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Abstract We propose a layered-grammar model to repre-
sent actions. Using this model, an action is represented by
a set of grammar rules. The bottom layer of an action in-
stance’s parse tree contains action primitives such as spa-
tiotemporal (ST) interest points. At each layer above, we
iteratively mine grammar rules and “super rules” that ac-
count for the high-order compositional feature structures.
The grammar rules are categorized into three classes ac-
cording to three different ST-relations of their action compo-
nents, namely the strong relation, weak relation and stochas-
tic relation. These ST-relations characterize different action
styles (degree of stiffness), and they are pursued in terms
of grammar rules for the purpose of action recognition. By
adopting the Emerging Pattern (EP) mining algorithm for
relation pursuit, the learned production rules are statistically
significant and discriminative. Using the learned rules, the
parse tree of an action video is constructed by combining
a bottom-up rule detection step and a top-down ambiguous
rule pruning step. An action instance is recognized based
on the discriminative configurations generated by the pro-
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duction rules of its parse tree. Experiments confirm that by
incorporating the high-order feature statistics, the proposed
method largely improves the recognition performance over
the bag-of-words models.
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1 Introduction

Action recognition is receiving more and more attention in
the computer vision community. This is largely due to its
critical role in many important applications, e.g. visual sur-
veillance, content-based video retrieval, and human com-
puter interaction. Human actions, oriented for certain pur-
poses and performed by coordinating the body parts, can be
considered as a type of spatiotemporal (ST) pattern possess-
ing two important properties: (1) They are highly hierarchi-
cal and compositional, i.e. an action can be divided into a
number of sub-actions, and the sub-actions can be further
decomposed into more basic ones. For example, a basket-
ball shooting action consists of squatting, body stretching,
jumping, and wrist flipping to launch the ball. In turn, the
squatting can be decomposed into knee bending and ankle
bending, and so on. (2) There are large variations in actions,
making action recognition a particularly challenging prob-
lem. The large variations can be caused by different factors
such as varied action styles, environment/context constraints
(e.g. avoiding an obstacle when reaching something, and in-
teracting with other objects), and different viewing direc-
tions. However, regardless of these factors, the action vari-
ation is finally reflected by different organizations or spa-
tiotemporal configurations of the hierarchical and composi-
tional action components.
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We observe that different actions organize their compo-
nents with diverse degrees of rigidity in order to serve for
different purposes. For example, as shown in Fig. 1, in sign
language the performer needs to follow strict rules in order
to convey accurate gesture meaning; whereas, at the other
extreme, the disco dancer tries to throw her body parts to-
wards any random directions to enjoy the rhythm; There are
also actions in between the two extremes, e.g. when drink-
ing, fetching a cup of water always happens before the water
is poured into a mouth; no matter how to fetch, and whether
it is a sipping or guzzling. However, most actions organize
their components in a mixed way. This poses a challenging
problem of finding a unified representation and an efficient
computation method to explain and recognize the mixed
style actions in our daily life.

Fig. 1 Example actions that organize their components with different
degrees of rigidity. From sign-language to drinking and to disco danc-
ing, the randomness of the action patterns is in an increasing order

In this paper, we propose a solution to recognizing ac-
tions by leveraging their hierarchical and compositional
properties. We adopt a layered attribute grammar model to
encode the hierarchical and compositional spatiotemporal
configurations of action components. As shown in Fig. 2,
an instance of an action can be explained by building a
parse tree in terms of the action grammar. The compo-
nents at the leaf-nodes are spatiotemporal interest points
(STIPs) (shown as colored balls in Fig. 2(a4)), they capture
the changes of local appearance and motions in the action
video (Laptev and Lindeberg 2003). These ST interest points
constitute the bottom layer (Layer-0) of the action model,
namely, the STIP-map. Moreover, the interest points form a
number of small configurations (shown as colored regions
in Fig. 2(a3)). Each configuration can be generated by an
attribute grammar rule (or a number of rules) at the layer
above (Layer-1). Similarly, across the layers above, the con-
figurations at a lower layer are generated by “super” rules at
the layer above. Thus, the configurations at a lower layer are
called the components of a bigger configurations at the layer
above. The instantiations of the rules at each layer constitute
a rule-map of the video.

At each layer, the grammar rules can be slotted into
three categories to account for the three ST-relations be-
tween the action components in a configuration, namely
the strong relation, weak relation and stochastic relation
(as shown in Fig. 2(a1)–(a3)). These ST-relations character-

Fig. 2 The proposed hierarchical action-grammar model. The bottom
layer is the ST interest point layer. Each layer above contains grammar
rules and “super” rules that generate the configurations below. The col-
ored balls in (a4) are the detected ST interest points of the input video.
On the right side of (a4), the detected interest points are shown in cyan
circles on sampled frames. In the middle of (a4), we show some inter-

est point ST patches of three clusters. The right side of (a3) shows two
mined rule instances γ 1

1 and γ 1
2 . Their corresponding configurations

in ST volume are shown on the left of (a3). Each rule instance is en-
closed by a colored curve (different colors denote different rule types).
(a1) and (a2) show the rule-maps at higher levels. (b) The parse tree of
a “walking” instance
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Fig. 3 The action recognition
frameworks of the proposed
approach and traditional interest
point based methods. (a) The
proposed approach adopts a
logistic regression classifier to
integrate the discriminative
scores computed from each
layer of an action parse tree
(shown in (c)). (b) A general
conventional framework for
interest point based action
recognition methods. It first
extracts and clusters ST interest
points, and then recognizes
actions using the statistics of the
ST interest points by classifiers,
e.g. SVM, KNN

ize the three action styles introduced above. More specif-
ically, (1) the strong relation enforces the most strict ST-
relation between the components in terms of quantized ST
distances (similar to a Gaussian model). (2) The weak re-
lation adopts Allen Algebra to specify the ST order of the
components, e.g. “ABOVE”, “BELOW”, “BEFORE”, “AF-
TER”. Sometimes, the partial order is crucial and sufficient
to differentiate actions, e.g. picking up and putting down an
object. (3) The stochastic relation assumes that the com-
ponents are orderless, and it only constrains them to co-
occur.

We adopt a weakly supervised learning method to learn
the hierarchical structure of the production rules from ac-
tion videos. Here “weakly supervised” means that we do not
annotate the bounding-box of the actions, neither align the
video sequences. As our primary goal is to recognize ac-
tions, we aim to learn production rules that are capable of
explaining the ST-relations of action components in the lo-
cal configurations, as well as to differentiate the actions from
other types. This rule learning step is also called relation
pursuit. To cope with the expensive cost of exploring the
large combinatorial configuration space, we adopt an effi-
cient data mining technique, Emerging Pattern (EP) mining
(Dong and Li 2004). In this way, we mine production rules
as emerging patterns such that the learned rules are statisti-
cally significant and discriminative.

Using the learned production rules, a parse tree of an ac-
tion video is built in two steps, a bottom-up multi-hypothesis
rule detection step and a top-down ambiguous rule prun-
ing step. Since the learned production rules are probabilis-
tic, a configuration can be ambiguous when it is interpreted
by a number of rules in a layer. In the bottom-up step, at
each layer, and for each configuration, we detect a num-
ber of production rules that best explain the configuration
and keep them as the candidate rules for the final parse tree.

Then, we execute the top-down step to remove the ambigu-
ous rules. The constructed nonoverlapping hierarchical dis-
criminative structures in term of grammar rules maximize
the total discriminative scores of action parse trees. An ex-
ample parse tree of a walking instance is shown on the right
in Fig. 2.

As illustrated in Fig. 3, to recognize an action instance,
we first compute a parse tree for each action class. Each
parse tree has multiple layers, and for each layer we com-
pute a discriminative score by aggregating the discriminative
scores of the production rules detected in that layer. Then,
we can feed these layer scores as the “regressors” into a lo-
gistic regression model already trained for that action class,
and obtain a probability that this action belongs to the class.
We label the action with the class of the highest probabil-
ity.

