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Abstract— Human action recognition in 3D skeleton sequences
has attracted a lot of research attention. Recently, long short-term
memory (LSTM) networks have shown promising performance
in this task due to their strengths in modeling the dependencies
and dynamics in sequential data. As not all skeletal joints are
informative for action recognition, and the irrelevant joints often
bring noise which can degrade the performance, we need to pay
more attention to the informative ones. However, the original
LSTM network does not have explicit attention ability. In this
paper, we propose a new class of LSTM network, global context-
aware attention LSTM, for skeleton-based action recognition,
which is capable of selectively focusing on the informative joints
in each frame by using a global context memory cell. To further
improve the attention capability, we also introduce a recurrent
attention mechanism, with which the attention performance of
our network can be enhanced progressively. Besides, a two-
stream framework, which leverages coarse-grained attention and
fine-grained attention, is also introduced. The proposed method
achieves state-of-the-art performance on five challenging datasets
for skeleton-based action recognition.

Index Terms— Action recognition, long short-term memory,
global context memory, attention, skeleton sequence.

I. INTRODUCTION

CTION recognition is a very important research problem

owing to its relevance to a wide range of applica-
tions, such as video surveillance, patient monitoring, robotics,
human-machine interaction, etc [1]-[3]. With the development
of depth sensors, such as RealSense and Kinect [4]-[6], 3D
skeleton based human action recognition has received much
attention, and a lot of advanced methods have been proposed
during the past few years [7]-[10].
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Human actions can be represented by a combination of the
motions of skeletal joints in 3D space [11], [12]. However,
this does not indicate all joints in the skeleton sequence
are informative for action recognition. For instance, the hand
joints” motions are quite informative for the action clapping,
while the movements of the foot joints are not. Different action
sequences often have different informative joints, and in the
same sequence, the informativeness degree of a body joint may
also change over the frames. Thus, it is beneficial to selectively
focus on the informative joints in each frame of the sequence,
and try to ignore the features of the irrelevant ones, as the latter
contribute very little for action recognition, and even bring
noise which corrupts the performance [13]. This selectively
focusing scheme can also be called attention, which has
been demonstrated to be quite useful for various tasks, such
as speech recognition [14], image caption generation [15],
machine translation [16], and so on.

Long Short-Term Memory (LSTM) networks have strong
power in handling sequential data [17]. They have been
successfully applied to language modeling [18], RGB based
video analysis [19]-[27], and also skeleton based action recog-
nition [12], [28], [29]. However, the original LSTM does not
have strong attention capability for action recognition. This
limitation is mainly owing to LSTM’s restriction in perceiving
the global context information of the video sequence, which
is, however, often very important for the global classification
problem — skeleton based action recognition.

In order to perform reliable attention over the skeletal joints,
we need to assess the informativeness degree of each joint in
each frame with regarding to the global action sequence. This
indicates that we need to have global contextual knowledge
first. However, the available context information at each evolu-
tion step of LSTM is relatively local. In LSTM, the sequential
data is fed to the network as input step by step. Accordingly,
the context information (hidden representation) of each step is
fed to the next one. This implies the available context at each
step is the hidden representation from the previous step, which
is quite local when compared to the global information.!

In this paper, we extend the original LSTM model
and propose a Global Context-Aware  Attention
LSTM (GCA-LSTM) network which has strong attention
capability for skeleton based action recognition. In our

lThough in LSTM, the hidden representations of the latter steps contain
wider range of context information than that of the initial steps, their context
is still relatively local, as LSTM has trouble in remembering information too
far in the past [30].
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Fig. 1.

Skeleton based human action recognition with the Global Context-Aware Attention LSTM network. The first LSTM layer encodes the skeleton

sequence and generates an initial global context representation for the action sequence. The second layer performs attention over the inputs by using the
global context memory cell to achieve an attention representation for the sequence. Then the attention representation is used back to refine the global context.
Multiple attention iterations are performed to refine the global context memory progressively. Finally, the refined global context information is utilized for

classification.

method, the global context information is fed to all evolution
steps of the GCA-LSTM. Therefore, the network can use it
to measure the informativeness scores of the new inputs at all
steps, and adjust the attention weights for them accordingly,
i.e., if a new input is informative regarding to the global
action, then the network takes advantage of more information
of it at this step, on the contrary, if it is irrelevant, then the
network blocks the input at this step.

Our proposed GCA-LSTM network for skeleton based
action recognition includes a global context memory cell and
two LSTM layers, as illustrated in Fig. 1. The first LSTM
layer is used to encode the skeleton sequence and initialize
the global context memory cell. And the representation of the
global context memory is then fed to the second LSTM layer to
assist the network to selectively focus on the informative joints
in each frame, and further generate an attention representation
for the action sequence. Then the attention representation is
fed back to the global context memory cell in order to refine
it. Moreover, we propose a recurrent attention mechanism
for our GCA-LSTM network. As a refined global context
memory is produced after the attention procedure, the global
context memory can be fed to the second LSTM layer again
to perform attention more reliably. We carry out multiple
attention iterations to optimize the global context memory
progressively. Finally, the refined global context is fed to the
softmax classifier to predict the action class.

In addition, we also extend the aforementioned design of our
GCA-LSTM network in this paper, and further propose a two-
stream GCA-LSTM, which incorporates fine-grained (joint-
level) attention and coarse-grained (body part-level) attention,
in order to achieve more accurate action recognition results.

The contributions of this paper are summarized as follows:

e A GCA-LSTM model is proposed, which retains the
sequential modeling ability of the original LSTM, mean-
while promoting its selective attention capability by intro-
ducing a global context memory cell.

o A recurrent attention mechanism is proposed, with which
the attention performance of our network can be improved
progressively.

o A stepwise training scheme is proposed to more effec-
tively train the network.

o We further extend the design of our GCA-LSTM model,
and propose a more powerful two-stream GCA-LSTM
network.

o The proposed end-to-end network yields state-of-the-art
performance on the evaluated benchmark datasets.

