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Data-Driven Lightweight Interest Point Selection
for Large-Scale Visual Search
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Abstract—With the explosive increase of images and videos,
visual analysis has become an essential technique in dealing with
the big visual data, which utilizes the visual feature descriptors
to search or recognize the images or frames with target objects
or events. Subject to the constraints of resources (e.g., memory,
bandwidth, storage, etc.), interest point selection is crucial to
generate robust compact descriptors for high-efficiency visual
analysis by selecting and aggregating the most discriminative
local feature descriptors, which has been demonstrated in the
state-of-the-art low bit rate visual search works. In this paper,
we propose a data-driven lightweight interest point selection
approach to significantly improve the performance of visual
search, while ameliorating the efficiency of extracting feature
descriptors. Comprehensive experimental results over benchmarks
have shown that the proposed interest point selection algorithm has
significantly improved image matching and retrieval performance
in the completed MPEG Compact Descriptors for Visual Search
(CDVS) standard as well as the emerging MPEG Compact
Descriptors for Video Analytics (CDVA) standard, say 20% mAP
gain by data-driven selection against random selection of interest
points. In particular, the presented data-driven interest point
selection has been adopted by MPEG-CDVS and MPEG-CDVA as
a normative technique to improve the aggregation of handcrafted
features, which has contributed to the combination of handcrafted
features and deep learning (CNN) features as well.

Index Terms—Visual search, interest point selection, compact
descriptors, regression, classification, feature selection, MPEG-
CDVS, MPEG-CDVA.
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I. INTRODUCTION

W ITH the explosive increase of images and videos, the
intelligent visual signal analysis plays a more and more

important role [1]–[5]. Herein, the visual feature descriptor ex-
traction, compression, and learning is a fundamental approach
in numerous computer visual tasks. Take visual search for ex-
ample, the reference image/video databases are usually hosted
at the remote servers, e.g., cloud, while the query images are
captured at the frontal end, e.g., mobile phones or surveillance
cameras, as shown in Fig. 1. However, confined to limited band-
width, memory and computational resource, the computational
lightweight visual descriptors with compact representation di-
rectly obtained from frontal devices are urgently demanded in
large-scale visual analytic applications.

A considerable number of visual feature descriptors are pro-
posed for visual signal analysis to achieve a good balance be-
tween the accuracy and descriptor compactness requirements,
e.g., in [6]–[9]. The Scale-Invariant Feature Transform descrip-
tors (SIFT) [6] is one of the classical visual features, which
achieves good performance in many visual analysis applica-
tions, especially for visual search. However, SIFT is a cumber-
some local descriptor due to its high computational complexity
and bandwidth requirement.

More recently, the Moving Picture Experts Group (MPEG)
has released the standard, Compact Descriptor for Visual Search
(CDVS) [10], which provides the state-of-the-art solution for
visual search with low bandwidth cost and high memory effi-
ciency. The MPEG-CDVS consists of two kinds of feature de-
scriptors, i.e., global descriptors (Scalable Compressed Fisher
Vector (SCFV) [11]) and local descriptors (compressed SIFT-
like descriptors), and defines 6 descriptor lengths, 512 bytes,
1 KB, 2 KB, 4 KB, 8 KB, and 16 KB, to adapt to differ-
ent bandwidth scenarios, among which the descriptors have
very good interoperability. To implement the compact descrip-
tor representation, an important technique, interest point se-
lection, is adopted in MPEG-CDVS, which selects a subset of
most effective features for image representation. It also sig-
nificantly reduces the computation complexity for subsequent
local feature description, compression and aggregation. In gen-
eral, the MPEG-CDVS only selects about 300 local features
instead of thousands of features to represent an image, which
achieves about 50% running time saving and also significantly
reduces the memory and bandwidth requirement for visual
search.
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Fig. 1. The framework of the large-scale image/video analysis with feature extraction and compression from frontal end devices.

