitatively assess temporal inconsistent content, an
ideal approach is to extract video objects, and then to measure
the area of regions/pixels that belong to different objects but
are constrained to be coherently deformed between frames.
As accurate object segmentation is still very challenging, we
propose a practical approach to the quantitative assessment via
two simplifications: (a) We divide the visual content of frames
into two groups: salient content and non-salient content. This is
motivated by the concern about whether contents of different
visual importance are properly deformed in terms of shape
preservation. (b) We determine the content saliency at the
grid level. That is, a grid is considered as a salient one, if
more than 25% of its area is salient; otherwise, as a non-
salient grid. We propose to assess the temporal inconsistent
content by counting in a frame the number of salient grids
which are constrained to be deformed coherently with at least
a non-salient grid in other frames and that of non-salient grids
constrained to be deformed coherently with at least a salient
grid in other frames. The count of inconsistent content is then
normalized by dividing the total number of grids in the frame.

To study the temporal inconsistency, we select challenging
videos containing significant motions. We manually annotate
salient and non-salient regions for each frame as the ground
truth.

Grid flow: To evaluate the effectiveness of our grid-flow-
based method in mitigating inconsistent content, we assess the
amount of inconsistent content generated by enforcing all grids
in each grid flow to be deformed coherently. We name such
temporal strategy as “global temporal strategy on grid flows”
(GTS + GF). We compare GTS + GF with Motion-based
Video Retargeting (MVR) [28] and Scalable and Coherent
Video Resizing (SCVR) [29], which are the state-of-the-art
global methods. Both MVR and SCVR divide each frame
into grids independently, employ optical flow to align grids
between frames, and then constrain each grid to be deformed
coherently with the aligned grids in other frames in the similar
way to GTS + GF.

As illustrated in Figs. 6 and 7, GTS + GF leads to
less inconsistent content than MVR and SCVR. The main
reason is that GTS + GF takes into account the contents
of grids in the previous frame during grid flow construction.
In contrast, the grid partitions of MVR and SCVR do not
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Fig. 6. Regions which are constrained to be deformed coherently but incurring at least one region containing inconsistent contents in other frames. A non-
salient grid is colored blue, should it be constrained to be deformed coherently with at least a salient grid in other frames, and black otherwise. Likewise,
a salient grid is colored orange, should it be constrained to be deformed coherently with at least a non-salient grid in other frames, and is colored white
otherwise. Rows from top to bottom: (1) the original frame; (2) the ground-truth; (3) MVR [27]. (4) SCVR [29]. (5) GTS + GF. (6) KTS+GF (our method).

Fig. 7. Area of inconsistent contents which are constrained to deform coherently between frames.

consider the correlations between frames, leading to many
incorrect alignments. That is, given a grid, its aligned grid
contains inconsistent content partially.

Key-frames: To evaluate the effectiveness of our key-frame-
based scheme in mitigating inconsistent content, we assess
the amount of inconsistent content caused by enforcing the
grids in each grid flow to be deformed coherently among
key-frames. We name such strategy as “key-frames on grid
flows” (KTS+GF). We compare KTS+GF with two other
temporal strategies. One is GTS + GF. The other enforces
that grids in each grid flow are deformed coherently among
25 consecutive frames, namely “local temporal strategy on grid
flows” (LTS+GF).

As shown in Fig. 7, the inconsistent areas of KTS + GF and
LTS + GF are much smaller than that of GTS + GF. KTS +
GF and LTS + GF use fewer frames than GTS + GF, thereby
reducing the possibility of grids with inconsistent contents

being constrained to be deformed coherently. However, unlike
KTS + GF, LTS + GF performs poorly in maintaining
temporal coherence for videos with large motions.

B. Retargeting Results

For performance evaluation, we collect various videos
with four considerations: (1) The test videos shall have
enough content diversity; (2) The video frames shall contain
salient objects/regions of reasonable sizes. To evaluate the
effects of temporal retargeting strategies on shape preser-
vation, frames are supposed to involve considerable non-
salient regions. (3) Each test video shall cover different types
of motions, such as camera motion, object motions, and
simultaneous camera and object motions; (4) To challenge
retargeting schemes in dealing with large motion videos, we
select test videos with high motion activities for performance
evaluation.
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Fig. 8. Retargeting results for key-frames and non-key-frames: (a) the original frames, where key-frames are in the 1st column and non-key-frames are in
the 2nd column. (b), (d) retargeted key-frames. (c), (e) retargeted non-key-frames.

In our experiments, each video is retargeted to 50% width
of the source video. The complete experimental video results
(including all comparison results) can be downloaded from
our project website [40]. As demonstrated in [40] and Fig. 8,
by retargeting key-frames and non-key-frames separately, our
method can well preserve the shape of salient objects for both
key-frames and non-key-frames, while coherently resizing
objects across adjacent frames. (Readers are referred to [40]
for subjective comparisons.)

The quality of video retargeting is subjective and dependent
on user preference.2 Like [18], [22], [28], we not only qualita-
tively compare our method with state-of-the-art methods, but
also conduct user study which ranks the compared methods
via paired comparisons [41].