This work is an extension of our preliminary conference
paper [31]. Based on the previous version, we further propose
a stepwise training scheme to train our network effectively
and efficiently. Moreover, we extend our GCA-LSTM model
and further propose a two-stream GCA-LSTM by leveraging
fine-grained attention and coarse-grained attention. Besides,
we extensively evaluate our method on more benchmark
datasets. More empirical analysis of the proposed approach
is also provided.

The rest of this paper is organized as follows. In Section II,
we review the related works on skeleton based action recog-
nition. In Section III, we introduce the proposed GCA-LSTM
network. In Section IV, we introduce the two-stream attention
framework. Finally, we conclude the paper in Section VI.

II. RELATED WORK

In this section, we first briefly review the skeleton based
action recognition methods which mainly focus on extracting
hand-crafted features. We then introduce the RNN and LSTM
based methods. Finally, we review the recent works on atten-
tion mechanism.

A. Skeleton Based Action Recognition With
Hand-Crafted Features

In the past few years, different feature extractors and clas-
sifier learning methods for skeleton based action recognition
have been proposed [32]-[44].

Chaudhry et al. [45] proposed to encode the skele-
ton sequences to spatial-temporal hierarchical models, and
then use linear dynamical systems (LDSs) to learn the
dynamic structures. Vemulapalli et al. [46] represented each
action as a curve in a Lie group, and then utlized a
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support vector machine (SVM) to classify the actions.
Xia et al. [47] proposed to model the temporal dynamics in
action sequences with the Hidden Markov models (HMMs).
Wang et al. [48], [49] introduced an actionlet ensemble repre-
sentation to model the actions meanwhile capturing the intra-
class variances. Chen et al. [50] designed a part-based 5D
feature vector to explore the relevant joints of body parts in
skeleton sequences. Koniusz et al. [51] introduced tensor rep-
resentations for capturing the high-order relationships among
body joints. Wang et al. [52] proposed a graph-based motion
representation in conjunction with a SPGK-kernel SVM for
skeleton based activity recognition. Zanfir e al. [53] devel-
oped a moving pose framework together with a modified k-NN
classifier for low-latency action recognition.

B. Skeleton Based Action Recognition With
RNN and LSTM Models

Very recently, deep learning, especially recurrent neural
network (RNN), based approaches have shown their strength in
skeleton based action recognition. Our proposed GCA-LSTM
network is based on the LSTM model which is an extension
of RNN. In this part, we review the RNN and LSTM based
methods as below, since they are relevant to our method.

Du et al. [12] introduced a hierarchical RNN model to
represent the human body structure and temporal dynamics
of the joints. Veeriah et al. [54] proposed a differential gat-
ing scheme to make the LSTM network emphasize on the
change of information. Zhu et al. [28] proposed a mixed-norm
regularization method for the LSTM network in order to
drive the model towards learning co-occurrence features of the
skeletal joints. They also designed an in-depth dropout mech-
anism to effectively train the network. Shahroudy et al. [55]
introduced a part-aware LSTM model to push the network
towards learning long-term context representations of different
body parts separately. Liu et al. [29], [56] designed a 2D
Spatio-Temporal LSTM framework to concurrently explore the
hidden sources of action related context information in both
temporal and spatial domains. They also introduced a trust gate
mechanism [29] to deal with the inaccurate 3D coordinates of
skeletal joints provided by the depth sensors.

Beside action recognition, RNN and LSTM models have
also been applied to skeleton based action forecasting [57]
and detection [57], [58].

Different from the aforementioned RNN/LSTM based
approaches, which do not explicitly consider the informa-
tiveness of each skeletal joint with regarding to the global
action sequence, our proposed GCA-LSTM network utilizes
the global context information to perform attention over all
the evolution steps of LSTM to selectively emphasize the
informative joints in each frame, and thereby generates an
attention representation for the sequence, which can be used to
improve the classification performance. Furthermore, a recur-
rent attention mechanism is proposed to iteratively optimize
the attention performance.

C. Attention Mechanism

Our approach is also related to the attention
mechanism [14], [16], [59]-[63] which allows the networks to

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 4, APRIL 2018

selectively focus on specific information. Luong et al. [62]
proposed a network with attention mechanism for neural
machine translation. Stollenga et al. [64] designed a
deep attention selective network for image classification.
Xu et al. [15] proposed to incorporate hard attention and
soft attention for image caption generation. Yao et al. [65]
introduced a temporal attention model for video caption
generation.

Though a series of deep learning based models have been
proposed for video analysis in [66], [67], most of them did
not consider the attention mechanism. There are several works
which explored attention, such as the methods in [60], [68],
and [69]. However, our method is significantly different from
them in the following aspects: These works use the hidden
state of the previous time step of LSTM, whose context infor-
mation is quite local, to measure the attention scores for the
next time step. For the global classification problem - action
recognition, the global information is crucial for reliably
evaluating the importance (informativeness) of each input to
achieve a reliable attention. Therefore, we propose a global
context memory cell for LSTM, which is utilized to measure
the informativeness score of the input at each step. Then the
informativeness score is used as a gate (informativeness gate,
similar to the input gate and forget gate) inside the LSTM
unit to adjust the contribution of the input data at each step
for updating the memory cell. To the best of our knowledge,
we are the first to introduce a global memory cell for LSTM
network to handle global classification problems. Moreover,
a recurrent attention mechanism is proposed to iteratively
promote the attention capability of our network, while the
methods in [60], [68], and [69] performed attention only once.
In addition, a two-stream attention framework incorporating
fine-grained attention and coarse-grained attention is also
introduced. Owing to the new contributions, our proposed
network yields state-of-the-art performance on the evaluated
benchmark datasets.