With the explosive increase of videos analysis demands, di-
rectly applying the MPEG-CDVS descriptors to frame-by-frame
video analysis tasks will lead to excessive consumption of stor-
age and bandwidth, and cannot fulfil high-performance large-
scale analysis, especially under distributed camera networks.
For example, as suggested by CDVS, the descriptor length for
each frame is 4 KB, and for a typical 30 fps video, the bit rate
of feature stream is approximately 1 Mbps, which still poses
high burden for state-of-the-art wireless bandwidth. To further
reduce the feature bit rates, MPEG initiated a new standard for
video analysis, Compact Descriptor for Video Analysis (CDVA)
[12], in 2015, and it not only inherits the spatial interest point
selection strategy from CDVS, but also adopts color histogram
based temporal sampling strategy to reduce the number of se-
lected interest points for video analysis tasks. In addition, the
deep learning based feature descriptors have exhibited substan-
tial performance improvement in various computer vision tasks,
and achieved very promising performance in image retrieval
with more compact representation, e.g., RMAC [13], NIP [14]
and Gordo [15]. The emerging MPEG-CDVA has adopted the
combination of handcrafted CDVS and deep learning based
feature descriptors due to their proven complementarity. To
maximize the advantages of combining handcrafted and deep
learning features, the interest point selection consistently plays
a crucial role in removing the redundancy amongst the hand-
crafted local feature descriptors in spatial-temporal domain, and
improving the matching and retrieval performance by combin-
ing the handcrafted feature descriptors and the deep learning
feature descriptors.

As illustrated in Fig. 1, the compact descriptors directly ex-
tracted from frontal camera devices may significantly reduce
the bandwidth cost, which is crucial for large-scale visual anal-
ysis. However, most of the feature extraction and compression
for query images/videos are subject to the resource constraints
of the frontal end devices, which are power and memory lim-
ited, and cannot afford heavy computing. Although the interest
point selection plays an important role in compact image rep-
resentation, there are few systemic study, especially from the
perspective of improving search performance as well as de-
veloping lightweight algorithms to fit into smart frontal end
devices with constrained computational capacity. In [6], Lowe
utilized the response of the DoG (Difference of Gaussian) filter
to detect interest points, but did not further leverage data-driven
learning approach to filter in a compact set of discriminative

interest points for local feature descriptors. In [7], the Speeded-
Up Robust Features (SURF) [7] was proposed by utilizing a
Hessian matrix-based measure as the detector instead of the
DoG in SIFT, which significantly reduces the descriptor extrac-
tion time. However, no explicit pruning of salient interest points
is applied.

In this paper, we give in-depth investigation on the interest
point selection for visual search, which is formulated as the
problem of learning an optimal predictor via classification or
regression in data-driven manner. To realize an extremely low
complexity predictor, we propose to leverage the detector results
(i.e., scale space filtering statistics) rather than the characteristics
of local descriptors. Promising performance over benchmarks
have been obtained by combing the improved compact hand-
crafted features (consisting of selected local descriptors and
aggregated descriptors) derived from optimizing interest point
selection, and the state-of-the-art deep learning features. The
main contributions of this paper are three-fold:

1) We study the role of selecting local feature descriptors
in aggregating the discriminative global representation,
and formulate the problem of selecting those salient local
patches for effective and efficient visual search mathe-
matically. The proposed formulation serves as a guidance
for optimizing the interest point selection via learning an
optimal predictor of valid patches for successful matching
to improve image search performance, and especially set
up an open framework for improving the discriminative
power of aggregated descriptor through selecting effective
patches by utilizing various image statistical characteris-
tics or other useful priors.

2) We have proposed a fast yet effective solution for the
interest point selection problem. The optimal solution is
learned from the inlier and outlier pairs, which are gener-
ated from a collection of image matching/non-matching
pairs by geometric consistent check (GCC). In addition,
a useful preprocessing stage is introduced to further re-
duce the influence of the inlier and outlier pairs with low
confidence.

3) Furthermore, we have studied the significant impact of the
interest point selection on both the accuracy and efficiency
of image matching and retrieval, and also extensively ana-
lyzed the behavior of different prediction algorithms. Two
lightweight predictors derived from regression functions
have reported encouraging visual search performance in
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Fig. 2. State-of-the-art visual search framework, (a) image retrieval pipeline, (b) image pairwise matching pipeline.

terms of mean average precision (mAP), which outper-
form classification based solutions as well as the tra-
ditional LoG detector. In particular, the MPEG-CDVS
standard and the emerging MPEG-CDVA standard have
adopted a regression function to select interest points for
generating compact handcrafted features, which has sig-
nificantly improved search performance at reduced com-
putational cost, together with deep learning based feature
descriptors.