For comprehensive comparisons, we have selected five
representative methods including Streaming Video Retargeting
(SVR) [18], Mosaic-Guided Scaling (MGS) [26], Motion-
aware video Retargeting (MAR) [27], Motion-based video
Retargeting (MVR) [28], and Scalable and Coherent Video
Resizing (SCVR) [29]. Note that, MVR and SCVR are hybrid
methods, which combine grid-based warping with cropping.
So we first compare our method with SVR, MGS and MAR,
and then with MVR and SCVR.

Qualitative comparisons: We compare the perfor-
mances of these methods in terms of temporal coher-
ence and spatial shape preservation of salient objects,
respectively.3

2There is no widely-accepted objective criterion to quantitatively evaluate
retargeting results to the best of our knowledge.

3Due to space limit, we are unable to list numerous frames for illustrating
the comparison of retargeting effects. Readers are referred to the complete set
of demo video clips [40] for better feelings on the qualitative comparisons
and the subsequent subjective description.

Compared with SVR, MGS and MAR, our method achieves
the best performance in maintaining temporal coherence. In
contrast, SVR can maintain temporal coherence for videos
with small motions but is often ineffective for videos with
large motions. For example, as shown in Fig. 9 and the
demonstration video clips in [40], SVR shrinks the region of
left background and then stretches it to the normal shape for
the video Restaurant. This is because SVR uses local temporal
information to ensure temporal coherence, and such temporal
information fails to cover the duration of the camera motion.
In contrast, although MGS and MAR can achieve satisfactory
temporal coherence for most test videos using global temporal
information, they produce waving artifacts on the videos
with homogeneous background (e.g. video Call in Fig. 9 and
[40]), since their employed feature-based motion estimation
often yields inaccurate temporal alignments on such videos.
Our method maintains temporal coherence well over all these
videos, since the key-frames can summarize the temporal
information of a video and accordingly, the corresponding
content between frames can be properly aligned by the grid
flows.

Note, MAR, MGS and SVR all distort salient objects,
though the frames contain enough non-salient regions. For
example, as shown in Fig. 9, the man is seriously distorted
by MAR, SVR and MGS for the video Restaurant, in spite
of large area of non-salient background. This is because
these methods improperly constrain quite a few regions/pixels
containing inconsistent content to be deformed coherently
between frames. For example, SVR attempts to align tem-
porally adjacent pixels and constrain them to be coherently
deformed, while these adjacent pixels involve distinct video
content in videos with large motions. Our method achieves
the best performance in shape preservation of salient objects,
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Fig. 9. Visual quality comparison: (a) the original frame, and the retargeted frames using (b) SVR [18], (c) MAR [28], (d) MGS [26], (e) Our results. Rows
from top to bottom, the original frames are from the videos which we name: Call, Tree, Restaurant. (Refer to our demonstration video clips [40]).

since our key-frame-based grid flows avoid deforming such
inconsistent content. (See the comparison results in [40].)

Compared with MVR and SCVR, both our method and
SCVR achieve good temporal coherence for all these videos,
but MVR fails in some video frames. For example, as shown
in Fig. 10 and [40], MVR distorts the motorcycle man’s body
between frames for the video Motorcycle, and causes flickering
artifacts in the chest and right colorful box for the video Toy.
The reason is that the temporal strategy of MVR is sensitive
to the errors of motion estimation.

Thanks to cropping, both MVR and SCVR preserve the
shapes of salient objects quite well. However, the cropping
may discard some context or part of salient objects. For
example, as shown in Fig. 10, MVR crops out the right
electric pole for the video Motorcycle; SCVR crops out the
right chair for the video Airship as well as the rightmost
colored box for the video toy. Moreover, cropping often
introduces false camera motion. For example, there contains
no camera motion in the video Toy (see Fig. 10 and [40]), but
the retargeted videos by SCVR show a fake camera motion
tracking towards the right. Without cropping, our method
achieves comparable or even better shape preservation than
MVR and SCVR, since our method yields fewer regions that
contain inconsistent content but are enforced to deformed
coherently.

Subjective user study: We conduct a user study to sub-
jectively evaluate the performance. We invite 50 subjects of
different ages and professions to participate in the user study.
For each subject, we show a batch of original videos, as well
as the pairs of retargeted videos generated by different video
methods for clear comparison. To avoid personal bias, the
retargeted videos are presented in a random order, so that these
subjects have no idea of which method produces the displayed
retargeted videos. Each subject is required to prefer one of

TABLE I

PREFERENCES OF 50 SUBJECTS FOR SVR, MAR, MGS

AND OUR METHOD

TABLE II

PREFERENCES OF 50 SUBJECTS FOR MVR, SCVR AND OUR METHOD

them. By means of user preference and paired comparisons,
the performance is measured quantitatively.