III. GCA-LSTM NETWORK

In this section, we first briefly review the 2D Spatio-
Temporal LSTM (ST-LSTM) as our base network. We
then introduce our proposed Global Context-Aware Attention
LSTM (GCA-LSTM) network in detail, which is able to
selectively focus on the informative joints in each frame of the
skeleton sequence by using global context information. Finally,
we describe our approach to training our network effectively.

A. Spatio-Temporal LSTM

In a generic skeleton based human action recognition prob-
lem, the 3D coordinates of the major body joints in each
frame are provided. The spatial dependence of different joints
in the same frame and the temporal dependence of the same
joint among different frames are both crucial cues for skeleton
based action analysis. Very recently, Liu et al. [29] proposed a
2D ST-LSTM network for skeleton based action recognition,
which is capable of modeling the dependency structure and
context information in both spatial and temporal domains
simultaneously.
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Fig. 2. Illustration of the ST-LSTM network [29]. In the spatial direction,
the body joints in each frame are arranged as a chain and fed to the network
as a sequence. In the temporal dimension, the body joints are fed over the
frames.

As depicted in Fig. 2, in ST-LSTM model, the skeletal
joints in a frame are arranged and fed as a chain (the spatial
direction), and the corresponding joints over different frames
are also fed in a sequence (the temporal direction).

Specifically, each ST-LSTM unit is fed with a new input
(xj:, the 3D location of joint j in frame ¢), the hidden
representation of the same joint at the previous time step
(hji-1), and also the hidden representation of the previous
joint in the same frame (h;_1,), where j € {1,...,J}
and t € {1,..., T} denote the indices of joints and frames,
respectively. The ST-LSTM unit has an input gate (i;,),
two forget gates corresponding to the two sources of context
information (f; ™ for the temporal dimension, and f 5) for
the spatial domam) together with an output gate (o}, ,)

The transition equations of ST-LSTM are formulated as
presented in [29]:

Ljt

o
(s) _
Jt o Xjt
= e W hj—i, (1
Oj,t o hj,t—l
W tanh
Cjp =1 Oujy
+ f(S) Ocj-1,
fj,, Ocji-1 )
hj: = 0j;Otanh(c;,) 3)

where ¢ ; and & ; denote the cell state and hidden representa-
tion of the unit at the spatio-temporal step (j, t), respectively,
uj, is the modulated input, © denotes the element-wise
product, and W is an affine transformation consisting of model
parameters. Readers are referred to [29] for more details about
the mechanism of ST-LSTM.

B. Global Context-Aware Attention LSTM

Several previous works [13], [50] have shown that in each
action sequence, there is often a subset of informative joints
which are important as they contribute much more to action
analysis, while the remaining ones may be irrelevant (or even
noisy) for this action. As a result, to obtain a high accuracy of
action recognition, we need to identify the informative skeletal
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Fig. 3. Illustration of our GCA-LSTM network. Some arrows are omitted
for clarity.

joints and concentrate more on their features, meanwhile trying
to ignore the features of the irrelevant ones, i.e., selectively
focusing (attention) on the informative joints is useful for
human action recognition.

Human action can be represented by a combination of
skeletal joints’ movements. In order to reliably identify the
informative joints in an action instance, we can evaluate
the informativeness score of each joint in each frame with
regarding to the global action sequence. To achieve this
purpose, we need to obtain the global context information first.
However, the available context at each evolution step of LSTM
is the hidden representation from the previous step, which is
relatively local when compared to the global action.

To mitigate the aforementioned limitation, we propose to
introduce a global context memory cell for the LSTM model,
which keeps the global context information of the action
sequence, and can be fed to each step of LSTM to assist the
attention procedure, as illustrated in Fig. 3. We call this new
LSTM architecture as Global Context-Aware Attention LSTM
(GCA-LSTM).

1) Overview of the GCA-LSTM Network: We illustrate
the proposed GCA-LSTM network for skeleton based action
recognition in Fig. 3. Our GCA-LSTM network contains three
major modules. The global context memory cell maintains an
overall representation of the whole action sequence. The first
ST-LSTM layer encodes the skeleton sequence, and initializes
the global context memory cell. The second ST-LSTM layer
performs attention over the inputs at all spatio-temporal steps
to generate an attention representation of the action sequence,
which is then used to refine the global context memory.

The input at the spatio-temporal step (j,?) of the first
ST-LSTM layer is the 3D coordinates of the joint j in frame ¢.
The inputs of the second layer are the hidden representations
from the first layer.

Multiple attention iterations (recurrent attention) are per-
formed in our network to refine the global context memory
iteratively. Finally, the refined global context memory can be
used for classification.

To facilitate our explanation, we use h; ; instead of ;; to
denote the hidden representation at the step (j, t) in the first
ST-LSTM layer, while the symbols, including %j;, cj;, ij,
and o, which are defined in Section III-A, are utilized to
represent the components in the second layer only.



1590

2) Initializing the Global Context Memory Cell: Our GCA-
LSTM network performs attention by using the global context
information, therefore, we need to obtain an initial global
context memory first.

A feasible scheme is utilizing the outputs of the first layer
to generate a global context representation. We can average
the hidden representations at all spatio-temporal steps of the
first layer to compute an initial global context memory cell
(F©) as follows:

1 J T
FO =32 by, “)

j=11=1

We may also concatenate the hidden representations of the
first layer and feed them to a feed-forward neural network, then
use the resultant activation as IF®). We empirically observe
these two initialization schemes perform similarly.

3) Performing Attention in the Second ST-LSTM Layer:
By using the global context information, we evaluate the
informativeness degree of the input at each spatio-temporal
step in the second ST-LSTM layer.

