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Abstract—In this paper, a novel algorithm for high-quality 

image restoration is proposed. The contributions of this work 

are two-fold. First, a new form of minimization function for 

solving image inverse problems is formulated via combining 

local total variation model and nonlocal adaptive 3-D sparse 

representation model as regularizers under the regularization-

based framework. Second, a new Split-Bregman based iterative 

algorithm is developed to solve the above optimization problem 

efficiently associated with proved theoretical convergence 

property. Experimental results on image restoration from 

partial random samples have shown that the proposed algorithm 

achieves significant performance improvements over the current 

state-of-the-art schemes and exhibits nice convergence property. 

I. INTRODUCTION  

As a fundamental problem in the field of image 
processing, image restoration aims to reconstruct the original 
high quality image x from its degraded observed version .y

 
It 

is a typical ill-posed linear inverse problem, which can be 
generally formulated as: 

 Hy x +n                                    (1) 

where ,x y are lexicographically stacked representations of 
the original image and the degraded image, respectively, H  
is a matrix representing a non-invertible linear degradation 
operator and n  is usually additive Gaussian white noise.  

It has been widely recognized that image prior knowledge 
plays a critical role in the performance of image restoration 
algorithms. In order to cope with the ill-posed nature of 
image restoration, one type of scheme in literature employs 
image prior knowledge for regularizing the solution to the 
following minimization problem [1, 2]: 
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Hx y is the so-called 
2

l data-fidelity term, 

( ) x  denotes an image prior named the regularization term 
and   is the regularization parameter. In fact, the above 
regularization-based formulation (2) can be strictly derived 
from Bayesian Inference framework with prior knowledge as 
some image prior possibility model.  

In this paper, we concentrate on one of the interesting 
problems in image restoration, where the original x is masked 

with a random mask, that is, H is a diagonal matrix whose 
diagonal entries are randomly either 1 or 0, keeping or killing 
the corresponding pixels. What is required to do is the so-
called image restoration from partial random samples in 
spatial domain (IRPRS).  

To deal with the problem of IRPRS, local smoothness and 
nonlocal sparsity are both employed as image prior 
knowledge in our scheme. Specifically, we first incorporate 
local total variation model and nonlocal adaptive 3-D sparse 
representation model into the regularization-based framework 
simultaneously. This leads to a novel form of minimization 
problem, which can be considered as a combination of 
observation constraint, image local constraint and nonlocal 
constraint. And then, a new Split-Bregman based iterative 
algorithm with proved convergence is proposed to solve the 
above optimization problem efficiently. Our experimental 
results have shown significant performance improvements 
over the current state-of-the-art methods, demonstrating the 
potential of the proposed scheme.  

The remainder of this paper is organized as follows. 
Section II gives the details of the proposed scheme, showing 
how local and nonlocal constraints are incorporated into the 
regularization-based framework to generate a new form of 
minimization function for image restoration and how the 
optimization problem is solved effectively with proved 
convergence. Experimental results are reported in Section III 
and Section IV ends the paper with a few remarks and 
pointers to future work. 

II. THE PROPOSED SCHEME UTILIZING BOTH LOCAL AND         

NONLOCAL CONSTRAINTS AS REGULARIZATIONS 

In this section, we first introduce the local and nonlocal 

constraints, which will be incorporated into our proposed 

scheme as regularizations. After that, a new form of 

minimization function for image restoration under 

regularization-based framework is designed. Finally, a new 

effective algorithm for solving the above optimization 

problem with proved convergence is proposed. 

A. Local Total Variation Model 

Total variation (TV) model is one of the most popular 
regularizers and has been widely used in recent year [7, 3, 2, 
1]. Since the TV model favors the piecewise smoothness, this 

This work is supported in part by National Science Foundation (No. 
61073083 and 60803068), Beijing Natural Science Foundation (No. 

4112026), Specialized Research Fund for the Doctoral Program of Higher 

Education (SRFDP) and National Basic Research Program of China (973 
Program) under Grant 2009CB320904. 



paper adopts the isotropic discrete total variation as one 
regularizer, which is expressed by 
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operators corresponding to horizontal and vertical first order 
differences at pixel 

,i j
x , respectively. 

B. Nonlocal Adaptive 3-D Sparse Representation Model 

Motivated by the success of sparse representation [11] 
and nonlocal means (NLM) [9, 10] in image restoration, we 
integrate them and introduce a nonlocal adaptive 3-D sparse 
representation model to better characterize nonlocal image 
model. Acting as a complement to local total variation model, 
nonlocal adaptive 3-D sparse representation model serves as 
the other regularizer that can be formulated in the following 
four steps. 