The remainder of this paper is organized as follows.
Section II reviews the related works of interest point selection.
Section III presents the interest point selection problem and its
significance in low-bandwidth visual search. Section IV intro-
duces the attributes or features used in interest point selection,
and formulates the interest point selection as an optimization
problem from the perspectives of classification and regression
respectively. Section V introduces our implementation for the
formulated optimal problem to improve the interest point se-
lection performance. Extensive experimental results and dis-
cussions are reported in Section VI, and some explorations for
future work on interest point selection are discussed. Finally we
conclude this paper in Section VII.

II. RELATED WORK

A. Introduction of Visual Search

Visual search is a basic computer vision task that employs
visual feature descriptors to find the images sharing the same
or similar scenes or objects with that in query images, which
is also denoted as image matching/retrieval. For more accurate
visual search, we not only need to retrieve the images, but also
need to localize the corresponding objects by pairwise match-
ing. Fig. 2 shows the typical pipelines for pairwise matching
and image retrieval. The state-of-the-art visual search systems
work on both global descriptor (e.g., aggregated handcrafted de-
scriptors, CNN deep descriptors) and compressed local feature
descriptors, where the binary global descriptor can significantly
speed up visual search process while the local descriptors are
for further verification to improve the accuracy.

As shown in Fig. 2(a), the Hamming distance of global fea-
ture descriptors between query image and database images are
first calculated to generate a short list of candidates. Then, the

geometric consistency check (GCC) is optionally performed
by local feature matching and RANSAC [16], or other re-rank
strategies. The global feature plays a crucial role, which directly
determines the recall rate of candidates, and impact the retrieval
performance. The local features contribute to pairwise match-
ing, in which the matched local features can be applied to local-
ize the objects by estimating the homography matrix. However,
limited by the bandwidth, memory and computational resources,
practical visual search system may not afford to represent an im-
age using all the local feature descriptors. The matchability or
efficiency of selected local feature descriptors is useful for im-
proving the performance of aggregated descriptor by removing
the impact of noisy local descriptors, as well as maintaining the
localization accuracy via a limited number of local descriptors.

B. The Interest Point Selection for Visual Search

Many research efforts have been devoted to the selection of
local features, and these work can be divided into three cate-
gories according to their derivation process.

1) The Interest Point Selection based on Heuristic Rules:
During the development of MPEG-CDVS, Samsung Electronic
proposed to select the interest points in visual attention regions
[17] based on the assumption that more relevant descriptors are
located in salient regions for human visual system. But it is
difficult to measure the saliency of each interest point. Simone
Buoncompagni et al. [18], [19] proposed to rank the interest
points by measuring the distinctiveness, repeatability and de-
tectability heuristically. The distinctiveness quantifies the differ-
ence between a given interest point descriptor and other interest
point descriptors of the same object. The repeatability quantifies
the difference between a given interest point descriptor and its
corresponding descriptors of projected interest point on trans-
formed images. The detectability quantifies the aptitude of a
given interest point to be detected under various viewpoint and
lighting changes. However, the distinctiveness and detectabil-
ity rely on the local feature descriptors, e.g., BRIEF [20] in
their work, which requires us to extract all the redundant local
feature descriptors and calculate their distance, which thus sig-
nificantly increases the computational costs for feature extrac-
tion. In [21], Mukherjee et al. further extended these heuristic
rules to AKZE [22] and SIFT descriptors, and introduced Gabor
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filters for constructing a texture map to enhance the salient map.
Li and Calway [23] proposed a point selection process, which
provides an even distribution of the “the most matchable” points
across the scene in terms of pairwise 3D distance consistency,
normal-normal and normal-position consistency, and selects the
points by a non-maximum suppression algorithm. However, this
kind of intuitive methods may lead to performance loss because
they did not consider the variance of the distribution and the
matching points.