In the n-th attentlon iteration, our network learns an infor-
mativeness score (r ) for each input (h;,) by feeding the
input itself, together with the global context memory cell
(IF"~D) generated by the previous attention iteration to a
network as follows:

]h .
e§.f1) =W, (tanh (We2 (]F(,{fl)))) (5)

(n)
exp(e; ;)
= ©
S 3 explel)
u=lov=1
where r](") € (0,1) denotes the normalized informativeness

score of the input at the step (j,t) in the n-th attention
iteration, with regarding to the lobal context information.
The informativeness score 7" is then used as a gate of the
ST-LSTM unit, and we call it mformatzveness gate. With the
assistance of the learned informativeness gate, the cell state of
the unit in the second ST-LSTM layer can be updated as:

Cjt:r @ljt®ujt
+U=r"ho Yo 1
+1=r"o Do %

The cell state updating scheme in Eq. (7) can be explained
as follows: (1) if the input (h;,) is informative (important)
with regarding to the global context representation, then we
let the learning algorithm update the cell state of the second
ST-LSTM layer by importing more information of it; (2) on
the contrary, if the input is irrelevant, then we need to block
the input gate at this step, meanwhile relying more on the
history information of the cell state.

4) Refining the Global Context Memory Cell: We perform
attention by adopting the cell state updating scheme in Eq. (7),
and thereby obtain an attention representation of the action
sequence. Concretely, the output of the last spatio-temporal
step in the second layer is used as the attention representation
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(F™) for the action. Finally, the attention representation
F® is fed to the global context memory cell to refine
it, as illustrated in Fig. 3. The refinement is formulated as

follows:
(n)

where IF™ is the refined version of IF”~1_ Note that W,(v") is
not shared over different iterations.

Multiple attention iterations (recurrent attention) are carried
out in our GCA-LSTM network. Our motivation is that after
we obtain a refined global context memory cell, we can use
it to perform the attention again to more reliably identify
the informative joints, and thus achieve a better attention
representation, which can then be utilized to further refine the
global context. After multiple iterations, the global context can
be more discriminative for action classification.

5) Classifier: The last refined global context memory cell
IF™) s fed to a softmax classifier to predict the class label:

y = softmax ( ( (N))) )

The negative log-likelihood loss function [70] is adopted to
measure the difference between the true class label y and the
prediction result y. The back-propagation algorithm is used to
minimize the loss function. The details of the back-propagation
process are described in Section III-C.

C. Training the Network

In this part, we first briefly describe the basic training
method which directly optimizes the parameters of the whole
network, we then propose a more advanced stepwise training
scheme for our GCA-LSTM network.

1) Directly Train the Whole Network: Since the classifi-
cation is performed by using the last refined global context,
to train such a network, it is natural and intuitive to feed the
action label as the training output at the last attention iteration,
and back-propagate the errors from the last step, i.e., directly
optimize the whole network as shown in Fig. 4(a).

2) Stepwise Training: Owing to the recurrent attention
mechanism, there are frequent mutual interactions among
different modules (the two ST-LSTM layers and the global
context memory cell, see Fig. 3) in our network. Moreover,
during the progress of multiple attention iterations, new para-
meters are also introduced. Due to these facts, it is rather
difficult to simply optimize all parameters and all attention
iterations of the whole network directly as mentioned above.

Therefore, we propose a stepwise training scheme for our
GCA-LSTM network, which optimizes the model parame-
ters incrementally. The details of this scheme are depicted
in Fig. 4(b) and Algorithm 1.

The proposed stepwise training scheme is effective and
efficient in optimizing the parameters and ensuring the con-
vergence of the GCA-LSTM network. Specifically, at each
training step n, we only need to optimize a subset of
parameters and modules which are used by the attention
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Algorithm 1 Stepwise Train the GCA-LSTM Network

1: Randomly initialize the parameters of the whole network
with zero-mean Gaussian.

2: forn =0to N do // n is the training step

3: Feed the action label as the training output at the
attention iteration n.
do

5: Training an epoch: optimizing the parameters used

in the iterations 0 to n via back-propagation.
6: while Validation error is decreasing
7: end for

iterations 0 to n.? Training this shrunken network is more
effective and efficient than directly training the whole network.
At the step n+1, a larger scale network needs to be optimized.
However, the training at step n + 1 is also very efficient, as
most of the parameters and passes have already been optimized
(pre-trained well) by its previous training steps.

IV. TWO-STREAM GCA-LSTM NETWORK

In the aforementioned design (Section III), the GCA-LSTM
network performs action recognition by selectively focusing on
the informative joints in each frame, i.e., the attention is carried
out at joint level (fine-grained attention). Beside fine-grained
attention, coarse-grained attention can also contribute to action
analysis. This is because some actions are often performed
at body part level. For these actions, all the joints from the
same informative body part tend to have similar importance
degrees. For example, the postures and motions of all the joints
(elbow, wrist, palm, and finger) from the right hand are all
important for recognizing the action salute in the NTU RGB +
D dataset [55], i.e., we need to identify the informative body
part “right hand” here. This implies coarse-grained (body part-
level) attention is also useful for action recognition.

As suggested by Du et al. [12], the human skeleton can
be divided into five body parts (torso, left hand, right hand,

2Note that #0 is not an attention iteration, but the process of initializing
the global context memory cell @FD). To facilitate the explantation of the
stepwise training, we here temporally describe it as an attention iteration.

left leg, and right leg) based on the human physical structure.
These five parts are illustrated as the right part of Fig. 5.
Therefore, we can measure the informativeness degree of each
body part with regarding to the action sequence, and then
perform coarse-grained attention.

Specifically, we extend the design of out GCA-LSTM
model, and introduce a two-stream GCA-LSTM network here,
which jointly takes advantage of a fine-grained (joint-level)
attention stream and a coarse-grained (body part-level) atten-
tion stream.

The architecture of the two-stream GCA-LSTM is
illustrated in Fig. 5. In each attention stream, there is a
global context memory cell to maintain the global attention
representation of the action sequence, and also a second
ST-LSTM layer to perform attention. This indicates we have
two separated global context memory cells in the whole
architecture, which are respectively the fine-grained attention
memory cell (]FE'}))) and the coarse-grained attention memory

cell (]FE'%). The first ST-LSTM layer, which is used to encode
the skeleton sequence and initialize the global context memory
cells, is shared by the two attention streams.

