
Real-time Tracking with Selective DoP-RIEF
Features for Augmented Reality

Yi Zhang
1SECE of Shenzhen Graduate

School, Peking University
Shenzhen, China

2The Institute of Digital Media,
 School of EECS, Peking University

Beijing, China
zhangyi_0220@163.com

Ping Lu
1School of Information Science and
Engineering, Southeast University,

Nanjing, China
2ZTE Corporation
Shenzhen, China

lu.ping@zte.com.cn

Jie Chen, Ling-Yu Duan
The Institute of Digital Media,

School of EECS, Peking University
Beijing, China

{cjie, lingyu}@pku.edu.cn

Abstract—Real-time, accurate and robust target tracking on
mobile devices is an important problem which can facilitate
applications such as augmented reality. However, it is still
unsolved, partly due to the mobile’s computing limitations.
Compressive tracker performs favorably against state-of-the-art
algorithms in terms of efficiency, accuracy and robustness, but as
limited by the speed of feature matching, it cannot achieve real-
time tracking in mobile applications. In this paper, we propose a
fast feature, i.e., selective Difference of Patch Robust
Independent Elementary Features (DoP-RIEF). DoP-RIEF is a
global feature which is related to BRIEF. It uses histogram to fit
feature distribution because it is more flexible than Gaussian,
and intermediate results for subsequent classification can be
stored, avoiding duplication of operations. Feature selection
further deletes features which are less discriminative and
improves the feature quality. Through these two steps, the
feature matching can be accelerated significantly and at the same
time tracking accuracy and robustness are improved. Compared
with compressive tracker on 17 publicly available sequences, our
method outperforms it in terms of both robustness and accuracy.
In addition, the speed is about 270 frames per second which is 8
times faster than the compressive tracker. To further evaluate
our algorithm in natural scenes with obvious scale, rotation, and
illumination variations, we test it on Stanford datasets and
Peking University landmark datasets, and the accuracy is above
90%.

Keywords-real-time tracking; augmented reality; fast global
feature; feature distribution fitting; feature selection

I. INTRODUCTION
Augmented Reality (AR) is an emerging technology to

render and superimpose virtual information onto the real scene.
It enhances the user experience in terms of visual and auditory
sensations, and deepens understanding of real environment.
Currently it has already been applied to education, military
aviation, historic restoration, technical training, games and
many other fields.

Tracking is a critical module in AR. Tracking speed,
accuracy, and robustness directly impact on the quality of
rendering and display, and larger tracking errors may lead to

displayed errors. The main issues of tracking technology on
mobile devices include:

a) Real-time: Augmented reality system requires virtual
information to be displayed without any delay. Real-
time directly restricts the availability of an augmented
reality system;

b) Accuracy: Augmented reality systems needs tracking
module to provide precise location of the target without
jitters. Accuracy is a prerequisite for the correct fusion
of the virtual information and real scene;

c) Robustness: Tracking module should handle occlusion,
blur, and illumination, scale, rotation variations in
complex natural scenes.

However, target tracking which restricts the availability of
an AR system is still under developing and leaves many
unsolved technical issues. The most important reason is the
mobile’s computing limitations. Moreover, there exist obvious
scale, rotation, and illumination variations in natural scenes. In
this work, we focus on the tracking module, aiming to improve
the tracing accuracy and robustness with less computation time.

In classic computer-vision-based tracking methods, the
target appearance model is learned first. Then the location
(Kalman filter [1, 12], particle filter [2, 3], and so on) of the
target area in the subsequent frames is estimated by matching
with the learned model. The methods of describing the target
appearance can be categorized as local feature description,
global feature description, and hybrid (local and global) feature
description.

In the methods based on local feature description, a set of
local features are extracted from two adjacent frames firstly.
Then, the pairs of matching features are found to determine the
location of the target in next frame. SIFT [13] and SURF [15]
are widely used because of the matching stability, and they are
invariant with respect to image transformation and illumination.
However, the speed of feature extraction and matching is not
high enough, especially in mobile augmented reality or other
real-time applications where tracking speed is a key issue.
Therefore, other faster features would be adopted such as

2015 IEEE International Conference on Multimedia Big Data

978-1-4799-8688-0/15 $31.00 © 2015 IEEE

DOI 10.1109/BigMM.2015.30

136

FAST [16], BRISK [17], ORB [9] and so on. Wagner [14]
modified SIFT and Fern features to make it suitable for fast
tracking. However there is a drawback with the tracking
methods based on these local features. That is, when the target
or camera is moving fast in the scene, images will blur
significantly, then in these situations local features may not be
efficiently extracted, thereby affecting subsequent tracking.