2) The Interest Point Selection Based on Unsupervised
Learning: In [24], Jan Knopp et al. proposed an interest point
selection method by removing the points on the “confusing
objects” in place recognition such as trees or road markings,
which frequently occur in the database and cause significant
confusion between different places. They learned the local con-
fusion score distribution by GPS tags to automatically detect
the “confusing objects” such as trees and window blinds, and
excluded the candidate points with their scores greater than a
certain threshold. Instead of the GPS information, Turcot et al.
[25] utilized each image in the reference database as a query,
and defined the useful features which are robust enough to be
matched with a corresponding feature in the same object, stable
enough to exist in multiple viewpoints, and distinctive enough
that the corresponding features are assigned to the same visual
word. Thus, an unsupervised preprocessing is applied to iden-
tify correctly matching features between the training images,
and database images, and then the useful feature descriptors are
selected based on a adjacency graph among database images.
But this method relies on the given database and is difficult to
extend to individual query images or other databases. In [26],
Tolias et al. proposed to keep the frequent features in the query
extension stage as useful features, and refine local descriptors by
comparing the distance between two local descriptors assigned
to the same visual word. If the distance is above a predefined
threshold, the descriptors are regarded as non-matching ones.
However, the unsupervised learning methods using a single im-
age’s statistical attributes cannot well predict the matchable of
interest points.

3) The Interest Point Selection based on Supervised
Learning: To further improve the prediction accuracy of match-
able features, Hartmann et al. utilized the random forest to clas-
sify the local descriptors as matchable and non-matchable ones.
The training samples are generated by matching 13 preced-
ing and 13 subsequent images in each image sequences which
are captured at different localtions and varying lighting condi-
tions. In [27], Dorkó and Schmid presented a more accurate
feature classifier by utilizing the manually labeled positive and
negative descriptors. In their method, two step classification is
applied, and the first step is a unsupervised local descriptor clus-
tering, and the second step is a supervised learning process using
two types of classifiers: Support Vector Machines (SVMs) and
Caussian mixture model (GMM) based classification. In [28],
Demirci and Kacka used a classifier that predicts which features
are salient among neighboring views of the same objects, and
constructed the training samples from 10 objects with 72 ro-
tated views with a fixed illumination angle and color. Similar
approaches are also developed in [29], [30] for different descrip-

tors, e.g., ORB and VLAD. In [31] Dymczyk et al. exploited
the Convolutional Neural Networks (CNN) as the classifier for
descriptors using both raw image and depth information, which
obviously increase the computational cost for interest point se-
lection. Moreover, these classifiers heavily depend on the spe-
cific features and are difficult to extend to general features.

In addition, the emerging object instance search needs to ef-
ficiently find out all the object proposals in an image with mini-
mum redundancy among them [32]. To reduce the visual search
complexity, they utilize the k −meansmethod to cluster all the
proposal features and generate a small set of fuzzy objects which
are treated as the atoms of an image specific dictionary, and then
generate image compact feature representation by sparse cod-
ing according to the dictionary. Thereafter the features of all
object proposals generated from images are encoded into a set
of sparse locality-constrained linear codes [33], [34]. Although
these works aim to construct compact visual features which are
different from interest point selection, they also reduce the vi-
sual feature redundancy in image representation. However, they
are feature-dependent methods, which incur heavy extraction
complexity.

III. PROBLEM DESCRIPTION

Descriptor extraction and matching for a large amount of
interest points are time-consuming for smart front-end devices.
When transmitting the descriptors to the cloud server for remote
matching, the bandwidth is also constrained. It is desirable to
select a subset of effective (or valid) interest points prior to the
subsequent descriptor extraction, transmission and matching.
As illustrated in Fig. 3, we aim to find out those interest points
with high matchability so that the selection process has little
influence on the final matching.

We formulate the problem of determining interest point va-
lidity in the local and global matching to guide the interest point
selection. Let P = {pn , n = 1, 2, . . . , N} denotes the set of N
interest points detected from an image. In the local matching,
if an interest point p in an image is matched with an interest
point in another image and passes geometric consistency check,
then p is called an inlier. For an inlier, ψ(p) = 1 and otherwise
ψ(p) = 0. Then the local matching score of a pair of images is
given by

sL =
N∑

n=1

ψ(pn ). (1)

If the network bandwidth is adequate, we may include all in-
terest points in the image matching. But when the bandwidth is
limited, we need to select a subset of interest points for match-
ing. We use φL (pn ) = 1 to denote that pn is selected and call it a
valid interest point in the local matching, otherwiseφL (pn ) = 0.
After the interest points selection, the local matching score be-
comes

s′L =
N∑

n=1

φL (pn )ψ(pn ). (2)

