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ABSTRACT

HEVC is the latest video coding standard, in which inter pre-
diction plays an important role to reduce the temporal redun-
dancy. The accuracy of inter prediction is limited since only
temporal information is used in conventional algorithms. In
this paper, we propose a neural network based inter predic-
tion algorithm for HEVC by using the spatial-temporal infor-
mation. In the proposed algorithm, we first design a neural
network architecture consisting of a fully connected network
(FCN) and a convolutional neural network (CNN). Then the
spatial neighboring pixels and the temporal neighboring pix-
els are inputted into FCN. The output of FCN and the predic-
tion of current block are inputted into CNN, which will results
the more accurate prediction of current block. Experimental
results demonstrate that the proposed method can achieve av-
erage 1.7% (up to 8.6%) BD-rate reduction in low delay P test
condition compared to HM 16.9.

Index Terms— HEVC, Inter prediction, Neural network,
Fully connected network, Convolutional neural network

1. INTRODUCTION

High efficiency video coding (HEVC) standard, developed by
the Joint Collaborative Team on Video Coding (JCT-VC) [1],
becomes the state-of-the-art video coding standard. It can
provide a similar perceptual quality with about 50% bitrate
saving compared with its predecessor H.264/AVC [2]. Inter
prediction plays an important role in HEVC to achieve this re-
markable improvement. In inter prediction of HEVC, the pre-
diction of current block is obtained by straightly copying or
interpolating a block from the reference picture. However, the
temporal illumination variation and the correlation between
current block and its neighboring pixels are not considered,
which may hamper the accuracy of inter prediction.

To improve the accuracy of inter prediction, some con-
ventional research has been presented. Yin et al. proposed a
localized weighted prediction method to handle the local illu-
mination variations [3]. An offset is estimated for each block
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by using the neighboring pixels of the block and is used to
compensate the illumination variations. Jeong et al. proposed
to replace the skip mode by a skip with offset method [4], in
which the offset is estimated similarly as in [3]. Zhang et al.
proposed to employ an improved linear regression model to
improve the accuracy of inter prediction in HEVC [5]. The
weighted parameters in the model are estimated by referring
the reconstructed neighboring pixels and temporal reference
block.

Recently, deep learning has achieved impressive results
on artifacts reduction for images and videos [6, 7, 8, 9, 10,
11]. Dong et al. proposed a convolutional neural network for
image super-resolution (SRCNN) [6]. Dong et al. proposed
a convolutional neural network for JPEG image artifacts re-
duction (ARCNN) [7]. To reduce JPEG image artifacts, a
deep dual-domain based restoration model was investigated
in [8]. Dai et al. proposed a variable-filter-size convolutional
neural network (VRCNN) for post-processing in HEVC intra
coding [9]. Wang et al. proposed a very deep convolutional
neural network to remove the artifacts of HEVC compressed
video, in which the network consisted of 10 convolutional lay-
ers [10]. Yang et al. proposed a decoder-side scalable convo-
lutional neural network approach to enhance the quality of
HEVC compressed video [11].

Apart from algorithms for artifacts reduction, deep learn-
ing is also investigated to improve the compression perfor-
mance of HEVC. Park et al. straightly integrated SRCNN
in HEVC to replace the deblocking filter and sample adap-
tive offset (SAO) [12]. Jia et al. proposed a spatial-temporal
residue network and integrated it in HEVC as an additional
filtering method, located after SAO, in which spatial-temporal
coherences were jointly exploited to infer the pristine visual
signal [13]. Li et al. proposed a fully connected network
for intra prediction, where the inputs are multiple reference
lines of the current block and the output is the prediction of
current block [14]. Li et al. proposed a CNN-based block up-
sampling scheme for intra frame coding in HEVC, in which a
new CNN structure was explored for up-sampling [15].