Methods based on global statistical features tend to
consider the targets as a whole and extract the overall statistical
feature descriptors to represent the target appearance model. To
some extent, these methods do not depend on local details,
thus having better robustness when the target is blurred or
partially occluded. In Comaniciu’s work [1], histogram-based
target representations were used and with kernel regularization
and mean-shift algorithm, they got a fast and robust tracker. In
Bradski’s work [7], a computer vision color tracking algorithm
called CAMSHIFT was developed and applied to tracking
human faces. In Zhang’s work [10], they proposed a
compressive tracker, with a global appearance model based on
features extracted from the multi-scale image feature space
with data-independent basis. It runs in real-time on PC and
performs favorably against state-of-the-art algorithms.
However, as limited by the speed of feature matching, it cannot
achieve real-time tracking in mobile applications.

Some methods extract both local and global features which
are shown to improve the tracking accuracy. In Zhong’s work
[8], they proposed a robust appearance model that exploited
both holistic templates and local representations. holistic
templates are incorporated to construct a discriminative
classifier that can effectively deal with cluttered and complex
background. Local representations are adopted to form a robust
histogram that considers the spatial information among local
patches with an occlusion handling module. However, under
certain constraints, such as mobile applications, these methods
can not meet the real-time requirement, although the accuracy
and robustness are satisfactory.

According to the above analysis about the three categories
of methods on speed, accuracy and robustness, we focus on

methods based on global features. In this paper, we propose a
fast global feature: selective DoP-RIEF (Difference of Patch
Robust Independent Elementary Features). This feature is a
modified version of BRIEF (Binary Robust Independent
Elementary Features) [6] and designed to describe the target
with a global representation model. BRIEF is a local feature
descriptor first proposed by Michael Calonder, and is very fast
both to build and to match. The advantage of BRIEF is its high
discrimination even when using relatively few bits, and it can
be computed by simple intensity difference tests.

In our work, we take the advantages of BRIEF in speed and
accuracy, and extend it from the pixel-level to block-level,
modifying it to be a global feature which can describe the
whole target. It uses histogram to fit feature distribution
because it is more flexible than Gaussian, and intermediate
results for subsequent classification can be stored, avoiding
duplication of operations. Feature selection further deletes less
discriminative features and improves the feature quality.
Experiment results show that through histogram feature
distribution fitting and feature selection, feature matching is
accelerated significantly, and at the same time tracking
accuracy and robustness are improved.

We use the system framework of compressive tracker and
compare them in terms of speed, accuracy and robustness.
Experiment results show that with selective DoP-RIEF, our
algorithm is more robust than compressive tracker. The speed
is about 270 frames per second on the PC with Dual-Core
2.93GHz CPU which is about 8 times faster, and the result is
more accurate. To further evaluate our algorithm in natural
scenes with obvious scale, rotation, and illumination variations,
we test it on Stanford datasets and Peking University landmark
datasets, and the accuracy is above 90%. It performs favorably
against state-of-the-art algorithms and is more suitable for
tracking on mobile devices for augmented reality.

The rest of the paper is organized as follows: Section 2
gives the problem statement. Section 3 describes the details of
our selective DoP-RIEF feature. Section 4 presents experiment
results on some challenging sequences and the compared

(1)

(2)

Fig.1. framework of our algorithm. (1) initial part of the tracker in the first frame. (2) tracking process for subsequent frames

137

results. We also discuss the extension of our algorithm to scale
and rotation variations. Section 5 concludes the paper.

II. PROBLEM STATEMENT
As motivated in the previous section, we design our

algorithm based on global features, and use the framework of
compressive tracker for the tracking module. Fig. 1 shows the
algorithm framework. It consists of two parts. The first part is
tracking initialization, and the second one is tracking and
updating.

In the first part, the exact location of the target in the first
frame is given, and the location is represented by a rectangular
box. A set of positive samples are selected at the closest
distance to the target area, and a set of negative samples are
selected far away from the target area. Then the features of all
the samples are extracted, where each feature corresponds to an
N-dimensional vector. Next, the most discriminative n
dimensional features are selected from N-dimensional features.
Finally a Bayes classifier is trained with the selected features of
positive and negative samples.