Firstly, denote by [ ]ix  the i-th pixel and by ix  the patch 
of size m centered on this pixel. Secondly, define for each 
patch kx  the set of similar patches as  

2
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{ 1,...,   s.t.  },  
k i kS i n x x  

where  is some threshold. Thirdly, for every 
k

S ，a group 
is formed by stacking the blocks belonging to 

k
S  into a 3-D 

array, which is denoted by 
k

Z . Finally, denote by 
3D

Τ  the 
operator of 3-D transform (e.g. 2-D Wavelet and 1-D DCT) 
and nonlocal adaptive 3-D sparse representation mode can be 
written as  
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Different from BM3D [7], the nonlocal adaptive 3-D 

sparse representation model is expressed as an explicit 
formulation and can be interpreted from the joint sparse 
representation and nonlocal means point of view. 

C. Algorithm and Convergence 

By incorporating local total variation model and nonlocal 
adaptive 3-D sparse representation model into the 
regularization-based framework, a new formulation for image 
restoration can be expressed as follows:   
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(5) 

where  and 
 
are control parameters. Note that the 

formulation (5) can be interpreted as a combination of the 
data fidelity term and a compound regularization term, where 
the first actually represents the observation constraint and the 
second represents the image prior local and nonlocal 
constraints. Therefore, it is our belief that better results will 
be achieved by imposing the above three constraints into the 
ill-posed image inverse problem. 

The next key is how to design algorithm to guarantee that 
the solution is a minimizer of (5) and stable.Recently, a so-
called Split-Bregman iteration first introduced by [15] 
showing its efficiency for solving a class of 

1
l  related 

minimization problems. The connections of split Bregman 
iteration between some existing algorithms in optimization 
are pointed out by [12]. Founding on the Split-Bregman 
technique, in this paper, a modified iterative algorithm for 
solving (3) is then developed and its property of convergence 
property is presented as well.  

Given a proper closed convex function g and any scalar 

0t , the proximal map associated to g is defined by 

 2

2
( )( ) : argmin ( ) - .tprox g g t  

u
x u u x           (6) 

By utilizing variable splitting technique [1, 14], the 
problem will change into a constrained optimization:  
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Obviously, equation (5) is equivalent to (7). The rationale 

behind variable splitting is that each step of this alternating 
minimization may be much easier than the original 
unconstrained problem (5), as will be seen below. 

Applying Bregman algorithm [13, 14] to (7) leads to the 
following iterative steps: 
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( 1) ( ) ( 1) ( 1)ˆ ˆ-k k k k  b b (x - z )                                            (9) 

( 1) ( ) ( 1) ( 1)ˆ ˆ-k k k k  c c (x - w )                                          (10) 

 As mentioned before, Equation (8) can be performed 
efficiently by the alternating minimization with respect 
to ,x z and w separately, and the complete algorithm 
proposed for solving (5) can be outlined in Table I. 

TABLE I. A COMPLETE DESCRIPTION OF THE PROPOSED ALGORITHM 

Initialization: 

Set 0,k 
1 2

(0) (0) (0) (0)ˆ ˆ, , , , ,      b c w0 z 0
 

Main Loop: 

Iterate on  k  until k = MaxIterNum 
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b = b - (x - z )                                   (16) 

( 1) ( ) ( 1) ( 1)ˆ ˆk k k k  
c = c - (x - w )                                   (17) 



Notice that the proposed algorithm can be essentially 
considered as a modified form of Split-Bregman method. In 

Table I, 
1 2
, , ,   

 
are pre-specified scalar parameters 

respectively, and MaxIterNum is the maximum number of 
main loops. Since (11) is a minimization problem of strictly 
convex quadratic function, there is a closed form for 

( 1)ˆ k
x , 

which can be expressed as 
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identity matrix and 
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    . Owing to the particular 
structure of Matrix H that satisfies ,T

HH I applying the 
Sherman-Morrison-Woodbury (SMW) matrix inversion 
formula to (18) yields  
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Therefore, 
( 1)ˆ k

x  in (19) can be computed very efficiently 
without computing the matrix inverse operation in (18). 

If (13) and (15) corresponding to the proximal maps 
associated to TV and

3


D
, respectively, are solved exactly, 

the convergence property of the proposed algorithm can be 
guaranteed by the following proposition. 

Proposition 1. The proposed algorithm described by 
Table I converges to a minimizer of (5).  

Due to the limits of space, the proof of proposition 1 is 
not provided here. Actually, the proximal maps associated to 
most functions can only be solved in an approximation way.   
In this paper, the proximal map associated to TV is 
approximated by the well-known Chambolle’s algorithm [8], 
and the proximal map associated to 

3


D
 is calculated by 

applying thresholding (also called shrinkage) in transform 
domain of all the 3-D arrays centered at every pixel. However, 
it is important to stress that the approximations of (13) and 
(15) are found experimentally not to compromise the 
convergence of the proposed algorithm, which will be 
manifested in the next section.  

III. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed algorithm, 
we compare it with a number of recent methods: KR (kernel 
regression) [5], FOE (fields of experts) [6], MCA 
(morphological component analysis) [4] and SALSA [1]. 
Four standard test images include: House (color, 256×256), 
Barbara (gray, 256×256), Lena (color, 512×512) and Boat 
(gray, 512×512), as shown in Figure. 1. The results of every 
color image are obtained by its luminance component, 
keeping its chrominance components unchanged. The 
experimental results of SALSA, KR, MCA and FOE are all 
generated by the original authors’ codes, with the 
corresponding parameters manually optimized. 

Table II lists Peak Signal to Noise Ratio (PSNR) results 
among different methods on test images. The second column 
represents the ratio of available data, i.e. the percentage of 

retaining original samples, with the value equal to 20%, 50% 
or 80%. The proposed method considerably outperforms the 
other methods in all the cases, with a PSNR improvement of 
about 2.5 dB on average over the second best algorithms. 
With 50% available data on Image Barbara, which is rich in 
textures, the average PSNR improvements achieved by the 
proposed method over the second best method (i.e. MCA [4]) 
is as high as 4.8 dB. 

 
Figure 1. Standard test images. From left to right: House (color, 256×256), 

Barbara (gray, 256×256), Lena (color, 512×512) and Boat (gray, 512×512). 

Because of the limits of space, we merely provide two 
crops from Image House and Barbara for visual comparison 
in Figure 2. More visual results can be found at the website: 
http://idm.pku.edu.cn/staff/zhangjian/IRPRS/. It is apparent 
that all the methods generate good results on the smooth 
regions. KR [5] is good at capturing contour structures, but 
fails in recovering textures and produces blurred effects. 
MCA [4] can restore better textures than FOE [6] and KR. 
However, it produces noticeable striped artifacts. The 
proposed algorithm exhibits the best visual quality with the 
highest PSNRs, not only providing accurate restoration on 
both edges and textures but also suppressing the noise-caused 
artifacts.  

To visually illustrate the convergence of the proposed 
algorithm, Figure 3 plots the evolutions of PSNR versus 
iterative numbers for the four test images when the ratio of 
available data is 80%. Each curve increases monotonically 
with the growth of iterative number and ultimately becomes 
flat, which fully demonstrates the convergence of the 
proposed algorithm. 

TABLE II. PSNR (dB) COMPARISON AMONG DIFFERENT ALGORITHMS 

(BOLD-TYPE INDICATES THE BEST FOR EACH COLUMN) 

Image and  

Data Ratio 
SALSA KR  MCA FOE Proposed 

House 

(color) 

20% 29.55  30.4 32.22  32.64 35.17 

50% 35.32  36.75 38.65  39.21 41.24 

80% 41.28  43.95 44.44  45.91 47.40 

Barb. 

(gray) 

20% 23.55  23.31  25.81  24.62  28.06  

50% 27.28  31.50  32.14  31.66  37.02  

80% 33.48  39.51  39.37  39.79  44.41 

Lena 

(color) 

20% 30.41  32.84 31.59  32.15 33.83 

50% 35.75  38.19 37.17  37.84 39.47 

80% 41.83  43.34 42.72  43.55 45.03 

Boat 

(gray) 

20% 25.96  27.29  27.50  27.90  28.99  

50% 31.27  32.68  33.17  33.14  34.82  

80% 37.09  38.03  39.21  38.50  40.84  

Average 32.73  34.82  35.33  35.58 38.02 

http://idm.pku.edu.cn/staff/zhangjian/IRPRS/


  
        Masked (6.63 dB)                       KR (31.77 dB)                          FOE (31.09 dB)                        MCA (31.29 dB)                     Proposed (34.89 dB) 

  
Masked (7.65 dB)                        KR (20.99 dB)                          FOE (22.95 dB)                        MCA (24.49 dB)                     Proposed (28.38 dB)  

Figure 2. Visual comparison. Crops from two images (From top to bottom: House and Barbara). Left to right: masked image with only 20% random pixels 
available, KR [5], FOE [6], MCA [4] and the proposed algorithm. The reconstruction results of the proposed algorithm exhibit the highest image qualities. 
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Figure 3. Evolutions of PSNR versus iterative numbers for the four test 
images when the ratio of available data is 80%. Each curve increases 
monotonically with the growth of iterative number and ultimately becomes 
flat, which fully demonstrates the convergence of the proposed algorithm. 

IV.  CONCLUSIONS 

This paper presents a new scheme for image restoration, 
which consists of two steps. The first step formulates a novel 
optimization problem enforced simultaneously by observation 
constraint, local smoothness constraint and nonlocal sparsity 
constraint. The second step solves the above optimization 
problem efficiently using a new Split-Bregman based 
iterative algorithm, with proved convergence property. 
Encouraging outcomes are achieved by illustrating the 
proposed scheme on an interesting problem of IRPRS. 
Current and future work includes the extensions on a variety 
of applications, such as image deblurring, image denoising 
under impulse noise. 
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