Intuitively, if a valid interest point is not an inlier (ψ(pn ) = 0),
it will not contribute to the final score. That is, if an interest
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Fig. 3. Matching between a pair of images. (a) Without interest points selection, a large amount of candidate matches can be found. (b) With geometric
consistency check, only a few good matches left. (c) By adopting the interest points selection, the number of interest points are reduced significantly and so are the
candidate matches. (d) But there is little impact on the good matches since effective interest points (with high matchability) have been selected.

point is an inlier, this point is supposed to be selected as a valid
interest point with high probability.

In addition to the local matching, we also aggregate the in-
terest points to generate a global descriptor for improving the
matching accuracy. In particular, the descriptor of each interest
point p is assigned to a certain visual word in the codebook to
form a statistical vector r(p) (such as the residual between the
descriptor of p and its assigned visual word). Let Pk be the sub-
set of interest points that are assigned to the k-th visual word,
then the k-th component of the global feature vector is

gk =
∑

p∈Pk
r(p), (3)

which is obtained by aggregating the descriptor statistics of
all interest points that are projected on the k-th visual word.
The global feature is a concatenation of all components, i.e.,
g ∝ [g1 ,g2 , . . . ,gK ]. If many irrelevant or redundant interest
points are involved in the aggregation process, the discriminative
ability of the global feature would decrease. Therefore, it is also
critical to select valid interest points for aggregation. We use
φG (p) = 1 to indicate that p is selected as a valid point for
global aggregation, and φG (p) = 0 otherwise. Then the k-th
component of the global feature is

g′
k =

∑

p∈Pk
φG (p)r(p), (4)

Hence the global matching score is

sG =
K∑

k=1

wk

〈
γ(P)

∑

p∈Pk
φG (p)r(p), ·

〉
, (5)

where 〈·, ·〉 denotes the inner product, wk is a scalar that in-
dicates the importance of the k-th visual word and γ(P) is a
normalization factor. If p is an inlier, then the statistical vectors

between an interest point p and its corresponding interest point
in another image are with large similarity value. Herein, the
other term in inner product of (5) has been omitted since it
shares the same expression with the first term but for the other
image. This results in a large inner product and contributes to
the final matching score. Therefore, we should select as many
inliers as possible.

In this paper, we define a prediction function to denote the
validity of an interest point, and our goal is to learn this function
so that the output value is large for inlier, and small otherwise.
However, learning such a validity function is nontrivial due to
the following major challenges:

� First, this is an ill-posed problem. We need to predict the
validity of interest points from a single query image. With-
out image matching pairs, we cannot exactly tell whether
an interest point is an inlier or not.

� Second, the interest point selection is required to be carried
out within the detector phase, definitely before descriptor
extraction, to save more computation. That is, we cannot
leverage detailed descriptor content.

� Third, the bandwidth and computational resources are lim-
ited. The interest point selection algorithm must be efficient
and has low memory consumption. Besides, as the number
of resulting points is bounded by the network bandwidth,
the algorithm should be able to select a varied number of
points by ranking validity values.

IV. INTEREST POINT SELECTION FOR VISUAL SEARCH

For effective and efficient interest point selection, we first
extract lightweight features that can indicate the importance
of an interest point in the matching. Then we generate abun-
dant labeled interest points by performing geometric consistent
check on matching image pairs. Finally, given the features of the
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interest points and their associated labels, we learn a model to
predict validity scores of the interest points in a single image
and perform selection according to the scores.

A. Features Extraction and Training Data Generation

Directly utilizing the feature descriptor (say, 128-dimensional
SIFT) for validity prediction has several flaws: 1) extracting de-
scriptions for all interest points is time-consuming; 2) the high
dimension of the description may lead to over-fitting when the
labeled training data is limited; 3) the description heavily de-
pends on the visual content, which would lead to more domain-
specific selection method.

Therefore, we propose to use the low-level features derived
from interest point detection for validity prediction. Below we
list the representative features.

� Peak (extreme value) of the LoG response. It indicates
the contrast around an interest point, and a high contrast
usually corresponds to high distinctiveness and stability.