In the second part, when looking for the target in the next
frame, the first step is to predict the initial search location of
the target, then take samples around the location, and extract
the feature descriptors for each sample. With the extracted
descriptors, the Bayes classifier is used to calculate all the
response values. The one getting the maximum response value
is selected as the new target location. Finally, new positive and
negative samples are extracted according to the new target
location and the classifier is updated with the new samples.

assuming all elements in a feature vector are independently
distributed, and using a Bayes classifier, we can calculate the
response value res(v) for a given feature v with equation (1),

 1

1

(| 1) (1)
() log

(| 0) (0)

n
ii

n
ii

p v y p y
res v

p v y p y
=

=

⎛ ⎞= =
⎜ ⎟=
⎜ ⎟= =⎝ ⎠

∏
∏

 (1)

y ∈ {0, 1} is a binary variable which represents the sample
label. To simplify this equation, we also assume that the priori
probabilities are equal, that is p(y = 1) = p(y = 0). So equation
(2) is finally used to calculate the classifier response.

1

(| 1)() log
(| 0)

n i
i

i

p v yres v
p v y=

⎛ ⎞== ⎜ ⎟=⎝ ⎠
∑ (2)

According to the above process description, the speed and
accuracy of feature matching, to a great extent, determine the
classification performance. The classifier calculates response
value res for each sample as the probability of containing the
target, therefore, the dimensions of the feature and
computational complexity of the probability will directly affect
the speed of tracking. Meanwhile the accuracy of feature
distribution fitting will directly affect the accuracy of the
tracking algorithm. Based on this analysis, we focus on
optimization of the feature quality, and propose a fast global
feature, i.e. selective DoP-RIEF. Through feature distribution
fitting and feature selection, the classification speed and
accuracy are greatly increased, and then the performance of the

tracking algorithm gets improved. The details of our selective
DoP-RIEF will be given in the next section.

III. SELECTIVE DOP-RIEF
In this section, we will first give a brief review of BRIEF

and then describe the details of DoP-RIEF in tracking process
including feature extraction, feature distribution fitting, feature
selection, classification, and updating.

A. Brief Review of BRIEF
BRIEF is first proposed by Michael Calonder, and is very

fast both to build and to match. The advantage of BRIEF is its
high discrimination even when using relatively few bits, and it
can be computed using simple intensity difference tests. Test τ
on patch p can be defined as

 1 if () ()
(; ,)

0 otheri i

p x p y
p x yτ

<⎧= ⎨
⎩

 (3)

where p(x) is the pixel intensity in a smoothed version of p at x
= (u, v) where u and v are the horizontal and vertical
coordinates of x. Choosing a set of nd(x, y)-location pairs
uniquely defines a set of binary tests. And the BRIEF
descriptor is the nd-dimensional bit-string

 1
1

() 2 (; ,)
d d

i
n i ii n

f p p x yτ−
≤ ≤

=∑ (4)

Generating a length nd bit vector leaves many options for
selecting the nd test locations (xi, yi) in a patch of size S × S.
Experiment result shows that Gaussian distributionሺ0, ଵଶହ Sଶሻ
outperforms other sampling geometries.

B. Feature Extraction
In order to describe the target with global representation

and take the advantages of BRIEF in speed and accuracy, our
DoP-RIEF feature extends the pixel-level operations of BRIEF

Fig.2. fitting process for each element of feature vector. Positive
samples(object) use pairs near the target location, and negative
samples(background) use pairs far away from the target location.

138

to the block-level operations. The target area is uniformly
divided into R rows and C columns, where the value of each
patch is the sum of all the pixel values in it. With integral
image, the value of each patch can be efficiently calculated. N
pairs of patches are selected and the difference of each pair is
calculated as the value of the feature. The N-dimension vector
forms the descriptor of the target. In most cases, the targets are
in the center of the bounding boxes, so the Gaussian
distribution is considered as the most suitable sampling
geometry. We use the same parameters ሺߤ, ሻ as the ones ofߪ
BRIEF and set X, Y to be independent, that is
X~Gaussianሺ0, ଵଶହ ,ଶሻ, Y~Gaussianሺ0ܥ ଵଶହ ܴଶሻ. The features are
not binarized in order to retain enough information for feature
distribution fitting in the next step.