In summary, this paper has the following contributions:
(1) We propose a unified representation for actions of differ-
ent acting styles. (2) We propose a relation pursuit method
(implemented by Emerging Patterning (EP) mining algo-
rithm) to learn different types of the grammar rules effi-
ciently. These learned rules demonstrate strong discrimina-
tive power in recognizing different types of actions. (3) We
learn a discriminative model out of a grammatical repre-
sentation. Thus, the whole model leverages the grammatical
representation’s strong expressive power and the discrimina-
tive model’s potent differentiation power plus computational
efficiency.

The rest of the paper is organized as follows: Sect. 2 dis-
cusses the related work. In Sect. 3, we introduce the pro-
posed action model, followed by presenting the model learn-
ing and action recognition methods in Sect. 4. We show ex-
periment results in Sect. 5, and conclude the paper in Sect. 6.
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2 Related Work

In this section, we briefly review the existing literature that
is closely related to our work.

2.1 Spatiotemporal Interest Point Based Approaches

The conventional spatiotemporal interest point based meth-
ods model actions as a bag-of-video-words (Schuldt et al.
2004; Dollár et al. 2005). As shown in Fig. 3, this group
of methods generally contain three major steps: (1) extract-
ing ST interest points from action videos, (2) clustering the
interest points based on their ST features (e.g. histogram
of oriented gradient (Dalal and Triggs 2005), SIFT (Lowe
2004)), and (3) classifying/recognizing actions using the oc-
currence frequencies of the clustered ST interest points. Re-
searchers have focused on each step to improve the final ac-
tion recognition performance: (1) To extract robust and in-
formative interest points, various criteria are proposed, e.g.
cornerness (Laptev and Lindeberg 2003), periodicity (Dol-
lár et al. 2005), saliency (Rapantzikos et al. 2009). (2) To
cluster STIPs, K-means is used in the feature space of the
interest points. Recently, semantic based clustering strate-
gies are proposed to resolve the difficulties in selecting a
proper K value for the K-means algorithm and the disagree-
ment between appearance similarity and semantic consis-
tency (Quelhas et al. 2007). Based on Dollár’s ST interest
point detector, Niebles et al. model actions using a bag-of-
word model, and cluster the interest points by the underly-
ing “topics” (Niebles et al. 2008). Liu and Shah propose to
cluster ST interest points by exploring the correlation be-
tween interest points and actions types (Liu and Shah 2008).
(3) To recognize actions, people use classifiers (e.g. SVM—
Schuldt et al. 2004, or K-nearest neighbor—Dollár et al.
2005), or the Bayesian framework of a generative action
model (Niebles et al. 2008) for action recognition.

Besides the proposed method, in the literature, there are
methods that also exploit the local configurations of inter-
est points. For example, Sivic and Zisserman (2004) pro-
pose a method to find significant objects in a video sequence
by measuring the re-occurrence of spatial configurations of
Harris corners (Harris and Stephens 1988) in video frames.
Gilbert et al. (2008) apply the Harris corner detector in all
x − y, y − t and x − t planes of action videos to detect
a set of dense interest points, then discover the frequent
STIP configurations by the Apriori algorithm (Agrawal and
Srikant 1994; Quack et al. 2007). These frequent configu-
rations constitute the descriptive itemsets of the action, and
they are used for action recognition.

Despite of the development in the above work, there is
lack of work on exploring high-order ST configurations of
local features. Although, in the literature, people also use
other kinds of hierarchical features extracted from down

Table 1 Comparison of feature hierarchies exploited in the proposed
grammar model and other existing models

Approaches Level of STIP- Low-order High-order

hierarchy map configuration configuration

Bag-of-words 1
√

approaches

(Dollár et al. 2005,

Schuldt et al. 2004)

Local configuration 2
√

based approaches

(Sivic and

Zisserman 2004,

Gilbert et al. 2008)

Our approach 4
√ √ √

sampled images for object detection, e.g. Schnitzspan et al.
(2009), the feature hierarchy is not built from the interest
points. Most of the traditional interest point based methods
try to find recognition cues from the low-order statistics of
interest point maps. Table 1 compares the feature hierarchies
exploited in the proposed approach to those of some existing
approaches. As shown in the table, our approach makes full
use of the ST interest point configurations at multiple lay-
ers, and we learn high-order ST interest point distributions
in terms of layered grammar rules. It is worth noting that our
model is a general framework to enhance the performance
of existing interest point based approaches by incorporating
high-order statistics of feature configurations.

2.2 Grammar-Based Approaches

The grammatical model is a powerful representation for
describing generative processes. In the literature, grammar
models have been widely applied to event analysis (Lin
et al. 2009; Joo and Chellappa 2006). Ivanov and Bobick
(2000) adopt stochastic context free grammars (SCFG) to
represent events. They first apply atomic action detectors to
label possible atomic actions in an input video, then feed
the labels as a string to the following SCFG parsing mod-
ule for event analysis. Joo and Chellappa (2006) propose
to use attribute grammar and incorporate attributes such as
the location and the actor identity to facilitate event recog-
nition. In their work, these attributes serve as constraints for
a parser to analyze events. Ryoo and Aggarwal (2009) de-
sign a system to parse activities with interactions based on
a robust detection and tracking system. However, the data is
collected from well controlled environment. The grammar-
based methods usually depend on pre-designed production
rules, and they are based on explicit tracking and detection
of individual object motions. It is known that the reliability
of low level video processing methods (e.g. detection and
tracking) are still far from satisfactory, and using predefined
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rules is not practical in real scenarios. Therefore, a robust
action recognition module and an automatic production rule
learning method are highly demanded.

3 The Action Model

In this section, we introduce the layered grammar model for
action representation and the probabilistic formulation of the
attribute grammar rules.

3.1 The Attribute Grammar Model

Our action model is a 5-tuple attribute graph grammar G =
{L,VT ,Γ,VN,P }.

L is the starting root node. In the context of action video
parsing, the root node refers to the action class.

VT is the terminal node set, which corresponds to the ST
interest point set of action videos.

VN denotes the non-terminal node set, which corresponds
to the instantiations of the production rules.

Γ is the production rule set. A production rule accounts
for the compositional structure of a local configuration, in-
cluding its components and the ST-relation between the
components.

The attribute grammar is a context free grammar (CFG),
i.e. each production rule takes the form of γ : A → α, where
A ∈ VN is a non-terminal node, and α ∈ (VN)+ ∪ (VT )+ is a
string of terminal or non-terminal nodes. It is different from
the conventional CFG definition because α in our represen-
tation is only allowed to be either a string of terminal nodes
or a string of non-terminal ones, and no mixture of them is
allowed.

Both a terminal node a and a non-terminal node A are
associated with a set of attributes describing certain proper-
ties of a configuration, e.g. scale and ST position. We de-
note their attribute functions by X(a) and X(A), respec-
tively. Considering a rule γ , e.g. of the form γ : A →
A1A2, it enforces constraints in the form gγ,i(X(A)) =
fγ,i(X(A1),X(A2)) for respective attributes of the left- and
right-hand sides of γ . gγ,i and fγ,i are functions of the node
attributes. nγ is the number of constraints.

P is the probability model of the grammar.
Using the grammar rules, an action instance is repre-

sented as a parse tree. Let {γ1, γ2, . . . , γnL
O
} ⊆ ΓL be the

production rule set used to expand the root node L to a parse
tree ptOL for an action video O . The parse tree is denoted as

ptOL = (
γ1, γ2, . . . , γnL

O

)
(1)

where nL
O is the number of production rules used in pars-

ing O .