The process flow (including initialization, attention, and
refinement) in the fine-grained attention stream is the same
as the GCA-LSTM model introduced in Section III. The
operation in the coarse-grained attention stream is also similar.
The main difference is that, in the second layer, the coarse-
grained attention stream performs attention by selectively
focusing on the informative body parts in each frame.

Concretely, in the attention iteration n, the network learns
an informativeness score (r;”,)t) for each body part P (P €
{1,2,3,4,5}) as:

hp
ey = We, ( tanh  we, ]F(,,;’l) (10)
©)
(n)
n exp(epjt
e = (1)
> > expley)
u=1ov=1

where h p,: 18 the representation of the body part P at frame ¢,
which is calculated based on the hidden representations of all
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Ilustration of the two-stream GCA-LSTM network, which incorporates fine-grained (joint-level) attention and coarse-grained (body part-level)

attention. To perform coarse-grained attention, the joints in a skeleton are divided into five body parts, and all the joints from the same body part share a
same informative score. In the second ST-LSTM layer for coarse-grained attention, we only show two body parts at each frame, and other body parts are

omitted for clarity.

the joints that belong to P, with average pooling as:

_ 1
]hP,t = J_ ]hj,t
P jeprP

(12)

where Jp denotes the number of joints in body part P.

To perform coarse-grained attention, we allow each joint j
in body part P to share the informativeness degree of P, i.e.,
at frame ¢, all the joints in P use the same informativeness
score rgt)t, as illustrated in Fig. 5. Hence, in the coarse-grained
attention stream, if j € P, then the cell state of the second
ST-LSTM layer is updated at the spatio-temporal step (j, )

as:
" ~ -
Cjt =Tpy OLjrOujy

+(U=rgh oY o1

+(1— rgi),) ® f-(f) Ocji-1

h (13)

Multiple attention iterations are also performed in the pro-
posed two-stream GCA-LSTM network. Finally, the refined

fine-grained attention memory ]FE;Y; and coarse-grained atten-

tion memory ]Fgg)) are both fed to the softmax classifier, and
the prediction scores of these two streams are averaged for
action recognition.

The proposed step-wise training scheme can also be applied
to this two-stream GCA-LSTM network, and at the training
step #n, we simultaneously optimize the two attention streams,

both of which correspond to the n-th attention iteration.

V. EXPERIMENTS

We evaluate our proposed method on the NTU RGB +
D [55], SYSU-3D [71], UT-Kinect [47], SBU-Kinect Inter-
action [72], and Berkeley MHAD [73] datasets. To investigate
the effectiveness of our approach, we conduct extensive exper-
iments with the following different network structures:

e “ST-LSTM + Global (1)”. This network architecture
is similar to the original two-layer ST-LSTM network

in [29], but the hidden representations at all spatio-
temporal steps of the second layer are concatenated and
fed to a one-layer feed-forward network to generate a
global representation of the skeleton sequence, and the
classification is performed on the global representation;
while in [29], the classification is performed on single
hidden representation at each spatio-temporal step (local
representation).

o “ST-LSTM + Global (2)”. This network structure is simi-
lar to the above “ST-LSTM + Global (1)”, except that the
global representation is obtained by averaging the hidden
representations of all spatio-temporal steps.

o “GCA-LSTM”. This is the proposed Global Context-
Aware Attention LSTM network. Two attention iterations
are performed by this network. The classification is
performed on the last refined global context memory cell.
The two training methods (direct training and stepwise
training) described in Section III-C are also evaluated
for this network structure.

In addition, we also adopt the large scale NTU RGB+D and
the challenging SYSU-3D as two major benchmark datasets
to evaluate the proposed “two-stream GCA-LSTM” network.

We use Torch7 framework [74] to perform our experiments.
Stochastic gradient descent (SGD) algorithm is adopted to
train our end-to-end network. We set the learning rate, decay
rate, and momentum to 1.5 x 1073, 0.95, and 0.9, respectively.
The applied dropout probability [75] in our network is set to
0.5. The dimensions of the global context memory represen-
tation and the cell state of ST-LSTM are both 128.

A. Experiments on the NTU RGB + D Dataset

The NTU RGB + D dataset [55] was collected with
Kinect (V2). It contains more than 56 thousand video samples.
A total of 60 action classes were performed by 40 different
subjects. To the best of our knowledge, this is the largest
publicly available dataset for RGB + D based human action
recognition. The large variations in subjects and viewpoints
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TABLE I
EXPERIMENTAL RESULTS ON THE NTU RGB+D DATASET

[ Method [ ¢S T ¢v |
Skeletal Quads [76] 38.6% | 41.4%
Lie Group [46] 50.1% | 52.8%
Dynamic Skeletons [71] 60.2% 65.2%
HBRNN [12] 59.1% | 64.0%
Deep RNN [55] 56.3% | 64.1%
Deep LSTM [55] 60.7% | 67.3%
Part-aware LSTM [55] 62.9% | 70.3%
JTM CNN [77] 73.4% | 75.2%
STA Model [68] 73.4% | 81.2%
SkeletonNet [78] 759% | 81.2%
Visualization CNN [79] 76.0% | 82.6%
ST-LSTM [29] 69.2% | 77.7%
ST-LSTM + Global (1) 70.5% | 79.5%
ST-LSTM + Global (2) 70.7% | 79.4%
GCA-LSTM (direct training) 74.3% 82.8%
GCA-LSTM (stepwise training) | 76.1% | 84.0%

make this dataset quite challenging. There are two standard
evaluation protocols for this dataset: (1) Cross subject (CS):
20 subjects are used for training, and the remaining subjects
are used for testing; (2) Cross view (CV): two camera views
are used for training, and one camera view is used for testing.
To extensively evaluate the proposed method, both protocols
are tested in our experiment.