� Scale. It indicates the patch size of details. Those small-
scale or large-scale patches are hard to be matched cor-
rectly since its size may be outside of the range or it is too
large to be detected in the other image.

� Orientation. Empirical finding shows that the interest
points in horizontal and vertical directions are more likely
to be matched than diagonal ones.

� Distance from center. An interest point closer to the center
is more likely to be an inlier since the target/interest objects
usually locate in the center of an image.

� Other statistical moments. For example, curvature ratio is
calculated as (r + 1)2/r, where r is the ratio of the two
eigenvalues of the Hessian matrix at the interest pint, the
log_hessian_eign1 and log_hessian_eign2 mean the first
and the second eigenvalues for the LoG Hessian matrix re-
spectively, the g_hessian_eign1 and g_hessian_eign2 rep-
resent the first and second eigenvalues of the Gaussian
Hessian matrix, the log_hessian_det denotes the determi-
nant value of the LoG Hessian matrix, log_hessian_trace is
the trace of the LoG Hessian matrix, and the g_hessian_det
and g_hessian_trace mean the determinant and trace of the
Gaussian Hessian matrix.

For training data, we first collect good number of image pairs
that contain the same visual object. The interest points passing
the geometric check are labeled as positive samples (inliers),
otherwise as negative samples (outliers).

B. Interest Point Selection Method

Given the features and associated labels of abundant interest
points, we propose a lightweight data-driven approach to effec-
tive and efficient interest point selection from a single image.
As shown in Fig. 4, this approach consists of three main proce-
dures: feature selection, preprocessing and validity prediction.
Below, we describe these procedures in details.

1) Feature Selection: There are different types of features
that may be useful for predicting the validity of interest points.
However, to achieve efficient interest point selection, it is desir-
able to use as fewer features as possible. Moreover, there exist

Fig. 4. The proposed lightweight interest point selection approach. Given the
extracted different features (such as peak of LoG response, distance from center,
etc.), we first perform feature selection, and then preprocess different features.
Finally, a prediction model is learned to predict the validity score of an interest
point.

redundancy. Therefore, we propose to perform feature selection
prior to the validity prediction.

There are a variety of feature selection approaches in the lit-
eratures. For example, we can evaluate the importance of each
feature or feature subset according to some pre-defined statisti-
cal measures, such as Information Gain and Mutual Information
[35]. To select features for a certain prediction model, we can di-
vide all features into different subsets and the importance of each
subset is evaluated by testing their combination performance in
visual search application. The subset which leads to the best per-
formance is selected. However, the computational complexity
of this strategy is quite high. Therefore, recent feature selection
methods focus on learning the feature importance together with
the prediction model. The importance of each feature is deter-
mined by learning a weight for it, and some sparsity constraints
[36] are usually enforced to select a small number of features
and sometimes exploit the feature correlations [37]. After fea-
ture selection, we obtain a feature vector x = [x1 , x2 , . . . , xD ]T

for interest point p.
2) Preprocessing: In interest point selection, the values of

original features may vary within a wide range. This would de-
teriorate the predictor performance. Therefore, we propose to
preprocess the original data by imposing the range constraints.
Rather than simply normalizing the original feature vector to
a unit range, we propose to utilize the label information for
more effective normalization. Specifically, an individual predic-
tor g(·) is learned for each feature and the output score g(xd) is
the normalized value for each input feature xd, d = 1, 2, . . . ,D.
This preprocessing strategy not only makes the normalized fea-
tures comparable, but also increases discriminative ability of
each feature since the label information is utilized. The perfor-
mance impact from this preprocessing will be reported in our
experiments.



2780 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 10, OCTOBER 2018

Algorithm 1: Interest Point Selection for Visual Search

Input: The training matching image pairs {(I1
t , I

2
t )}Tt=1 ;

Output: The selected interest point subset for each query
image Iq , i.e., {pq,n}NS

n=1 , NS is the number of selected
features;

1: Detect the interest points in training images, extract the
features {xt,n}NI t

n=1 for each interest point pt,n ;
2: Perform pair-wise interest point matching in training

images, label the matched interest points as positive
sample pair and the non-matched ones as negative pair;

3: Preprocess the features by learning an individual
predictor g(·) for each feature, and learn an additional
prediction model f(·) on the preprocessed features;

4: For a query image Iq
5: Detect the interest points {pq,n}NI q

n=1 , extract the
features xq ,n for each interest point pq,n ;

6: Preprocess the features and predict the validity score
sq,n for each interest point using the learned f(·);

7: Sort the interest points according to their validity
scores, and select the top-ranking ones {pq,n}NS

n=1 for
subsequent description extraction and image matching.