3.2 The Terminal Nodes: ST Interest Points

The terminal nodes of parse trees are ST interest points of
the videos, denoted as

VT = {
(a,X(a)) : a ∈ Ψ

}
(2)

where Ψ is the ST interest point set extracted from all train-
ing action videos. X(a) = (l(a), s(a), u(a)) is the attribute
vector of an ST interest point a, where l(a) denotes a’s clus-
ter label, s(a) is a’s scale, and u(a) is the center ST location
of a in the corresponding action video. The cluster label of
an interest point is obtained by clustering all the detected
interest points of the training videos. The scale and the cen-
ter position of an interest point are obtained by the interest
point detector.

3.3 The Non-Terminal Nodes: Instantiations of the Rules

The non-terminal node set VN of parse trees is denoted as

VN = {(A,X(A)) : A ∈ R} (3)

where R denotes the set of possible instantiations of the pro-
duction rules in action videos. X(A) is the attribute set of A

that can be instantiated.

X(A) = (
id(A), rt(A), s(A),u(A),Θ(A)

)
(4)

s(A) and u(A) are the scale and ST position of A respec-
tively. id(A) is the index of the production rule which instan-
tiates A. rt(A) ∈ {strong,weak, stochastic} is the component
relation type of the production rule. Θ(A) denotes the com-
ponent relation parameter set of A (defined in (7), (16) and
(26)).

3.4 The Production Rules

As discussed in Sect. 1, we identified three major action
styles which are characterized by the three types of rela-
tions between action components. Correspondingly, we de-
fine three types of production rules in our action grammar to
account for the ST-relation of the components in configura-
tions.

The general form of a production rule is

γ : A → (
α1α2 · · ·αnγ

) [rt, ε, ρ,Θ] (5)

where A ∈ VN . rt ∈ (s,w, st) indicates the rule’s relation
type. αi ⊆ (VT )+ ∪ (VN)+ is a string of (non-) terminal
nodes. nγ is the length of the string. ‘ε’ and ‘ρ’ denote the
support ratio and growth ratio of the rule respectively. The
support ratio refers to the occurrence frequency of the rule
in the positive video set (the action videos containing the to-
be-modeled type of actions), and the growth ratio tells the
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discriminative power of the production rule, which is com-
puted as the ratio of γ ’s occurrence frequencies in positive
video set over that in negative video set. Θ is the component
relation parameter set specifying the relations between γ ’s
components, e.g. their relative scales, relative ST distances.

The prior probability of γ is computed as

p(γ ) = #(γ )
∑

γ ′ #(γ ′)
(6)

where #(γ ) is the number of γ ’s occurrence in the training
video sequences.

In the following sections, we introduce the detailed for-
mulation of the three types of rules including their attributes,
constraint equations, and probability models.

3.4.1 The Strong Rules

A strong rule γs enforces the most strict pairwise ST-relation
between configuration components. Let’s denote a configu-
ration by c = {ci}ni=1. When c is instantiated by γs , its com-
ponent relation parameter set is

Θ(c) = {sc, idc,uc} (7)

where sc = (sc1 , . . . , scn) and uc = (uc1, . . . ,ucn) denote the
relative scale vector and the relative ST distance vector, re-
spectively. More specifically, the relative scale sci

of a com-
ponent ci is defined as s(ci)/s(c1). (c1 is the center compo-
nent of the configuration.) The relative distance is obtained
similarly. idc = (id(c1), . . . , id(cn)) is the rule index vector.

The constraint functions of γs are

sc = fsγs

(
s(c1), . . . , s(cn)

)
(8)

uc = fuγs

(
u(c1), . . . ,u(cn)

)
(9)

idc = [
id(c1), . . . , id(cn)

]T (10)

s(c) = s(c1) (11)

u(c) = u(c1) (12)

rt(c) = strong (13)

fsγs
and fuγs

compute the relative scale vector and the rela-
tive ST distance vector of c from its components. (10), (11),
(12) are assignment equations. For example, (11) assigns the
scale of the central component c1 to c.

The likelihood of c under rule γs is

p(c|γs) = 1

Zγs

q(c|γs) (14)

where

q(c|γs) = 1

n

n∑

j=1

δ
(
scj

, sγs ,j

)

× δ
(
ucj

,uγs ,j

) · δ(id(cj ), idγs ,j

)
(15)

computes the confidence score. sγs , uγs and idγs are the
rule’s canonical settings of the component relation parame-
ters. δ(·) is a Delta function. Thus, the confidence score
tells the portion of a configuration being consistent with a
rule’s canonical setting. The normalization term Z(γs) =∑

c q(c|γs) is computed by summing over all the configu-
rations of γs in the limited discretized configuration space.
Figure 4 shows how to compute sc and uc in a three-
component configuration.

Fig. 4 An illustration of how to
estimate the relative scale
vector, the relative distance
vector and the weak relation
vector from a three-component
configuration.
(a) A configuration composed
of three components, c1, c2 and
c3, where c1 is the central
component. (b) The ST space is
quantized into a grid with the
cell size d times of the scale of
c1. The relative distance
between each component and c1
is quantized as the number of
cells between them in x, y, t .
The function Round(z) rounds z

to its nearest integer
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3.4.2 The Weak Rules

A weak rule γw specifies spatiotemporal orders of its com-
ponents. When using the weak rule to instantiate the config-
uration c, c’s component relation parameter set is

Θ(c) = {sc, idc,wc} (16)

where sc and idc have the same meaning as the definition
in the strong rules. wc = (wc1, . . . ,wcn) is the weak relation
vector which describes the relative weak relations between
{ci}ni=1 and the central component c1. wci

(i = 1,2, . . . , n)

specifies weak relation between ci and c1.
To describe the weak relation (ST partial order) between

two components, we employ the Allen temporal predicates
(Allen and Ferguson 1994) and extend it with some more
spatial relation terms. The augmented set of predicates are
{‘before’, ‘after’, ‘above’, ‘below’, ‘left’, ‘right’, ‘overlapx ’,
‘overlapy ’, ‘overlapt ’}, which are defined as follows

left(a, b) ⇐⇒ Dist(a, b).x < 0

right(a, b) ⇐⇒ Dist(a, b).x > 0

above(a, b) ⇐⇒ Dist(a, b).y < 0

below(a, b) ⇐⇒ Dist(a, b).y > 0

before(a, b) ⇐⇒ Dist(a, b).t < 0 (17)

after(a, b) ⇐⇒ Dist(a, b).t > 0

overlapx(a, b) ⇐⇒ Dist(a, b).x = 0

overlapy(a, b) ⇐⇒ Dist(a, b).y = 0

overlapt (a, b) ⇐⇒ Dist(a, b).t = 0

where a and b are a pair of components, and Dist(a, b)

measures the quantized distance between them. Figure 4
is an illustration about how to compute wc in a configura-
tion. We use a 3-digit number to represent the weak rela-
tions between a and b. Each digit encodes the relation in
one of the x, y and t dimensions. For example, t = 0 when
before(a, b) = true; t = 1 when overlapt (a, b) = true; and
t = 2 when after(a, b) = true. It is similarly defined in the x

and y dimensions.
The constraint functions are listed as follows

sc = fsγw

(
s(c1), . . . , s(cn)

)
(18)

wc = fwγw

(
u(c1), s(c1), . . . ,u(cn), s(cn)

)
(19)

idc = [
id(c1), . . . , id(cn)

]T (20)

s(c) = s(c1) (21)

u(c) = u(c1) (22)

rt(c) = weak (23)

Equation (18), (20), (21) and (22) are defined in the same
way as the constraint functions of the strong rules. In (19)
the function fwγw

(·) returns a weak relation vector depict-
ing the pairwise ST partial orders between the components
{ci}ni=1 and c1.

The probability that c is generated by γw is

p(c|γw) = 1

Zγw

q(c|γw) (24)

where

q(c|γw) = 1

n

n∑

j=1

δ
(
scj

, sγw,j

)

× δ
(
wcj

,wγw,j

) · δ(id(cj ), idγw,j

)
(25)

computes the confidence score. sγw , wγw and idγw are the
rule’s canonical settings of the component relation parame-
ters. Z(γw) = ∑

c q(c|γw) is the normalization term.