In this paper, we propose a neural network based inter pre-
diction algorithm (NNIP) for HEVC. Specially, we propose a
neural network architecture to improve the accuracy of inter
prediction, in which the network consists of a fully connected
network (FCN) and a convolutional neural network (CNN).
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The inputs of FCN are the spatial neighboring pixels and the
temporal neighboring pixels. The inputs of CNN are the pre-
diction of current block and the output of FCN. The enhanced
prediction of current block can be obtained by using the neu-
ral network. Note that VRCNN is used as CNN in this paper.
Experimental results demonstrate that when compared to HM
16.9, the proposed NNIP method can achieve about 1.7% (up
to 8.6%) BD-rate reduction in low delay P (LDP) test condi-
tion.

The remainder of this paper is organized as follows. Sec-
tion II gives a brief overview of inter prediction in HEVC
and VRCNN. The proposed neural network based inter pre-
diction algorithm is introduced in section III. In section IV,
experimental results are shown, followed by the conclusion
in section V.

2. BACKGROUND

2.1. Inter prediction in HEVC

Inter prediction plays an important role in HEVC. The com-
pression performance can be increased by improving the ac-
curacy of inter prediction. Coding unit (CU) is assigned a
particular prediction mode, either intra prediction or inter pre-
diction. Each CU is associated with one or more prediction
units (PU). As shown in Fig. 1, there are eight partition modes
for inter predicted CU.

PART_2Nx2N PART_2NxN PART_Nx2N PART_NxN

PART_2NxnU PART_2NxnD PART_nLx2N PART_nRx2N

Fig. 1. Partition modes for inter PU.

The simplified diagram of encoding and decoding with in-
ter prediction is shown in Fig. 2. In encoder, inter prediction
is used to generate the prediction of current block, whether
merge mode or normal inter mode is used. Motion estimation
is used in normal inter mode to generate the motion vector,
which is used to generate the prediction in motion compen-
sation. Then the transform, quantization and entropy coding
processes are used to generate the bitstream. In decoder, the
motion vector and the residue are derived from entropy de-
coding process. Reconstruction is generated by adding the
residue to the prediction of current block.
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Fig. 2. Inter prediction in HEVC.

Table 1. The configuration of VRCNN [9]

Layer Layer 1 Layer 2 Layer 3 Layer 4

Conv.module conv1 conv2 conv3 conv4 conv5 conv6

Filter size 5x5 5x5 3x3 3x3 1x1 3x3

#filters 64 16 32 16 32 1

#parameters 1600 25600 18432 6912 1536 432

Total parameters 54512

2.2. Review of VRCNN

In [9], VRCNN is designed to perform artifact reduction for
HEVC. In the following, we will briefly review the overall
architecture of VRCNN.

In VRCNN, there are four fully convolutional layers and
variable filter size is adopted in the second layer and third lay-
er. The outputs of different-sized filters are concatenated to be
fed into the next layer. The first and the last layers of VRCNN
do not use variable filter size. The recently developed residue
learning technique [16] is integrated into VRCNN. That is,
the output of the last layer is added back to the input.

3. NEURAL NETWORK BASED INTER
PREDICTION

In this section, we will introduce the proposed neural network
based inter prediction (NNIP) algorithm for HEVC. First, we
concentrate on the network architecture of NNIP. Then we
introduce the training strategy for the network. Finally, we
integrate NNIP in HEVC to improve the compression perfor-
mance of HEVC.
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Fig. 3. The network architecture of NNIP.

3.1. Network architecture of NNIP

The network architecture of NNIP is shown in Fig. 3. It con-
sists of two networks, namely a fully-connected network (FC-
N) and a convolutional neural network (CNN). There are three
inputs for the network, including the spatial neighboring pix-
els, the temporal neighboring pixels and the prediciton of cur-
rent block. They are represented by S, T , and P respectively
in Fig. 4. S and T are used as the inputs for FCN. The output
of FCN is added to P . The result is used as the input of C-
NN. The output of the network is the improved prediction of
current block.