We compare our method with SVR, MAR and MGS over
five different videos and perform 6 paired comparisons for
each video. In total, we receive 5×6×50 = 1500 answers and
each method is pairwise compared by 3×5×50 = 750 times.
Table I shows the count of preferred retargeted videos of each
method by paired comparisons. Note that in Table I and II each
entry means that the method in row r is ranked better n times
than the method in column c. Table I shows that our method
outperforms the other three methods in 70.9% (532/750) of
the paired comparisons. The breakdown is that our method is
preferred in 72.8% (182/250) with SVR, in 69.2% (173/250)
comparisons with MAR, and in 70.8% (177/250) with MGS.

We also compare our method with MVR and SCVR over
seven different videos. Hence, we generate 3 paired compar-
isons for each video. In total, we receive 3 × 7 × 50 = 1050
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Fig. 10. Visual quality comparison: (a) the original frames, and the retargeted frames using (b) SVR [18]. (c) MVR [28]. (d)SCVR [29]. (e) Our results.
Rows from top to bottom, the original frames are from the videos which we name: Airship, Motorcycle, Toy. (Refer to our demonstration video clips [40]).

answers and each methods is pairwise compared by
2 × 7 × 50 = 700 times. Table II shows the results of user
study, where the results shows clear preference for our method.
Our method is preferred in 67.9% (475/700) paired compar-
isons with other two methods, including preference of 65.7%
(230/350) with MVR and 70.0% (245/770) with SCVR.

C. Memory and Runtime Cost

We have implemented our retargeting system on a laptop
personal computer with Intel Duo 2.26 GHz CPU, 2GB
memory. To show the efficiency, we use a single core without
any parallel processing. We do not employ any hardware (e.g.,
GPU) based acceleration. We compare our method with MVR
[28] and SCVR [29]. As reported in [28] and [29], MVR and
SCVR were implemented on better hardware configurations:
MVR on a PC with Duo 2.33 GHz CPU and Nvidia GTX 285
graphics card; SCVR on a PC with 4 Core 2.66 GHz CPU and
8 GB memory, using CPU-based parallel processing.

The memory and runtime costs are mainly consumed by
the grid flow construction and the optimization for key-frame
resizing. As shown in Table III, the grid flow construction con-
sumes low memory and runtime cost for a video of 221 frames.
Our grid flow construction is not memory-demanding since
there is no need to load the entire video at once. Instead, we
store the color histograms of grids from a small number of
frames. Thus, the memory cost depends on the number of grids
of the first frame, the number of frames, and the dimension
of histogram. In addition, the time complexity of grid flow
construction is O(T × Nc × Nr ), where T is the number of
frames, Nc × Nr the number of grids of the first frame.

In key-frame resizing, both runtime cost and memory
cost are spatial resolution independent, whereas they are
proportional to the number of variables. We list the memory
and runtime cost in Table IV. Our optimization consumes

TABLE III

MEMORY AND RUNTIME COST CONSUMED BY GRID FLOW

CONSTRUCTION. THE BOUNDED NUMBER IS 221, THE

DIMENSION OF COLOR HISTOGRAM IS 70

TABLE IV

MEMORY AND RUNTIME COST CONSUMED BY OPTIMIZATION

lower memory and runtime cost than MVR and SCVR. This
is attributed to the significantly reduced number of variables
for optimization. Rather than performing optimization on all
frames, we optimize the grids in key-frames, which involve
only 8%-10% of video frames. Furthermore, our method
reduces the number of the optimization variables to about
NB×(Nc + Nr ), where NB is the number of key-frames.
In contrast, performing optimization on all vertices for all
frames would significantly increase the number of variables
to NT × (Nc × Nr ), where NT is the total number of frames.

For HD videos, to achieve high visual quality with reason-
able computation and memory cost, we can first use a coarse
grid partition for the grid flow construction, and then further
partition the coarse grids into fine grids for the optimization
process, where we resolve the displacement of fine grids
based on the displacement of corresponding coarse grids. For
example, suppose the coarse grid partition of the 1st frame
is 20 × 20 (i.e. 20 rows and 20 columns) in grid flow
construction, and 40 × 40 fine grid partition is applied in the
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optimization. The displacement of each fine grid is half of
the displacement of the corresponding coarse grid. Overall,
our prototype achieves about 50 fps for HD video, whereas
MVR and SCVR achieve about 6 fps and 75 fps, respectively,
on a 688×288 resolution video. Since the time complexity of
MVR and SCVR is resolution dependent, lower frame rate
with MVR and SCVR would be expected for HD video. In
addition, SCVR utilizes CPU-based parallel processing, but
our implementation does not.

VII. CONCLUSION

We proposed a novel video retargeting method that divides a
video into grid flows. Our method utilizes grid flows to select
key-frames, and then resizes these key-frames via quadratic
programming to minimize the risk that grids containing incon-
sistent content are coherently deformed across frames. The
remaining non-key-frames are subsequently resized by low-
complexity grid interpolation based on the contents of the
nearest retargeted key-frames. With the proposed grid-flow-
guided retargeting for key-frames and grid-interpolation for
non-key-frames, our method simultaneously achieves good
temporal coherence and shape preservation of salient objects
at low computational cost. Our experiments show that the
proposed method is effective and efficient to handle videos
of various types and resolutions.

APPENDIX

Algorithm 2 Grid-Flow-Guided Video Resizing Algorithm
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