3.4.3 The Stochastic Rules

A stochastic rule γst assumes that its components are order-
less but co-occur in its rule instances. When configuration c
is an instantiation of a stochastic rule, its component relation
parameter set is

Θ(c) = {sc, idc} (26)

where sc and idc have the same meaning as defined in both
the strong and the weak rules.

The constraint equations of the stochastic rule are

sc = fsγst

(
s(c1), . . . , s(cn)

)
(27)

idc = [
id(c1), . . . , id(cn)

]T (28)

s(c) = s(c1) (29)

u(c) = u(c1) (30)

rt(c) = stochastic (31)

These equations are the same as those in the strong and weak
rules.

The probability that c is generated by γst is

p(c|γst ) = 1

Zγst

q(c|γst ) (32)

where the confidence term q(c|γst ) is

q(c|γst ) = 1

n

n∑

j=1

δ
(
scj

, sγst ,j

) · δ(id(cj ), idγst ,j

)
(33)

sγst and idγst are the rule’s canonical settings of the compo-
nent relation parameters. The normalization term Z(γst ) is
computed as Z(γst ) = ∑

C q(c|γst ).
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Fig. 5 The relation of the configuration spaces governed by the three
types of production rules. The stricter the type of rules are, the more
constrained of the configuration space is

3.4.4 Discussion about Three Types of Rules

Figure 5 shows the relation of the three types of grammar
rules. From the stochastic rules to the weak rules and to the
strong rules, they constrain the ST-relation of a configura-
tion components in an increasing order of strictness. The
stochastic rules provide the least structure information of a
configuration; so the configurations under this type of rules
span the largest configuration space. Whereas, the strong
rules use the most strict constraints to confine the config-
uration space, and they govern the smallest configuration
space. Note that, if a configuration has a high probability of
being interpreted by a strong rule, it also can be explained
by a weak/stochastic rule. However, without adding more
specific constraints, some action types are hard to tell from
each other. For instance, for ‘walking’ and ‘running’, al-
though using some stochastic rules is easy to differentiate
the two actions from the other types (e.g. drinking), in order
to differentiate between these two similar actions we have to
further specify/constrain the spatiotemporal relation of their
action components. Thus, in principle we adopt two parame-
ters in the relation pursuit (rule learning) process (Sect. 4.1),
the support ratio and growth ratio, to learn the production
rules. A relation is picked only according to its discrimina-
tive power derived from the two parameters. For a config-
uration, when multiple relations pass the threshold simul-
taneously, we select the one with the maximum likelihood
to explain it. In this way, we exploit the rules’ descriptive
power as well as their discriminative power in recognizing
actions. The detailed learning and recognition methods are
introduced as follows.

4 Learning and Recognition

In this section, we present methods of learning the action
grammar models and recognizing actions using the learned
models.

Fig. 6 Samples of ST interest points from six clusters of the KTH
human action dataset (Schuldt et al. 2004) detected by Laptev STIP
detector. Each ST interest point is represented by its center patch in the
ST volume

4.1 Learning the Layered Grammar Rules

We adopt a weakly supervised learning scheme to learn the
production rules from action videos layer by layer. Here
“weakly supervised” means that we only tag the training
videos with the action types, but neither bounding-box nor
align the actions. We first build the STIP-maps of the train-
ing videos as follows: (1) We detect ST interest points from
all the training videos using the method in Laptev and Lin-
deberg (2003) or Dollár et al. (2005) at multiple spatiotem-
poral scales. (2) These interest points are clustered into a
pre-defined number of clusters according to their appear-
ance feature vectors. The features are extracted from the
spatiotemporal cuboids centered at these STIPs. Then, the
ST interest points in the STIP-maps are represented by their
locations, scales, and indices of the clusters they belong
to. Examples of the ST interest point clusters are shown in
Fig. 6. It can be seen that the extracted interest points cap-
ture the local motion and appearance changes of the video
sequences. (3) We discover a set of production rules that
generate the configurations on the STIP-maps. These rules
form the Layer-1 rule-map of the model. Consequently, we
learn a set of ‘super rules’ from the Layer-1 rule maps and
they form the Layer-2 rule maps. This process iterates un-
til there is no rule can be discovered or the layer number
reaches a preset value.

Because the model is learned for action recognition, we
want to mine production rules that are discriminative be-
tween action classes. Because the learned models are rep-
resentations for each class, the rules for one action class
should have high occurrence frequency in the videos of that
class, but rarely appear in the others. Moreover, since there
are a large number of ST interest points distributed in ac-
tion videos (about 400 interest points in a 120 frame sim-
ple background 180 × 120 resolution action video in KTH
dataset), an efficient rule discovering algorithm is required
to explore such a large configuration space. A recently de-
veloped data mining technique, Emerging Pattern (EP) min-
ing, is quite suitable for this demanding task.
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4.1.1 Emerging Pattern (EP) Mining

In this section, we briefly introduce the Emerging Pattern
mining method (Dong and Li 2004), and present how to ap-
ply it in our framework to mine production rules. Intuitively,
EP mining finds the itemsets whose support ratios vary a lot
from one dataset to another. We follow the notation in (Dong
and Li 2004) to introduce the mathematical definition of EP
mining. Let I = {i1, i2, . . . , iN } be a set of N items. A trans-
action is a subset T of I . A dataset D is a set of transactions.
A subset X is called a k-itemset if k = ‖X‖. If X ⊆ T , we
say the transaction T contains the itemset X. The support of
an itemset X in a dataset D is defined as εD(X) = countD(X)

‖D‖ ,
where countD(X) is the number of transactions in D con-
taining X. Given an itemset X and a pair of datasets D1 and
D2, the growth rate of an itemset X from D1 to D2 is com-
puted as

ρ(X) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if εD1(X) = 0 and εD2(X) = 0

∞, if εD1(X) = 0 and εD2(X) �= 0
εD2 (X)

εD1 (X)
, otherwise

A pattern is said to be a ν-emerging pattern from D1 to D2

if ρ(X) > ν. Different from frequent itemset mining tech-
niques like Apriori (Agrawal and Srikant 1994), EP mining
is more interested in itemset’s degree of changes in support.
Recently, it has been used to build classifiers, and accord-
ing to Dong et al. (1999), Alhammady and Ramamohanarao
(2006), it performs very well in many classification tasks.

We use EP mining in this project as follows: (1) At each
layer, a large number of local neighbor sets are randomly
sampled from both the positive and negative datasets. The
positive dataset contains the video sequences of the to-be-
modeled action type, whereas the negative dataset consists
of video clips belonging to other types of actions. The com-
ponents of a local neighbor set can be either the ST interest
points at Layer-0 or rule instances at higher layers. Each lo-
cal neighbor set is transformed to a transaction (an itemset)
using a quantization method. (2) Then, we mine production
rules as emerging patterns from the negative transactions to
the positive transactions using EP mining. We define two
parameters in mining emerging patterns, i.e. the support in
positive samples and the growth ratio. The support parame-
ter describes the descriptive power of the mined rules of the
positive data, whereas the growth ratio describes the dis-
criminative power of the mined rules.

4.1.2 Mining Production Rules by Relation Pursuit

To pursue the layered grammar rules, we first construct
STIP-maps of training action videos using the methods in-
troduced at the beginning of Sect. 4.1. Then, we mine pro-
duction rules by the relation pursuit utilizing EP mining al-
gorithm layer by layer.

To mine production rules at Layer-i, we sample a big
number of local neighbor sets from the ith layer of all the
training videos (STIP-maps for i = 0, rule-maps for i > 0).
Each local neighbor set is composed of a number of compo-
nents within a local spatiotemporal range. The ST range is
determined such that each local neighbor set contains at least
12 components. An example of a local neighbor set is shown
in Fig. 7, where the central component is pt1 and pt2–pt12
are its 11 nearest-neighbors. As EP mining only deals with
numerical itemsets as inputs, an important issue of rule min-
ing is to turn each local neighbor set into a digital itemset.
Because there are three types of ST-relations for the compo-
nents, we design three corresponding quantization methods
to transform each component of a local neighbor set into a
digital item according to its attributes (scale, ST location, la-
bel, etc.) and their ST-relation with the central component.
The three different quantization methods are introduced as
follows.