We compare the proposed GCA-LSTM network with state-
of-the-art approaches, as shown in TABLE I. We can observe
that our proposed GCA-LSTM model outperforms the other
skeleton-based methods. Specifically, our GCA-LSTM net-
work outperforms the original ST-LSTM network in [29] by
6.9% with the cross subject protocol, and 6.3% with the cross
view protocol. This demonstrates that the attention mechanism
in our network brings significant performance improvement.

Both “ST-LSTM + Global (1)” and “ST-LSTM +
Global (2)” perform classification on the global representa-
tions, thus they achieve slightly better performance than the
original ST-LSTM [29] which performs classification on local
representations. We also observe “ST-LSTM -+ Global (1)”
and “ST-LSTM + Global (2)” perform similarly.

The results in TABLE I also show that using the stepwise
training method can improve the performance of our network
in contrast to using the direct training method.

We also evaluate the performance of the two-stream
GCA-LSTM network, and report the results in TABLE II.
The results show that by incorporating fine-grained atten-
tion and coarse-grained attention, the proposed two-stream
GCA-LSTM network achieves better performance than the
GCA-LSTM with fine-grained attention only. We also observe
the performance of two-stream GCA-LSTM can be improved
with the stepwise training method.

B. Experiments on the SYSU-3D Dataset

The SYSU-3D dataset [71], which contains 480 skeleton
sequences, was collected with Kinect. This dataset includes
12 action classes which were performed by 40 subjects. The
SYSU-3D dataset is very challenging as the motion patterns
are quite similar among different action classes, and there are
lots of viewpoint variations in this dataset.
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TABLE II

PERFORMANCE OF THE TWO-STREAM GCA-LSTM
NETWORK ON THE NTU RGB+D DATASET

[ Method [ CS T ¢v ]
GCA-LSTM (coarse-grained only) 74.1% | 81.6%
GCA-LSTM (fine-grained only) 74.3% | 82.8%
Two-stream GCA-LSTM 76.2% | 84.7%
Two-stream GCA-LSTM with stepwise training | 77.1% | 85.1%

TABLE III
EXPERIMENTAL RESULTS ON THE SYSU-3D DATASET

[ Method [ Accuracy |
LAFF (SKL) [80] 54.2%
Dynamic Skeletons [71] 75.5%
ST-LSTM [56] 76.5%
ST-LSTM + Global (1) 76.8%
ST-LSTM + Global (2) 76.6%
GCA-LSTM (direct training) 77.8%
GCA-LSTM (stepwise training) 78.6%

TABLE IV

PERFORMANCE OF THE TWO-STREAM GCA-LSTM
NETWORK ON THE SYSU-3D DATASET

[ Method [ Accuracy |
GCA-LSTM (coarse-grained only) 76.9%
GCA-LSTM (fine-grained only) 77.8%
Two-stream GCA-LSTM 78.8%
Two-stream GCA-LSTM with stepwise training 79.1%

TABLE V
EXPERIMENTAL RESULTS ON THE UT-KINECT DATASET

[ Method [ Accuracy |
Grassmann Manifold [81] 88.5%
Histogram of 3D Joints [47] 90.9%
Riemannian Manifold [82] 91.5%
Key-Pose-Motifs Mining [83] 93.5%
Action-Snippets and Activated Simplices [84] 96.5%
ST-LSTM [29] 97.0%
ST-LSTM + Global (1) 97.0%
ST-LSTM + Global (2) 97.5%
GCA-LSTM (direct training) 98.5%
GCA-LSTM (stepwise training) 99.0%

We follow the standard cross-validation protocol in [71]
on this dataset, in which 20 subjects are adopted for training
the network, and the remaining subjects are kept for testing.
We report the experimental results in TABLE III. We can
observe that our GCA-LSTM network surpasses the state-of-
the-art skeleton-based methods in [29], [71], and [80], which
demonstrates the effectiveness of our approach in handling the
task of action recognition in skeleton sequences. The results
also show that our proposed stepwise training scheme is useful
for our network.

Using this challenging dataset, we also evaluate the per-
formance of the two-stream attention model. The results in
TABLE IV show that the two-stream GCA-LSTM network is
effective for action recognition.

C. Experiments on the UT-Kinect Dataset

The UT-Kinect dataset [47] was recorded with a stationary
Kinect. The skeleton sequences in this dataset are quite noisy.
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TABLE VI
EVALUATION OF ROBUSTNESS AGAINST THE INPUT NOISE. GAUSSIAN NOISE A/ (0, 02) IS ADDED TO THE 3D COORDINATES OF THE SKELETAL JOINTS

[ Standard deviation (o) of noise [ 0.lem [ lem [ 2cm [ 4em [ 8em [ 12em | 16em [ 32cm |
[ Accuracy [ _100% | 993% | O85% | 9075% | 956% | 927% | 804% | 615% |
TABLE VII

PERFORMANCE COMPARISON OF DIFFERENT ATTENTION ITERATION NUMBERS (N)

[ #Attention Iteration | NTU RGB+D (CS) [ NTU RGB+D (CV) ]| UT-Kinect [ SYSU-3D [ Berkeley MHAD |
1 72.9% 81.8% 98.0% 77.8% 100%
2 76.1% 84.0% 99.0% 78.6% 100%
TABLE VIII

PERFORMANCE COMPARISON OF DIFFERENT PARAMETER SHARING SCHEMES

(a) (b)

w/o sharing within iteration
w/ sharing cross iterations

#Attention Iteration

w/ sharing within iteration
w/ sharing cross iterations

(©)
w/o sharing within iteration
w/o sharing cross iterations

(d)
w/ sharing within iteration
w/o sharing cross iterations

1 71.0% 72.9% 71.0% 72.9%
2 73.0% 74.3% 73.4% 76.1%
3 73.1% 74.4% 69.3% 73.2%

A total of 10 action classes were performed by 10 subjects,
and each action was performed by the same subject twice.