C. Feature Distribution Fitting
The fitting accuracy of feature distributions for positive and

negative samples directly affects the accuracy of the Bayes
classifier. Compressive tracker assumes that the distribution of
each feature is Gaussian. Therefore, it calculates the mean and
variance of each feature according to the statistical result, and
updates the mean and variance in the tracking process. But
experiment results show that such assumption has two
disadvantages:

a. In many scenes, feature distributions do not satisfy the
Gaussian assumption, and may even have multiple peaks
(Fig.3 (a)). So it is not always accurate to fit the
distributions with Gaussian.

b. When the classification is calculated with a Gaussian
function to get the probability, it would involve a large
number of exponential and logarithmic arithmetic
operations. Since the response value for each sample needs
to be calculated, the computational complexity will
increase greatly. For some applications that are limited by
the computing resources, such as augmented reality on
mobile devices, these operations would become a
bottleneck.

Our DoP-RIEF uses histograms to fit the distributions of
the features, and builds a look-up table for each logarithm item,
avoiding the above two disadvantages. The algorithm is
illustrated as follows. Suppose the location of the target is
initialized in the first frame, and the center coordinate of the

target is (x0, y0). Then a set of positive samples are selected
near the center, with the center coordinates in the range (x0 +
Δx0, y0 + Δy0), where |Δx0| < tx0, and |Δy0| < ty0. The
negative samples is far away from the target center, with the
center coordinates in the range (x0 + Δx1, y0 + Δy1), where tx1
< |Δx1| < tx2, ty1 < |Δy1| < ty2, tx1 > tx0, ty1 > ty0.

Since the elements in a feature vector are independent of
each other, each distribution can be fitted without referring to
others. After the division of the target into R rows and C
columns, the size of each patch is set to be pw height and pc
width in pixels. Each histogram contains h bins. For grayscale
images, the difference for each pair of patches is in the range
[-pw * pc * 256, pw * pc * 256]. And these values can be
discretized into the bins of the histogram. For the value v, the
num of bin it belongs to is calculated as follows.

 * *2*256pw pcbinLength
h

= (5)

2

v hbinNum
binLength

= + (6)

In equation (5), binLength is the range covered by each bin. In
order to avoid negative values, the result is increased by half of
h in equation (6) to adjust the binNum to a non-negative value.

In order to fit the distribution of each element in the feature
vector, the feature values for positive and negative samples are
accumulated separately with histograms. Finally, the
histograms are normalized so that the sum of all the bins is 1.
These histograms are more accurate and suitable to fit the
distributions. The fitting process is shown in Fig.2.

D. Feature Selection
Another advantage of using histogram for feature

distribution fitting is that it is convenient for feature selection.
Features with higher degree of discrimination can be selected
to get higher tracking accuracy. With feature selection, the
algorithm can adapt to different applications which require
different speed. That is, on mobile devices less features would
be used, while in PC applications more features would be used.

(a) (b) (c)

Fig. 3. transform result of each step for feature selection. (a) the original feature histogram for object and background.
(b) the log likelihood ratio calculated with the original histogram. (c) probability distribution of object and background
with the tuned feature.

139

With the histogram of the positive and negative samples,
we can refer to Robert’s work [11] for feature selection. In
order to compute the discrimination for each element of the
feature vector, the histograms are transformed first. The
transformation is computed as a log likelihood ratio of the
feature value distributions for object versus background. This
tuned feature is formed as the log likelihood ratio of the class
conditional feature distributions. The log likelihood ratio of for
each bin i is calculated as equation (7).

 ()() log
()

obj iratio i
bkg i

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (7)

obj(i) is the value of the ith bin in the object histogram, and
bkg(i) is the value of the ith bin in the background histogram.
In order to prevent the error of division by zero, obj(i) is set to
be max{obj(i), δ}, and bkg(i) is set to be max{bkg(i), δ},
where δ is a small value.