For the strong rules, a local neighbor set is equally di-
vided into a 5 × 5 × 5 grid in spatiotemporal domain.
Fig. 7(a) shows a slice of the grid of a local neighbor set
at t = 2. Each component within the local neighbor set is
assigned a vector, of which the digits are the component’s
label index (the cluster index of a interest point or the in-
dex of a production rule), the quantized ST distance to the
central component pt1, the relative scale w.r.t. pt1, and the
duplication index. Figure 7(a) illustrates how to compute the
vectors for the components. For instance, pt5’s label index
is 1, its position in the grid is (0,3,2) (where the upper-left
cell’s coordinate is (0,0,2)), and its relative ST scale w.r.t.
pt1 is (1,1.3,1.3), which is the 7th relative scale (please see
the figure caption for detailed explanation). Because there is
no other component possessing the same attributes as pt5, its
duplicate index is 0. Thus, by concatenating these digits, the
vector for pt5 is (103270). The duplicate index is used to
differentiate the components with the same preceding dig-
its in the vector. For example, pt8 and pt9 are in the same
cell, and they share the same scale and label index. Their
duplicate indices are set to 0 and 1 respectively. Note that
the order of the duplicate index does not matter and can be
assigned randomly to the components.

For the weak rule, the ST-relation between pt2–12 and
pt1 is defined by their ST partial order in terms of Allen
algebra (Allen and Ferguson 1994). The definition of the
ST partial order between two components is introduced in
Sect. 3.4.2. Figure 7(b) shows how to compute the weak re-
lation itemsets for mining weak production rules. Taking pt6
as an example, its label is 7, the weak relation vector w.r.t.
pt1 is (0,0,1) (i.e. left(pt6, pt1) = true in x-dimension,
below(pt6, pt1) = true in y-dimension, and overlapt (pt6,
pt1) = true in t-dimension), its relative scale index w.r.t.
pt1 is 3, and its duplicate index is 0. Thus, pt6’s vector is
(700130).
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Fig. 7 An illustration of how to transform a twelve-component local
neighbor set into an itemset for the strong relation, the weak relation
and the stochastic relation. Each yellow ball represents a component
(an ST interest point at Layer-0 or a configuration at Layer-i (i > 0)).
The number at the center of each ball denotes its label. The top row
lists every component’s actual scale and location vectors. The 2nd row
lists the nine distinct relative scales. In this configuration, there are

totally four types of actual scales, [2,2,2]T , [3,3,2]T , [4,4,2]T and
[6,6,2]T . The relative scales are at most P 2

4 = 3 × 4 = 12. Removing
the redundant ones, there are nine distinct relative scales. (a) For the
strong rules, the grid model is used to turn the local neighbor set into a
numerical itemset. (b) The method to generate numerical itemsets for
the weak rule. (c) The method to generate numerical itemsets for the
stochastic rule

For the stochastic rule, the vector for each component is
simply determined by its label index, the relative scale w.r.t.
pt1 and the duplicate index. The method to compute the nu-
merical items for pt1–pt12 is shown in Fig. 7(c).

Using the above methods, each local neighbor set is
transformed into three itemsets corresponding to the three
different types of rules (as shown in the bottom of Fig. 7).
Then, for each rule type, we apply EP mining to the item-
sets from the negative class to the positive class to obtain a
set of emerging patterns. These emerging patterns are sub-
sequently converted to the production rules. The canonical
terms of the production rules, sγ{s,w,st} , uγs , idγ{s,w,st} and
wγw in (14), (24), and (32), are obtained by the inverse
process of the quantization methods introduced above. That
is, the quantization methods encode the components of a lo-
cal neighbor set into digits; to compute the canonical terms,
we decode the digits of the EPs back to their configuration
space. All the production rules (irrespective of the types or
the action classes) are collected together as the production
rule set for the current layer.

To learn the hierarchy of the layered grammar rules, the
relation pursuit procedure iterates layer by layer until no
rules can be mined, or a preset threshold of the maximum
number of layers is reached. As a result, the rules at a higher
layer capture a larger structure of actions in space and time.
This is one advantage of the proposed method compared
with most of the conventional action models.

4.2 Constructing a Parse Tree For an Action Class

We adopt a bottom-up multi-hypothesis rule detection step
followed by a top-down ambiguous rule pruning step to
build the action parse tree for an action class of an input
video sequence.

Because the learned production rules are probabilistic
and have overlap in themselves, a local configuration can be
interpreted by a number of rules in a layer. In the bottom-up
multi-hypothesis rule detection step, at each layer, for each
local configuration, we find a number of rules that explain it
with likelihood larger than a threshold. These explanations
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are kept as candidate instantiations of the production rules
for the final parse tree. Then, we introduce the top-down
step to remove the ambiguous rule instances and noise layer
by layer.

The other side of removing redundant rule instances
from a parse tree is to select a maximum subset of the
rule instances that have the maximum class differentiation
power, but their descendant components do not overlap
with each other, i.e. one configuration is interpreted by a
single rule. This problem can be formulated as quadratic
Boolean optimization problem (Leonardis et al. 1995) as fol-
lows.

Let m be the number of the over-complete rule instances.
Q is an m × m matrix encompassing the overlap of rule in-
stances as follows:

Q(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τi(c), if i = j

−∞, if rule instance i and j

overlap in their descendants

0, otherwise

where τi(c) is the discriminative score of c explained by γi

(to be introduced in the following paragraphs). Let ς denote
an indicator vector, where if rule i is selected, ς(i) = 1; oth-
erwise, ς(i) = 0.

The maximum subset of rules selection for a layer of a
parse tree can be achieved by finding the optimal set of ς

for the following quadratic Boolean optimization problem

ς∗ = arg max
ς

ςT Qς (34)

We adopt the method introduced in Leibe et al. (2008) to
solve this optimization problem. Please refer to Leibe et al.
(2008) for details. The algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Algorithm of ambiguous rule pruning

ς ← (0,0, . . . ,0)T Repeat the following steps

1. For each element ςi of ς that equals to 0
ς̃ ← ς , ς̃i ← 1
Si ← ς̃T Qς̃ − ςT Qς

2. k ← arg maxi Si

3. if Sk > 0, ςk ← 1; Otherwise, algorithm end.

Output ς .

The Discriminative Score τ(c) According to Dong et al.
(1999), the discriminative score τ(e) of an emerging pat-
tern e is computed as

τ(e) =
(

ρe

ρe + 1
· εe

)
(35)

where ρe and εe are the growth ratio and support ratio of e.
However, unlike the deterministic itemsets in Dong et al.
(1999), here the configurations are generated by production
rules probabilistically, so we weight the discriminative score
with a posterior probability p(γ |c), where c is the configu-
ration and γ is the interpreting rule. Then the discriminative
score of c is

τγ (c) =
(

ργ

ργ + 1
· εγ

)
· p(γ |c) (36)

where p(γ |c) ∝ p(γ ) · p(c|γ ). p(γ ) is the prior defined in
(6) and p(c|γ ) is the likelihood defined in (14), (24), and
(32). ργ and εγ are the support ratio and growth ratio of
the production rule γ respectively. They are automatically
determined by the EP mining algorithm.

This top-down step iterates from the top layer to the bot-
tom to prune the redundant rules from a parse tree. The rule
instances that have no ancestor nodes are directly linked to
the root node. Figure 2 shows an example of a parse tree for
a walking sequence. The top-down step results in a compact
parse tree for an action video. By comparing Fig. 2(a4) with
(b), it can be seen that the noisy rule instances (e.g. those
from background) are removed such that the signal-to-noise
ratio is improved.