We follow the standard leave-one-out-cross-validation pro-
tocol in [47] to evaluate our method on this dataset. Our
approach yields state-of-the-art performance on this dataset,
as shown in TABLE V.

D. Experiments on the SBU-Kinect Interaction Dataset

The SBU-Kinect Interaction dataset [72] includes 8 action
classes for two-person interaction recognition. This dataset
contains 282 sequences corresponding to 6822 frames. The
SBU-Kinect Interaction dataset is challenging because of (1)
the relatively low accuracies of the coordinates of skeletal
joints recorded by Kinect, and (2) complicated interactions
between two persons in many action sequences.

We perform 5-fold cross-validation evaluation on this
dataset by following the standard protocol in [72]. The exper-
imental results are depicted in TABLE IX. In this table,
HBRNN [12], Deep LSTM [28], Co-occurrence LSTM [28],
and ST-LSTM [29] are all LSTM based models for action
recognition in skeleton sequences, and are very relevant to our
network. We can see that the proposed GCA-LSTM network
achieves the best performance among all of these methods.

E. Experiments on the Berkeley MHAD Dataset

The Berkeley MHAD dataset was recorded by using
a motion capture system. It contains 659 sequences and
11 action classes, which were performed by 12 different
subjects.

We adopt the standard experimental protocol on this dataset,
in which 7 subjects are used for training and the remaining
5 subjects are held out for testing. The results in TABLE X
show that our method achieves very high accuracy (100%) on
this dataset.

As the Berkeley MHAD dataset was collected with a motion
capture system rather than a Kinect, thus the coordinates of the

skeletal joints are relatively accurate. To evaluate the robust-
ness with regarding to the input noise, we also investigate the
performance of our GCA-LSTM network on this dataset by
adding zero mean input noise to the skeleton sequences, and
show the results in TABLE VI. We can see that even if we
add noise with the standard deviation (o) set to 12 ¢m (which
is significant noise in the scale of human body), the accuracy
of our method is still very high (92.7%). This demonstrates
that our method is quite robust against the input noise.

F. Evaluation of Attention Iteration Numbers

We also test the effect of different attention iteration
numbers on our GCA-LSTM network, and show the results
in TABLE VII. We can observe that increasing the iteration
number can help to strength the classification performance
of our network (using 2 iterations obtains higher accuracies
compared to using only 1 iteration). This demonstrates that
the recurrent attention mechanism proposed by us is useful
for the GCA-LSTM network.

Specifically, we also evaluate the performance of 3 attention
iterations by using the large scale NTU RGB + D dataset, and
the results are shown in TABLE VIII. We find the performance
of 3 attention iterations is slightly better than 2 iterations
if we share the parameters over different attention iterations
(see columns (a) and (b) in TABLE VIII). This consistently
shows using multiple attention iterations can improve the
performance of our network progressively. We do not try more
iterations due to the GPU’s memory limitation.

We also find that if we do not share the parameters
over different attention iterations (see columns (c¢) and (d)
in TABLE VIII), then too many iterations can bring perfor-
mance degradation (the performance of using 3 iterations is
worse than that of using 2 iterations). In our experiment,
we observe the performance degradation is caused by over-
fitting (increasing iteration number will introduce new para-
meters if we do not share parameters). But the performance of
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TABLE IX
EXPERIMENTAL RESULTS ON THE SBU-KINECT INTERACTION DATASET

[ Method [ Accuracy |
Yun et al. [72] 80.3%
CHARM [85] 83.9%
Ji et al. [86] 86.9%
HBRNN [12] 80.4%
Deep LSTM [28] 86.0%
Co-occurrence LSTM [28] 90.4%
SkeletonNet [78] 93.5%
ST-LSTM [29] 93.3%
GCA-LSTM (direct training) 94.1%
GCA-LSTM (stepwise training) 94.9%

TABLE X
EXPERIMENTAL RESULTS ON THE BERKELEY MHAD DATASET

[ Method [ Accuracy |
Ofli er al. [43] 95.4%
Vantigodi et al. [87] 96.1%
Vantigodi et al. [88] 97.6%
Kapsouras et al. [89] 98.2%
ST-LSTM [29] 100%
GCA-LSTM (direct training) 100%
GCA-LSTM (stepwise training) 100%

two iterations is still significantly better than one iteration in
this case. We will also give the experimental analysis of the
parameter sharing schemes detailed in Section V-G.

G. Evaluation of Parameter Sharing Schemes

As formulated in Eq. (5), the model parameters W,, and
We, are introduced for calculating the informativeness score
at each spatio-temporal step in the second layer. Also multiple
attention iterations are carried out in this layer. To regularize
the parameter number inside our network and improve the
generalization capability, we investigate two parameter shar-
ing strategies for our network: (1) Sharing within iteration:
We, and W,, are shared by all spatio-temporal steps in the
same attention iteration; (2) Sharing cross iterations: W,, and
We,, are shared over different attention iterations. We investi-
gate the effect of these two parameter sharing strategies on our
GCA-LSTM network, and report the results in TABLE VIIIL.

In TABLE VIII, we can observe that: (1) Sharing para-
meters within iteration is useful for enhancing the gener-
alization capability of our network, as the performance in
columns (b) and (d) of TABLE VIII is better than (a) and (c),
respectively. (2) Sharing parameters over different iterations
is also helpful for handling the over-fitting issues, but it may
limit the representation capacity, as the network with two
attention iterations which shares parameters within iteration
but does not share parameters over iterations achieves the best
result (see column (d) of TABLE VIII). As a result, in our
GCA-LSTM network, we only share the parameters within
iteration, and two attention iterations are used.