In order to measure the discrimination that tuned feature
induces between object and background classes, the two-class
variance ratio can be calculated. We could proceed by
reaccumulating new class conditional distributions for the
tuned feature and then calculate the variance with the new
distributions. But for efficiency, the distributions obj(i) and
bkg(i) that already computed for the features can be used.
Through equation (8)

 2 2var() () ()x E x Ex= − (8)

the variance of the tuned feature for the object with respect to
object class distribution can be computed as

22var() ()* () ()* ()
i i

obj obj i ratio i obj i ratio i⎡ ⎤= − ⎣ ⎦∑ ∑ (9)

For background, the variance is

22var() ()* () ()* ()
i i

bkg bkg i ratio i bkg i ratio i⎡ ⎤= − ⎣ ⎦∑ ∑ (10)

Variance of the feature over both object and background is
calculated by equation (11) and (12).

() ()()
2

obj i bkg iall i += (11)

22var() ()* () ()* ()
i i

all all i ratio i all i ratio i⎡ ⎤= − ⎣ ⎦∑ ∑ (12)

Finally, the discrimination for the feature can be defined as

 var()
var() var()

alldis
obj bkg

=
+

 (13)

In this way, features with larger dis can be selected with higher
priority for subsequent classification. Fig.3 shows the
transformation result of each step for feature selection.

E. Classification and Updating
Since the histograms for positive and negative samples

have been generated, the logarithm item in equation (2) can be
calculated easily for each vi. The advantage of using histogram
is that these values need to be calculated only once and can be
stored in a look-up table. Then, in the classification stage, the
classifier only needs to calculate the bin to which a given
feature belongs, with equation (6), and looks up the table for
the logarithm value. In this way, the classification calculations
are accelerated significantly.

As the target moves in the scene, the appearance and
background will gradually change. Therefore, the feature
histograms should be incrementally updated in the tracking
process. The updating method is illustrated as follows:

Suppose that after tracking the object for i frames, the
histogram of the object is (o1, o2, … … , on), and the histogram
of the background is (b1, b2, … … , bn). In the (i+1)th frame,
the histogram are (o1', o2', … … , on') and (b1', b2', … … , bn')
for object and background respectively. Then the histograms
are incrementally updated to (o1 * rate1 + o1'* (1 – rate1), o2 *
rate1 + o2' * (1-rate1), ... …, on * rate1 + on'* (1- rate1)) and
(b1 * rate2 + b1'* (1 – rate2), b2 * rate2 + b2' * (1-rate2), ... …,
bn * rate2 + bn'* (1- rate2)) where rate1 and rate2 are the
learning parameters and their values are between 0 and 1.
Different learning rates can be set for object and background
respectively.

Fig. 4. Average error for each sequence. Y axis is average error, X axis is the sequence num: 1.sylv, 2.board,
3.bolt, 4.lemming, 5.skating, 6.football, 7.singer, 8.car, 9.faceooc2, 10.girl, 11.animal, 12.shaking, 13.twinning,
14.david, 15.faceocc, 16.coke11, 17.dollar. For each sequence, we compare compress tracker(green), our
algorithm without feature selection(red) and our algorithm with feature selection(blue).

140

IV. EXPERIMENTS
At the beginning of this section, we compare our algorithm

with compressive tracker on 17 challenging sequences(sylv,
board, bolt, lemming, skating, football, singer, car, faceooc2,
girl, animal, shaking, twinning, david, faceocc, coke11, dollar).
In Zhang’s work, they have already compared compressive
tracker with fragment tracker [4], the online AdaBoost method
[5], the Semi-supervised tracker [18], the MILTrack algorithm
[19], the lଵ-tracker [20], the TLD tracker [21], and the Struck
method [22]. Compressive tracker outperforms these trackers.
Therefore, in this paper, we only compare our algorithm with
compressive tracker. For fair comparison, we use the source
code provided by the author with tuned parameters for best
performance. Our algorithm and compressive tracker are both
complemented in C++ and run on a Dual-Core 2.93GHz CPU
with 3.5 GB RAM. In order to evaluate the ability to handle
situations of scale and rotation variations, we also extend our
algorithm and test it on Stanford datasets(18 sequences) and
Peking University landmark datasets(20 sequences).

A. Experimental Setup
In the initial step, the bounding box of the target is divided

into R=30 rows and C=30 columns uniformly. The initial
feature length N is set to 200. For feature distribution fitting,
the number of bins in a histogram is set to h=30. For feature
selection, the threshold for dis is set to 1.5, which means that
only the elements with dis larger than 1.5 will be used for
classification. The learning rate rate1 and rate2 are set to 0.85.
For fair comparison, we use the same sampling parameters for
positive and negative samples as the ones of compressive
tracker.