In the following section, we introduce the action classi-
fier training and recognition method based on obtained parse
trees.

4.3 Recognizing Actions

Base on a parse tree representation, a conventional way to
compute the action class label L of an input video O is

L∗ = arg max
L

p(L|O) = arg max
L

∑

pt

p(L,pt|O)

∝ arg max
L

∑

pt

p(O|pt) · p(pt, L), (37)

which means we need to sum over all possible parse trees.
This is computationally intractable. Additionally, in this
project the production rules are mined/learned from the dis-
criminative configurations of different classes of actions for
the purpose of action recognition. Thus, the learned parse
trees are not fully generative, they only contain discrimina-
tive action component structures. It is not appropriated to
evaluate action videos in a pure generative manner. There-
fore, we propose a method that leverages the grammatical
representation’s strong expressive power and the discrimina-
tive model’s potent differentiation power and computational
efficiency to recognize actions. The details of the recogni-
tion method are introduced as follows.

The recognition model exploits the hierarchical structure
of an action parse tree. The production rules at different lay-
ers of a parse tree represent discriminative action structures
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(features) at different spatiotemporal scales. At each layer,
a discriminative score for each action class is derived from
the production rules of that layer. These scores should be
weighted differently in recognizing actions because differ-
ent compositional structures at different scales have differ-
ent discriminative powers. Consequently, we adopt a meta-
learning strategy (Vilalta and Drissi 2002) to combine the
discriminative power at each layer of the parse tree to recog-
nize actions. More specifically, the discriminative scores de-
rived from the production rules at each layer of a parse tree
is considered as base-learners, and we adopt a logistic re-
gression model as the meta-learner to combine the base-
learners. Thus, based on a parse tree of an action type L
built from a video O , the probability of the action belonging
to L is

yL(O) = 1

1 + exp(−∑L
l=0 ωL

l · τ(hl

ptL
O

))
(38)

where τ(hl

ptL
O

) is the total discriminative score of Layer-l of

the parse tree, and ωL
l is the regression coefficient.

When l > 0, τ(hl

ptL
O

) is computed by

τ
(
hl

ptL
O

) =
∑

i

τ (γ l

i,ptL
O

) (39)

where γ l

i,ptL
O

is the rule instance corresponding to the ith

production rule at Layer-l of the parse tree. The discrimina-
tive score of a production rule is computed using (36).

τ(h0
ptL

O

) returns the discriminative score of the STIP-map

layer output by a SVM classifier. For each action class L,
we train a SVM classifier on the occurrence histograms of
the ST interest point in the training videos, and use the SVM
classifier output probability as the discriminative score.

The regression coefficients {ωL
l }Ll=0 are learned with la-

beled data, i.e. we set yL(O) = 1, if O contains an action of
type L; Otherwise, yL(O) = 0. The best-fit coefficient set is
computed by the Newton-Raphson method.

Finally, the class label of the action in an input video is
determined by

L∗ = arg max
L

yL(O). (40)

5 Experiment Results

To test the proposed approach, we do extensive experiments
on three public datasets, the KTH human action dataset
(Schuldt et al. 2004), the Hollywood human action (HOHA)
dataset (Laptev et al. 2008), and the UCF Sport action
dataset (Rodriguez et al. 2008). The proposed method aims
to discover high-order statistics of the low-level features by

mining hierarchical feature compositions for the purpose of
action recognition. The existing bag-of-words method can
be seen as the base layer of the proposed approach. In the
experiments, we show that by generally adding high-order
compositional features, the recognition performance can be
largely improved. Therefore, we compare with the baseline
approaches Schuldt et al. (2004) and Dollár et al. (2005) by
adopting their own features into our framework. The two
baseline methods use SVM (Schuldt et al. 2004 and Dollár
et al. 2005) and KNN (Dollár et al. 2005) to classify actions.
As observed from Dollár et al. (2005), the results by SVM
classifier are slightly better than those using KNN classifier.
Hence, we adopt the SVM classifier with χ2-kernel (Laptev
et al. 2008) in both the baseline methods for implementation
convenience. The χ2-kernel is defined as

K(Hi,Hj ) = exp

(
− 1

A

∑

k

(Hi,k − Hj,k)
2

Hi,k + Hj,k

)
(41)

where Hi and Hj are two feature vectors, Hi,k and Hj,k

are the kth entry of the two feature vectors. A is the mean
value of pairwise χ2-distances between all training feature
vectors. In the remaining of this section, we first introduce
the ST features used in our experiment, followed by a study
of the action recognition performance on the three action
datasets. Then, we present the quantitative evaluations of
the parameters used in our approach. At last, the compu-
tational complexity and some extensions of the action gram-
mar model are shown.

5.1 Spatiotemporal Interest Points

In our experiments, we adopt two types of popular spa-
tiotemporal interest point detectors, Dollár’s periodical point
detector (Dollár et al. 2005) and Laptev’s ST corner detector
(Schuldt et al. 2004), to construct the STIP-maps of the ac-
tion videos. In our experiments, we use their STIP detectors
released online.1, 2

The periodical point detector extracts ST interest point
features at four spatial scales (σ = 2,4,6,8) and two tempo-
ral scales (ν = 4,8). And the ST corner detector extracts fea-
tures at six spatial scales (σ = 4,8,16,32,64,128) and two
temporal scales (ν = 2,4). We utilize the K-means method
to cluster the extracted feature vectors into 4000 clusters.

5.2 Experiments on Action Recognition

In this section, we study the action recognition performance
of the proposed model on the three datasets.

1http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html.
2http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip.

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
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Fig. 8 Sample frames of (a) the KTH human motion dataset. (b) The INRIA Hollywood human action dataset. (c) The UCF Sport action dataset

Fig. 9 Experiment results on
the KTH dataset. The left is the
confusion matrix of the
recognition results by our
approach based on Dollár’s
method (Dollár et al. 2005). The
right figure compares the
recognition accuracies of our
method and Dollár’s method for
each action type

Fig. 10 Experiment results on
the KTH dataset. The left is the
confusion matrix of the
recognition results by our
approach based on Laptev’s
method (Schuldt et al. 2004).
The right figure compares the
recognition accuracies of our
method and Laptev’s method for
each action type

5.2.1 Results on the KTH Human Action dataset

The KTH human action dataset contains twenty-five people
performing six types of actions, “boxing”, “waving”, “hand-
clapping”, “jogging”, “running” and “walking”. For each
person the actions were captured under four different en-
vironments with variations in scales, illuminations and cam-
era motions, but all the videos were shot with simple back-
grounds. Each type of actions contains about 96–99 avail-
able sequences. Some examples of the dataset are shown in
Fig. 8(a).