H. Evaluation of Training Methods

The previous experiments showed that using the stepwise
training method can improve the performance of our network
in contrast to using direct training (see TABLE I, V, III, IX).
To further investigate the performance of these two training
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Fig. 6. Convergence curves of the GCA-LSTM network with two attention
iterations by respectively using stepwise training (in red) and direct training
(in green) on the NTU RGB + D dataset. Better viewed in colour.

methods, we plot the convergence curves of our GCA-LSTM
network in Fig. 6.

We analyze the convergence curves (Fig. 6) of the stepwise
training method as follows. By using the proposed stepwise
training method, at the training step #0, we only need to train
the subnetwork for initializing the global context (FO), ie.,
only a subset of parameters and modules need to be optimized,
thus the training is very efficient and the loss curve converges
very fast. When the validation loss stops decreasing, we start
the next training step #1. Step #1 contains new parameters and
modules for the first attention iteration, which have not been
optimized yet, therefore, loss increases immediately at this
epoch. However, most of the parameters involved at this step
have already been pre-trained well by the previous step #0,
thus the network training is quite effective, and the loss drops
to a very low value after only one training epoch.

By comparing the convergence curves of the two training
methods, we can find (1) the network converges much faster if
we use stepwise training, compared to directly train the whole
network. We can also observe that (2) the network is easier
to get over-fitted by using direct training method, as the gap
between the train loss and validation loss starts to rise after the
20th epoch. These observations demonstrate that the proposed
stepwise training scheme is quite useful for effectively and
efficiently training our GCA-LSTM network.

1. Evaluation of Initialization Methods and Attention Designs

In Section III-B.2, we introduce two methods to initialize
the global context memory cell (IF©). The first is averaging
the hidden representations of the first layer (see Eq. (4)),
and the second is using a one-layer feed-forward network
to obtain IF). We compare these two initialization methods
in TABLE XI. The results show that these two methods
perform similarly. In our experiment, we also find that by
using feed-forward network, the model converges faster, thus
the scheme of feed-forward network is used to initialize the
global context memory cell in our GCA-LSTM network.

(I)n the GCA-LSTM network, the informativeness score

n

Iy is used as a gate within LSTM neuron, as formulated

in Eq. (7). We also explore to replace this scheme with soft
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Fig. 7.

Examples of qualitative results on the NTU RGB + D dataset. Three actions (taking a selfie, pointing to something, and kicking other person)

are illustrated. The informativeness scores of two attention iterations are visualized. Four frames are shown for each iteration. The circle size indicates the
magnitude of the informativeness score for the corresponding joint in a frame. For clarity, the joints with tiny informativeness scores are not shown.

TABLE XI

PERFORMANCE COMPARISON OF DIFFERENT METHODS OF
INITIALIZING THE GLOBAL CONTEXT MEMORY CELL

[ Method | NTU RGB+D (CS) | NTU RGB+D (CV) |
Averaging 73.8% 83.1%
Feed-forward network 74.3% 82.8%

attention method [15], [62], i.e., the attention representation
F® is calculated as Z;:l >I r](.f’t)]h j.r- Using soft attention,
the accuracy drops about one percentage point on the NTU
RGB + D dataset. This can be explained as equipping LSTM
neuron with gate rj(.f’t) provides LSTM better insight about
when to update, forget or remember. In addition, it can keep
the sequential ordering information of the inputs h;,, while

soft attention loses ordering and positional information.

J. Visualizations

To better understand our network, we analyze and visualize
the informativeness score evaluated by using the global context
information on the large scale NTU RGB + D dataset in this
section.

We analyze the variations of the informativeness scores
over the two attention iterations to verify the effectiveness
of the recurrent attention mechanism in our method, and
show the qualitative results of three actions (faking a selfie,
pointing to something, and kicking other person) in Fig. 7.
The informativeness scores are computed with soft attention
for visualization. In this figure, we can see that the attention
performance increases between the two attention iterations.
In the first iteration, the network tries to identify the potential
informative joints over the frames. After this attention, the net-
work achieves a good understanding of the global action.
Then in the second iteration, the network can more accurately
focus on the informative joints in each frame of the skeleton

——
SR
C IV

Right hand, Left hand
®

Fig. 8.  Visualization of the average informativeness gates for all testing
samples. The size of the circle around each joint indicates the magnitude of
the corresponding informativeness score.

————"

sequence. We can also find that the informativeness score of
the same joint can vary in different frames. This indicates that
our network performs attention not only in spatial domain, but
also in temporal domain.

In order to further quantitatively evaluate the effectiveness
of the attention mechanism, we analyze the classification
accuracies of the three action classes in Fig. 7 among all the
actions. We observe if the attention mechanism is not used,
the accuracies of these three classes are 67.7%, 71.7%, and
81.5%, respectively. However, if we use one attention iteration,
the accuracies rise to 67.8%, 72.4%, and 83.4%, respec-
tively. If two attention iterations are performed, the accuracies
become 67.9%, 73.6%, and 86.6%, respectively.

To roughly explore which joints are more informative for
the activities in the NTU RGB + D dataset, we also average
the informativeness scores of the same joint in all the testing
sequences, and visualize it in Fig. 8. We can observe that
averagely, more attention is assigned to the hand and foot
joints. This is because in the NTU RGB + D dataset, most
of the actions are related to the hand and foot postures and
motions. We can also find that the average informativeness
score of the right hand joint is higher than that of left hand
joint. This indicates most of the subjects are right-handed.
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VI. CONCLUSION

In this paper, we have extended the original LSTM net-
work to construct a Global Context-Aware Attention LSTM
(GCA-LSTM) network for skeleton based action recognition,
which has strong ability in selectively focusing on the infor-
mative joints in each frame of the skeleton sequence with
the assistance of global context information. Furthermore,
we have proposed a recurrent attention mechanism for our
GCA-LSTM network, in which the selectively focusing capa-
bility is improved iteratively. In addition, a two-stream atten-
tion framework is also introduced. The experimental results
validate the contributions of our approach by achieving state-
of-the-art performance on five challenging datasets.
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