B. Accuracy Analysis
We use the center location error to evaluate the two

algorithms. This metric can be measured with manually labeled
ground truth data. We compute the distance between the center
coordinate of the ground truth and our algorithm for each frame,
and then get the average error for the whole sequence. We also
evaluate the accuracy of our algorithm without feature selection.
Fig.4 shows the quantitative results, and Fig.5 shows
screenshots of some tracking results.

Our tracker gets higher accuracy in most of the sequences
than compressive tracker. The average error of compressive
tracker is 49.05 pixels, while the average error of our algorithm
is 14.35 pixels. Both compressive tracker and our algorithm use
the same Bayes classifier to calculate the response value as the
probability of containing the target. Therefore, the accuracy of
the tracker mainly depends on the accuracy of the feature
distributions and the discrimination of the features. Through
our selective DoP-RIEF, the feature distributions are fitted with
histograms which are more flexible than Gaussian and can be
used to estimate much more types of distributions. On the other
hand, the quality of the features gets further improved through
feature selection. In the process of feature selection, only high-
quality features are retained, because their discrimination
between target and background are higher than a predefined
threshold. In this way, the noise interference is reduced.

In the sequences of lemming, skating and car, the average
errors of compressive tracker are very large because the tracker
loses the targets. In the sequence of bolt, our algorithm without
feature selection also loses the target. Our algorithm with

Fig. 5. Tracking results compared with compressive tracker. Green boxes are the ground
truth, blue boxes are the results of our algorithm, and the red boxes are the results of
compressive tracker. Each row for a sequence. Row 1: sylv. Row 2: board. Row 3:
faceocc2. Row 4: animal. Row 5: shaking.

141

feature selection gets stable performance and the average errors
are relatively small.

However, DOP-RIEF with feature selection perform worse
than that without feature selection in a few sequences. The
reason is that with feature selection, the features with low
discrimination have been deleted, which may not be totally
useless for tracking. In general, selective DoP-RIEF provides
the Bayes classifier with higher quality features.

C. Efficiency Analysis
In order to accurately determine the target location, a

sufficient number of samples need to be obtained in each frame.
In our experiment, the average search radius is 20 pixels and
we will get more than 1000 samples. Therefore, the
computational complexity of calculating the response values
will be the bottleneck of tracking efficiency. Since histograms
are used to store logarithm items for classification in a look-up
table. Then, in classification stage, the classifier only needs to
calculate the bin to which a given feature belongs, and looks up
the table for the logarithm value. In this way, the classification
calculations are accelerated significantly. The average speed of
our algorithm without feature selection is 0.0045 seconds per
frame. With feature selection, as the features with low
discrimination are deleted, the average speed is increased to
0.0037 seconds per frame, while the average speed of
compressive tracker is 0.031 seconds per frame. So our
algorithm is about 8 times faster than compressive tracker. Fig.
6 shows the comparison result. With this speed, our algorithm
may track 270 frames per second on a PC with Dual-Core
2.93GHz CPU and therefore it is more suitable for mobile
applications.

D. Scale and Rotation Variations
Scale and rotation variations of the targets exist in most of

augmented reality applications, so the tracker should be able to
track the targets and simultaneously handle scale and rotation
variations. On the basis of the framework of our algorithm, we
expand the search range. In addition to searching the target
with a box as large as the one in the previous frame, 4 more
extra boxes are used: the first one with larger size, the second
one with smaller size, the third one with a left-hand rotation,
the fourth one with a right-hand rotation. All the response
values are calculated, and the box with the maximum response
value is chosen as the location area of the target. The
experiment results show that the additional 4 boxes are enough
for handling scale and rotation variations. In our experiments,
the size change is one tenth of the original box and the angle of
rotation changes is 3 degrees.

 We test our algorithm on the Stanford datasets(18
sequences) and Peking University landmark datasets(20
sequences). Both datasets involve scale, rotation and
illumination variations. In terms of accuracy evaluation, we use
the ݁ݎ݋ܿݏ ൌ ௔௥௘௔ሺோைூ೅תோைூಸሻ௔௥௘௔ሺோைூ೅׫ோைூಸሻ , where ROIT is the tracking
bounding box and ROIG is the ground truth bounding box. If
the score is larger than 0.75 in one frame, the tracking result is
considered as a success. And the results show that the accuracy
of our algorithm is above 90%. Fig.7 and Fig.8 show
screenshots of some tracking results.