In the experiment, we use the cross-validation scheme to
train the models and test their performance. The video se-
quences are divided w.r.t the subjects into a training set and

a testing set. In our experiment, each time, we randomly se-
lect 16 people’ video sequences from each action type as the
training set and use the rest 9 people’ videos for testing. The
height of the parse tree is set to 4. Twenty rounds of cross
validation are performed and the average testing accuracy is
shown in Figs. 9 and 10. In both figures, the left figure shows
the action recognition confusion matrix of our approach,
and the right one compares the recognition accuracy of the
proposed approach with one of the baseline approaches.
As can be seen, using Dollár’s interest point detector and
compared with Dollár’s approach (Dollár et al. 2005), our
approach increases the average recognition accuracy from
88.2% to 92.5%. Using the Laptev ST corner detector and
compared with Laptev’s approach (Schuldt et al. 2004), the
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Table 2 Comparison of action recognition accuracies between different approaches on the three datasets

Method Feature type Recognition method Accuracy (%)

KTH HOHA UCF

Dollár et al. (2005) Periodical STIP SVM 88.2 18.6 56.4

Niebles et al. (2008) Periodical STIP LDA 81.5 – –

Nowozin et al. (2007) Periodical STIP Subsequence boosting 84.7 – –

Liu et al. (2009) PMI-based periodical STIP SVM 92.3 – –

Schuldt et al. (2004) 3D Harris STIP SVM 52.2 19.5 46.7

Laptev et al. (2008) 3D Harris STIP SVM 91.8 38.4 –

Wong et al. (Wong and Cipolla 2007) STIP detected by NNMF SVM 80.1 – –

Rapantzikos et al. (2009) Saliency-based STIP KNN 88.3 33.6 –

Rodriguez et al. (2008) Action MACH filters Template matching 88.7 – 69.1

Yao et al. (Yao and Zhu 2009) Gabor filters, optical flow Template matching 87.8 – –

Wang et al. (Wang and Mori 2009) Optical flow MMHCRF 92.5 – –

Schindler et al. (Schindler and Gool 2008) Gabor filters, optical flow SVM 90.9 – –

Sun et al. (2009) SIFT-based trajectory Multi-kernel SVM – 47.1 –

Our method STIP Aggregated emerging 92.5 39.5 68.3

pattern score

average recognition accuracy increases about 20.5%. The
results confirm that our approach enhances the performance
of the bag-of-video-words methods significantly. However,
it can be seen that the misclassification rates between the
pair of “hand-clapping” and “hand-waving”, and the triple
of “walking”, “jogging” and “running” are still high because
of their similarity. It is encouraging that by mining emerging
patterns between them, we still get considerable improve-
ment over the baseline approaches.

We also list the action recognition performances of many
state-of-the-art methods in Table 2, where the results in the
table are copied from their papers except Dollár’s method
(Dollár et al. 2005) and Schuldt’s method (Schuldt et al.
2004) which are implemented by ourselves. Note that some
methods use different representations and different classifi-
cation engines. For example, the method in Liu et al. (2009)
characterizes STIPs using MMI features and clusters the
STIPs by exploring the local geometric structure of STIP
feature manifold. Niebles and Li (Niebles et al. 2008) clus-
ter the STIPs using the latent topic model. These clustering
approaches associate the STIP clusters with semantic (action
type) information. However, such information is not used in
the interest point clustering step of the proposed method.
Also, some methods use other types of representations, e.g.
the methods in Yao and Zhu (2009) and Rodriguez et al.
(2008) use action templates trained from annotated action
videos for action detection. Wang and Mori (2009) adopt op-
tical flow patches to represent actions, and these patches are
sampled from the tracked human body. The method by Sun
et al. (2009) utilize SIFT-based trajectories as the basic fea-
tures. On the contrary, the proposed approach requests nei-

ther tracking, nor elaborated annotation in the training data.
But, as Table 2 shows, our method still achieves a compara-
ble performance to the other existing approaches.

5.2.2 Results on Hollywood Human Action (HOHA)
Dataset

The Hollywood Human Action dataset (Laptev et al. 2008)
is collected from thirty-two movies, e.g. “American Beauty”,
“Big Fish”, “Forest Gump”. It contains eight types of ac-
tions, “AnswerPhone”, “GetOutCar”, “HandShake”, “Hug-
Person”, “Kiss”, “SitDown”, “SitUp”, and “StandUp”.
Some sample frames are show in Fig. 8(b). The dataset pro-
vides two types of annotations, the “automatic annotation”
and the “clean annotation”. The “automatic annotation” la-
bels the clips using the scripts of the movie and the “clean
annotation” labels the clips manually. In the experiments,
we use data from the “clean annotation”, which contains
228 training clips and 225 testing clips (we remove some
short clips less than 5 frames). The layer number of the ac-
tion grammar model is set to 4. The recognition results are
shown in Figs. 11 and 12. The average recognition accura-
cies of the baseline methods using Dollár’s and Laptev’s ST
interest point detector are 18.6% and 19.5% respectively.
Using the corresponding types of interest points, the aver-
age recognition accuracies of the proposed approach are im-
proved to 37.6% and 30.0% respectively.

5.2.3 Results on UCF Sport Action Dataset

The UCF sport action dataset (Rodriguez et al. 2008) is
collected from broadcast television channels such as the
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Fig. 11 Experiment results on
the INRIA Hollywood human
action dataset. The left is the
confusion matrix of the
recognition results by our
approach based on Dollár’s
method (Dollár et al. 2005). The
right figure compares the
recognition accuracies of our
method and Dollár’s method for
each action type

Fig. 12 Experiment results on
the INRIA Hollywood human
action dataset. The left is the
confusion matrix of the
recognition results by our
approach based on Laptev’s
method (Schuldt et al. 2004).
The right figure compares the
recognition accuracies of our
method and Laptev’s method for
each action type

Fig. 13 Experiment results on
the UCF sport action dataset.
The left is the confusion matrix
of the recognition results by our
approach based on Dollár’s
method (Dollár et al. 2005). The
right figure compares the
recognition accuracies of our
method and Dollár’s method for
each action type

Fig. 14 Experiment results on
the UCF sport action dataset.
The left is the confusion matrix
of the recognition results by our
approach based on Laptev’s
method (Schuldt et al. 2004).
The right figure compares the
recognition accuracies of our
method and Laptev’s method for
each action type
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BBC and ESPN. The dataset contains 150 video sequences
covering nine types of actions including “diving”, “golf
swinging”, “kicking”, “lifting”, “horseback riding”, “run-
ning”, “skating”, “swinging”, and “walking”. These videos
exhibit large variations in illumination, backgrounds, scales

Table 3 Average recognition accuracy changes with the variations of
the layer number of the proposed hierarchical action grammar model.
(Layer number = 1 corresponding to the baseline method.) The ex-
periments are conducted on the three datasets based on Dollár’s STIP
detector

Dataset Layer numbers

1 2 3 4

KTH 0.882 0.897 0.919 0.925

HOHA 0.186 0.266 0.328 0.376

UCF 0.564 0.623 0.654 0.683

Fig. 16 Comparison of recognition accuracies under different combi-
nations of production rule types used in our method. The interest points
are detected using Dollár’s STIP detector

and viewpoints. Some examples of the dataset are shown in
Fig. 8(c).

Table 4 Distributions of the three types of production rules in the
learned rule set and parse trees of the KTH and HOHA datasets

Dataset Strong Weak Stochastic

relation relation relation

KTH In learned 1% 2% 97%

rule set

In parse tree 12% 8% 80%

HOHA In learned 3% 3% 94%

rule set

Parse tree 18% 15% 67%

Fig. 17 Comparison of recognition accuracies with different numbers
of STIP clusters. The interest points are detected using Dollár’s STIP
detector

Fig. 15 ROC curves illustrating the action recognition performance
change with different number of layers. The ROC curves are obtained
by thresholding on the action probability defined in (38), and are plot-

ted for action ‘jogging’ (in KTH dataset) in (b). Its zoomed-in version
is shown in (a)
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The number of videos in this dataset is very limited.
There are only about fourteen sequences for each action.
Each video sequence contains about 90 frames. So we
use a 3-Nearest-Neighbor classifier to recognize actions
in the baseline methods. The distance measure between
feature vectors is χ2 distance. And we cluster the STIPs
into 200 clusters which gives the best result in our ex-
periments. We use the cross-validation method to train the
models and test their performance. Each time, for each ac-
tion we leave one sequence out for testing and use the rest
for training. Twenty rounds of cross-validations are per-
formed, and the average testing results are shown in Figs. 13
and 14. It can be seen that our method outperforms the
baseline approaches in most cases. Using Dollár’s interest
point detector, the average recognition accuracy of the cor-
responding baseline approach is 56.4%, and the proposed

method’s is 68.3%. Using Laptev’s ST corner detector, the
average recognition accuracies of the corresponding base-
line method and our method are 46.7% and 59.4% respec-
tively.

5.3 Evaluation of Model Parameters

In this section, we study the performance variation under
different parameter settings of the action model.