CP

Current blockTemporal 
reference block

ST

Spatial neighboring pixelsTemporal  neighboring pixels

Fig. 4. Inputs of the network for NNIP.

In FCN, for a predicted block with size of N ×N , we use
S and T as the inputs, shown in Fig. 3. As shown in Fig. 3,
FCi denotes the ith fully connected layer, and the depth of
FCN is indicated by d. Denote the input by Y , the output of
layer i by Gi(Y ), and the final output of FCN by G(Y ) =
Gd(Y ), then the network can be represented as follows:

G1(Y ) = f(W1,F · Y + B1,F ), i = 1

Gi(Y ) = f(Wi,F ·Gi−1(Y ) + Bi,F ), 1 < i ≤ d
(1)

where Wi,F and Bi,F are the weights and biases parameter-
s of layer i in FCN, · denotes inner product. f() is a non-

linear mapping function, and the parameter rectified linear u-
nit (PReLU) [17] is used as the non-linear mapping function
in this paper.

For the first layer (i = 1), FC1 is 4NL + 2L2-
dimensional. For the hidden layers (1 < i < d), is K-
dimensional, the output of the (i − 1)th layer. For the last
layer (i = d), is N2-dimensional, which is reshaped into the
output, which is the relation block with size of N ×N .

As mentioned above, the output of FCN is added to P ,
which is the prediction of current block shown in Fig. 3. Then
the result is used as the input of CNN. In this paper, VRCNN
is adopted in this component. Detailed feature map number-
s of each layer are shown in Table 1. Similar to FCN, the
network of CNN can be represented as follows:

F1(Y ) = g(W1,C ∗ Y + B1,C), i = 1

Fi(Y ) = g(Wi,C ∗ Fi−1(Y ) + Bi,C), 1 < i < d′
(2)

where Wi,C and Bi,C are the weights and biases parameters
of layer i in CNN, ∗ denotes convolution. g() is a non-linear
mapping function. d′ equals to 4 in VRCNN.

The recently developed residue learning technique [16] is
used in VRCNN. That is, the output of the last convolutional
layer is added back to the input, which can be represented as
follows:

F (Y ) = W4,C ∗ F3(Y ) + B4,C + Y (3)

where W4,C and B4,C are the weights and biases parameter-
s of last convolutional layer in VRCNN. F3(Y ) denotes the
output of 3th convolutional layer.

Similarly, the residue learning technique is also used in
the proposed network to accelerate the speed of training.
However, different from that in VRCNN, the final output is
the sum of the output of CNN and P , denoting current block.
This is represented as follows:

F (Y ) = W4,C ∗ F3(Y ) + B4,C + P (4)



The parameters in each layer of CNN are the same as
those in VRCNN. Zero padding is used for each convolu-
tion layer to ensure the same size of input and output blocks.
Thus, the output of the overall network is a block with size of
N ×N , which is the improved prediction of current block.

3.2. Training strategy

In this section, we will introduce the training strategy for the
proposed network of NNIP, mainly focusing on training data
generation and hyper parameters setting.

Denote (xi, yi) as each training sample, where xi repre-
sents the inputs of the network including S, T , and P , and yi
denotes the label of P , which is the original signal of current
block. To generate the training data, we first compress three
video sequences in HEVC common test condition (Basket-
ballDrive, BQMall, and BlowingBubbles) by using HM 16.9
with low delay P (LDP) configuration [18]. All frames of
these three sequences are encoded with different quantization
parameters (QP = 22, 27, 32, and 37). Second, we extrac-
t xi from the compressed bitstreams and extract yi from the
original video sequences.

Learning the entire mapping F from the inputs to the en-
hanced prediction of current block needs to estimate the pa-
rameters. Specifically, given a collection of n training in-
stances, where the ith instance consists of the inputs xi and
the original block yi, we use the mean squared error (MSE)
to minimize the following loss function:

L(Θ) =
1

n

n∑
i=1

||F (xi|Θ)− yi||2 (5)

where Θ = {Wj,F , Bj,F ,Wk,C , Bk,C}, 1 ≤ j ≤ d, 1 ≤ k ≤
d′, n is the total number of training samples.