V. CONCLUSION
In this paper, we proposed the selective DoP-RIEF which

can be used for mobile real-time tracking in augmented reality.
Following the framework of feature extraction, feature
distribution fitting with histogram, feature selection,
classification, and updating, our algorithm gains higher speed
and accuracy, compared with compressive tracker. Our
algorithm has better robustness in scenes of illumination
variation and image blur. With the expanded search range, it
can also handle rotation and scale variations. Therefore, with
the advantages of speed, accuracy and robustness, our
algorithm is more suitable for applications on mobile devices
with limited computational resources.

ACKNOWLEDGMENT
This work is supported by National Natural Science

Foundation of China under grant 61271311 and National High-
tech R&D Program of China (863 Program) under
grant 2015AA016302.

REFERENCES
[1] D. Comaniciu, V. R. Member, and P. Meer. Kernel-based object

tracking. PAMI, pp. 564–575, 2003.
[2] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade. Tracking in low

frame rate video: a cascade particle filter with discriminative observers
of different life spans. PAMI, pp. 1728–1740, 2008.

[3] P. P´erez, C. Hue, J. Vermaak, and M. Gangnet. Color-based
probabilistic tracking. ECCV, pp. 661–675, 2002.

[4] Adam, A., Rivlin, E., Shimshoni, I.: Robust fragements-based tracking
using the integral histogram. CVPR, pp. 798–805, 2006.

[5] Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via online
boosting. BMVC, pp. 47–56, 2006.

[6] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, Brief: Binary robust
independent elementary features. Computer Vision ECCV, vol. 6314,
pp. 778–792, 2010.

[7] Bradski G R. Computer Vision Face Tracking for use in a Perceptual
User Interface. Intel Technology Journal, pp. 1–15, 1998.

[8] Zhong W, Lu H, Yang M. Robust object tracking via sparsity-based
collaborative model. Computer Vision and Pattern Recognition (CVPR),
IEEE Conference on. IEEE, pp. 1838–1845, 2012.

Fig.6. speed comparison result among our algorithm with
feature selection, our algorithm without feature selection, and
compressive tracker.

142

[9] Rublee E, Rabaud V, Konolige K, et al. ORB: An efficient alternative to
SIFT or SURF. Computer Vision (ICCV), IEEE International
Conference on. IEEE, pp. 2564–2571, 2011.

[10] Zhang K, Zhang L, Yang M. Real-Time Compressive Tracking.
Computer Vision – ECCV, pp. 864–877, 2012

[11] Collins R T, Liu Y, Leordeanu M. Online selection of discriminative
tracking features. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, pp. 1631–1643, 2005.

[12] R. Kalman, A New Approach to Linear Filtering and Prediction
Problems. Journal of Basic Engineering, March, pp. 35–46, 1960.

[13] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, vol.60, pp.91–110, 2004.

[14] Schmalstieg D, Drummond T, Mulloni A, et al. Real-Time Detection
and Tracking for Augmented Reality on Mobile Phones. Valzaon and
Omr Grah Ranaon on, pp.355–368, 2010.

[15] H. Bay, T. Tuytelaars, and L. Gool. SURF: Speeded up robust features.
ECCV, pp. 404–417, 2006.

[16] E. Rosten and T. Drummond. Machine learning for high speed corner
detection. in 9th Euproean Conference on Computer Vision, vol. 1, pp.
430–443, 2006

[17] S. Leutenegger, M. Chli, and R. Siegwart. BRISK: Binary robust
invariantscalable keypoints. ICCV, pp. 2548–2555, 2011.

[18] Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line
Boosting for Robust Tracking. ECCV, pp. 234–247, 2008.

[19] Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with
online multiple instance learning. PAMI , pp. 1619–1632, 2011.

[20] Mei, X., Ling, H.: Robust visual tracking and vehicle classification via
sparse representation. PAMI , pp. 2259–2272, 2011.

[21] Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: bootstrapping binary
classifier by structural constraints. CVPR, pp. 49–56, 2010.

[22] Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking with
kernels. ICCV, pp. 263–270, 2011.

Fig. 7 Experiment results on Stanford datasets

Fig. 8 Experiment results on Peking University landmark datasets

143