The Number of Layers We do experiments on different
layer numbers of the action parse tree to demonstrate its
influence on the recognition performance. The results are
shown in Table 3 and Fig. 15. In Fig. 15, we show the
ROC curve changes for the action ‘jogging’ in KTH dataset.
(The other actions exhibit similar results.) It can be seen

Fig. 18 Computed parse trees of the actions “boxing” and “walking”
from KTH dataset. Each node-splitting corresponds to a production
rule. The cyan circles represent the centers of the components and their

sizes correspond to the scales of the components. (i)–(v) show the at-
tributes of some production rules including their rule types, support
rates, growth ratios and discriminative scores
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Fig. 19 Computed parse trees of the actions “AnswerPhone” and
“GetOutCar” from HOHA dataset. Each node-splitting corresponds to
a production rule. The cyan circles represent the centers of the compo-

nents. (i)–(iv) show the attributes of some production rules including
their rule types, support rates, growth ratios and discriminative scores

that as the layer number increases, both the average recog-
nition accuracy and the ROC curves improve. This is mainly
because that configurations at a higher layer correspond
to action structures at a larger scale, which are more dis-
criminative than the lower ones. However, the parse tree
layer number cannot increase without limitation. This is be-
cause up to certain level there exist no more common con-
figurations among the same type of action instances. As
a result, we cannot summarize/mine any more production
rules.

The Number of Rule Types In Fig. 16 the experimental re-
sult shows that using all the three types of rules, the action
recognition accuracy outperforms the one only using a sin-
gle type of rules. In Table 4 we also list the occurrence pro-
portions of rules of different relation types in the learned

rule sets and the parse trees of the training videos. It can
be seen that, in the production rule learning phase, most of
the learned rules are stochastic rules. However, when build-
ing the action parse trees, the portions of strong rule and
weak rule increase significantly. This is largely because the
rules with more constraints usually have higher discrimina-
tive scores computed by (36), so more of them are kept in the
top-down ambiguous rule pruning step when building parse
trees.

The Number of STIP Clusters As shown in Fig. 17, the re-
sults on KTH Dataset demonstrate that for different numbers
of the interest point clusters, the average recognition accu-
racies do not vary too much, i.e. our method is robust to the
variation of the number of interest point clusters.
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Table 5 The numbers of production rules at each layer of the parses
trees in Figs. 18 and 19

Action type Layer-0 Layer-1 Layer-2 Layer-3

Boxing 145 48 10 2

Walking 133 42 5 0

AnswerPhone 2118 717 113 33

GetOutCar 632 203 12 3

Table 6 Distributions of the three types of production rules learned to
differentiate the action pairs “boxing” vs. “walking” and “walking” vs.
“running”

Action types Strong Weak Stochastic

rule rule rule

Boxing vs. walking 0% 0% 100%

Running vs. walking 17% 12% 61%

5.4 Analysis of the Action Parse Trees

Figure 18 and 19 show the constructed parse trees of ac-
tion instances of “Boxing”, “Walking”, “AnswerPhone”
and “GetOutCar” from the KTH human action dataset and
HOHA dataset. Since the full-size parse trees are too big
to fit in the page with a satisfied resolution, we only show
part of them. The numbers of production rules in each layer
of the parse trees are shown in Table 5. When the layer
number becomes higher, the number of detected rule in-
stances decreases. Note that sometimes if an action appears
in the video very shortly or its action style (or similar view-
point) is not contained in the training data, our method will
not build a full-size action parse tree. Figure 18(b) shows
an example without Layer-3. We also show some rule at-
tributes in Figs. 18 and 19, including their layer numbers,
support/growth ratios and discriminative scores. From these
highlighted rule instances, we can see that the mined pro-
duction rules capture some meaningful configurations of the
actions.

To further demonstrate the importance/necessity of iden-
tifying the three types of rules, we learn production rules
from action pairs, “boxing” vs. “walking” and “walking” vs.
“running”. The training set contains only these related types
of action videos from the KTH dataset. Table 6 shows the
proportions of the three types of production rules used in
constructing the parse trees. It is interesting to observe that
for action pair “boxing” vs. “walking”, only using stochas-
tic rules is enough to differentiate them, as the two actions
are quite different from each other. Whereas, for the action
pair “walking” vs. “running”, since they are similar in action
components, production rules with more ST constraints are
automatically mined to differentiate them.

Fig. 20 Identified production rules and their corresponding semantic
structures

5.5 Results Beyond Recognition

To illustrate the competence of the proposed grammar
model, besides recognition, we also apply it to the semantic
structure discovery and foreground localization.

Semantic Structure Discovery In this experiment, we high-
light the rule instances of parse trees occurred in action
videos and discover the semantic information they convey
of the actions. Figure 20 shows some identified typical pro-
duction rule instances and their associated semantic labels,
e.g. body parts and view points.

Foreground Localization We also use the action parse tree
to localize the foreground object. The reason behind is that
after the top-down pruning of the parse trees, the rule in-
stances left are mostly related to the motion of the fore-
ground objects. In Fig. 21, at each frame, we use a rectangle
to enclose all the leaf nodes (the ST interest points) of an
action parse tree. It can be seen that the bounding boxes of
the leaf nodes well localize the foreground objects.

5.6 Computational Expense

Our experiment is conducted on an Intel Core2 Duo
3.20 GHz CPU, 3.0G RAM PC, Windows XP system. The
code is implemented in C++ using Visual Studio 2005. Ta-
ble 7 lists the computational expense for production rule
learning and recognition on the three datasets. Because the
three datasets contain different numbers of video sequences,
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Fig. 21 Localize the
foreground objects using the
STIPs associated with the leaf
nodes (represented as cyan
circles) of the video’s action
parse trees. Note that the cyan
circles are shown with the same
size ignoring their
corresponding STIPs’ scales to
better illustrate their locations.
(a), (b) are video frames from
KTH dataset. (c), (d), (e) are
video frames from UCF sport
action dataset

Table 7 Computational expense of production rule learning and
recognition on the three datasets

Dataset Frame The number of Learning Recognition

number interest point time time

KTH 24–251 17–708 40 min 3 sec

UCF 50–110 100–900 30 min 3 sec

INRIA 14–880 10–20620 55 min 10 sec

and even the video sequences from the same action type
exhibit large variations, the learning and recognition times
differ largely, and we report the average computation time
here. The interest points are detected by Laptev’s detector.

6 Conclusion and Future Work

This paper proposes a layered-grammar model to represent
actions for recognition. Given the fact that actions are com-
positional, we identified three major action styles which are
characterized by different rigidities in organizing the action
components. The three action styles are encoded into a uni-
fied representation in a form of attributed grammar rules. We
propose the relation pursuit to learn grammar rules from ac-
tion videos. The learned rules are statistically significant and
discriminative. Because it can be computationally expensive
to build a global optimal parse tree that maximizes the pos-
terior probability in (37), instead, we take an alternative ap-
proach to constructing action parse trees by combining a
bottom-up multi-hypothesis rule detection step and a top-
down ambiguous rule pruning step. Although this tree con-
struction method maximizes the total discriminative scores

of action parse trees by selecting non-overlapping hierarchi-
cal discriminative structures at the tree construction proce-
dure, it does not generate the global optimal generative parse
trees that maximize (37). The resulting parse trees are com-
pact and capable of identifying the discriminative structures
of the actions. Based on the parse tree representation, we de-
sign a discriminative action recognition method which are
comparable to existing method.

In the future, we shall investigate the following issues
based on the proposed framework. (1) The current proposed
approach uses ST interest points as the bottom layer repre-
sentation. We shall investigate other types of low level fea-
tures, e.g. the feature introduced in Ke et al. (2005), Yao
and Zhu (2009), and test their influence on the final recog-
nition results. (2) We shall study more complex scenarios,
e.g. complex actions and multi-action interactions so as to
extend our model from action recognition to long-temporal-
range event analysis.
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