We train our proposed network of NNIP by using the deep
learning framework caffe on a NVIDIA GeForce GTX 1080
GPU. The loss function is minimized by using the first-order
gradient based optimization Adam [19]. We adopt a batch-
mode learning method with a batch size of 64. The momen-
tum of Adam optimization is set to be 0.9 and the momentum2
is set to be 0.99. The depth of FCN d is set to be 4 in this pa-
per. The dimension of hidden layers, K is set to be twice
dimension of the input layer in FCN. The external lines L is
set to be 4 in this paper. The base learning rate is set to decay
exponentially from 0.1 to 0.0001, changing every 40 epochs.
Thus, the training takes 160 epochs in total. We train the
model for QP = 37 by using the above base learning rate. The
models for other QPs (22, 27, and 32) are fine-tuned from the
model of QP = 37. When fine tuning, the base learning rate
is 0.001. In addition, we train different models for differen-
t sizes of CU, which varies from 8×8 to 64×64. Therefore,
there are 16 models in total for the proposed network of NNIP.

3.3. Integration in HEVC

To evaluate the proposed NNIP algorithm, we integrate N-
NIP in HEVC to improve the compression performance of
HEVC. NNIP is used to improve the accuracy of inter pre-
diction, which is located after conventional inter prediction of
HEVC. The simplified diagram is shown in Fig. 5.
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Fig. 5. The simplified diagram of NNIP integrated in HEVC.

As shown in Fig. 5 (a), during the process of encoding, N-
NIP is used after inter prediction. Specially, the spatial neigh-
boring pixels, the temporal neighboring pixels, and current
predicted block are inputted into the network of NNIP. Then
the output of the network is the improved predicted block. As
shown in Fig. 5 (b), during the process of HEVC decoding,
NNIP is also used after inter prediction to generate the im-
proved prediction of current block.

The proposed NNIP algorithm can improve the accura-
cy of inter prediction. First, the relation between the spa-
tial neighboring pixels and the temporal neighboring pixels is
learned by FCN. Then the result is added to the prediction cur-
rent block, which is further improved by CNN. In HEVC, on-
ly the luma component is processed by NNIP. The proposed
NNIP algorithm is only applied to inter/merge/skip 2N×2N
mode in this paper. However, NNIP may hamper the com-
pression performance of inter prediction when blocks have
been predicted well. Therefore, a CU level flag is set to indi-
cate whether NNIP is used by using rate distortion optimiza-
tion.

4. EXPERIMENTAL RESULTS

In this section, extensive experiments are conducted to eval-
uate the performance of the proposed NNIP algorithm. First,
experimental settings are given in Section 4.1. Then the cod-
ing performance are evaluated in Section 4.2. Finally, com-
putational complexity is discussed in Section 4.3.

4.1. Experimental settings

NNIP is integrated in HM 16.9, which is the reference soft-
ware of HEVC. The experiments follow the common test con-
ditions defined in [18]. LDP setting configuration is simulated
to demonstrate its performance. Total 18 sequences with 8 bit
depth and 64 frames are encoded in our experiments, includ-
ing Class A (4Kx2K), B (1080P), C (WVGA), D (QWVGA),



Table 2. The BD-rate of NNIP for luma component compared
to HM 16.9

Class Resolution Sequence BD-Y

Class A 2560x1600
Traffic -1.5%

PeopleOnstreet -0.6%

Class B 1920x1080

Kimono -1.9%

ParkScene -0.3%

Cactus -2.3%

BasketballDrive* -3.8%

BQTerrace -8.6%

Class C 832x480

BasketballDrill -1.3%

BQMall* -2.2%

PartyScene -0.7%

RaceHorses -0.6%

Class D 416x240

BasketballPass -0.9%

BQSquare -1.3%

BlowingBubbles* -0.7%

RaceHorses -0.6%

Class E 128x720

FourPeople -1.5%

Johny -2.0%

KristenAndSara -2.1%

Average -1.7%

and E (720P). QP used in our experiments varies among 22,
27, 32, and 37. Computer with Intel i7-6700 3.4GHz Quad-
core processors with 64GB memory and Microsoft Windows
Server 2012 R2 operating system is used. Both HM 16.9 and
the proposed algorithm are compiled with Microsoft Visual S-
tudio 2013. When integrated in HEVC, the network of NNIP
is processed with GPU version Caffe [20].

4.2. Coding performance

We compute the BD-rate [21] to evaluate the coding perfor-
mance of NNIP. Table 2 shows the coding performance of the
proposed algorithm compared to HM 16.9, in which the neg-
ative number indicates bitrate saving and the positive number
indicates bitrate increasing. As shown in Table 2, the average
coding gain is about 1.7% (up to 8.6%) for luma componen-
t, which demonstrates the efficiency of the proposed NNIP
method.

As shown in Table 2, coding gains can be achieved for all
test sequences. The coding gain changes largely for different
sequences, which means that the proposed NNIP algorithm is

Proposed

PSNR: 37.0081 dB

(a) QP= 27

HEVC

PSNR: 31.6902 dB

Proposed

PSNR: 32.5095 dB

(b) QP= 37

Orignial HEVC

PSNR: 36.029 dB

Orignial

Fig. 6. Visual quality of the proposed NNIP algorithm.

affected by the contents of the video sequences. The proposed
NNIP algorithm can achieve better compression performance
for video sequences with high motion or rich texture, such
as BasketballDrive, BQTerrace, and BQMall. In addition, al-
though we use three HEVC sequences for training, denoted
by * in Table 2, the coding gains for these sequences are not
higher than others obviously. In the future, we will extend the
training set with excluding the testing sequences to evaluate
the proposed NNIP algorithm.

To further evaluate the coding performance of the pro-
posed NNIP algorithm. We also compare the visual quality
of NNIP with the conventional inter prediction in HEVC. As
shown Fig. 6, the proposed NNIP algorithm can improve the
accuracy of inter prediction both in QP = 27 and QP = 37.

4.3. Computational complexity

The encoding and decoding complexities of the proposed N-
NIP algorithm are shown in Table 3. The computational com-
plexity is evaluated by time increasing, which is denoted as
follows:

∆T =
Tp − To

To
× 100% (6)

where ∆T denotes the time increasing for encoding or decod-
ing. To and Tp denote the encoding (decoding) time of HM
16.9 and the proposed NNIP method respectively. ∆Tenc and
∆Tdec denote the time increasing of encoding and decoding
in Table 3 respectively.

As shown in Table 3, the encoding time increasing is
about 3444% on average and the decoding time increasing is
about 2022% on average. The high complexity mainly comes
from two reasons. The first reason is that rate distortion opti-
mization must be done for all sizes of CU and each mode of



Table 3. The computational complexity of NNIP

∆Tenc ∆Tdec

Class A 3273% 1700%

Class B 3314% 3301%

Class C 2479% 2416%

Class D 2842% 1578%

Class E 5310% 1113%

Average 3444% 2022%

inter prediction. The second reason is that the forward opera-
tion of the proposed network. The computational complexity
will be investigated in our future work.

5. CONCLUSION

In this paper, we propose a neural network based inter pre-
diction method for HEVC. A novel architecture by combing
fully connected network and convolutional neural network is
proposed, in which the spatial and temporal neighboring pix-
els and the prediciton of current block are as the inputs. It can
improve the accuracy of inter prediction in HEVC. Experi-
ments show that the proposed NNIP algorithm can achieve
average 1.7% (up to 8.6%) BD-rate reduction. Application
for other inter modes will be investigated in the future.
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