8: End for

3) Validity Prediction: To predict the validity of any interest
point, we learn a prediction model using the training samples
{g(xn ), yn} after feature selection and preprocessing, where
each g(xn ) = [g(xn1), g(xn2), . . . , g(xnD )]T and yn is the cor-
responding label. The presented prediction model together with
the preprocessing is closely related to multi-view learning [38],
[39], which aims to combine information of multiple represen-
tations (such as features and modalities). In our method, each
dimension of the selected features can be regarded as a view. It
is not appropriate to directly concatenate different views since
they have quite different statistical properties. In this work, we
preprocess different views so that the output results have similar
statistical properties. The final validity score is an integration of
the preprocessed outputs, i.e.,

f(x) = f (g(x1), g(x2), . . . , g(xD )) . (6)

We propose to combine the outputs of different views (features)
by training an additional prediction (via classification or regres-
sion) model. We do not adopt more sophisticated multi-view
learning strategies such as multi-view subspace learning [40],
because we have only one scalar element in each view. This
is well aligned with our target of lightweight feature selection
method. In addition, we allow the predictors adopted in pre-
processing and validity prediction to be different. For example,
naive Bayesian can be used for feature preprocessing (normal-
ization) and linear regression can be employed for view (fea-
ture) combination. Hence, the proposed method is able to take
advantages of different predictors and thus achieves satisfactory
performance as shown in our experiments. The pseudo-code of
the proposed interest point selection algorithm is summarized
in Algorithm 1.

Fig. 5. The performance comparison by using different features or combina-
tion.

V. OUR IMPLEMENTATION

In this work, we select a subset of effective features by mutual
information and heuristic rules. A comparison of different fea-
tures is shown in Fig. 5, to reflect their individual performance
and complementary nature. We finally choose five features for
interest point selection, i.e., scale, main orientation, the peak
response value of LoG, distance from center, and the ratio of the
squared trace to the determinant of the Hession. From Fig. 5,
we may give several reasons for the selection as follows: 1)
“peak” and “scale” achieve higher performance than other fea-
tures and are complementary to each other; 2) although “Ori-
ent”, “CurveRatio” and “Dist” perform worse than the different
hessian statistic features, we obtain larger improvements when
combining them with “peak” and “scale”. The main reason is
that the three features are more complementary to “peak” and
“scale” than the hessian features. All the selected features can
be extracted quite efficiently in the interest point detection stage
and hence significantly accelerate the whole process of generat-
ing compact descriptors including local and global descriptors.

For preprocessing, we first quantize the continuous features
by clustering all features in the training set into different groups.
Then given the quantized feature values [X1 ,X2 , . . . , XM ]T for
a certain interest point, we replace the m-th value Xm with the
following conditional probability

P (y = 1|xm = Xm ) =
P (y = 1 ∩ xm = Xm )

P (xm = Xm )
. (7)

The probability P (xm = Xm ) is the probability of the m-th
feature assigned with a specific value Xm . This is calculated as
the ratio of interest points that contains the feature value Xm in
the training set. The probability P (y = 1 ∩ xm = Xm ) is the
ratio of inliers that contains the feature valueXm . Therefore, the
conditional probabilityP (y = 1|xm = Xm ) is the possibility of
an interest point to be an inlier if it contains the feature value
Xm . This preprocess normalizes all feature values into the range
[0, 1]. An interest point that contains larger normalized feature
values are more likely to be an inlier, and hence should be
selected.
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Let x̂n be the preprocessed feature vector of xn , and suppose
the training set is given by {x̂n , yn}, where yn ∈ {1, 0} indi-
cates that pn is an inlier or not. Our ultimate goal is to learn a
prediction function f(x̂n ), where the output is large for inlier
and small otherwise, i.e.,

f(x̂n ) > f(x̂m ), ∀(n,m) : yn = 1 & ym = 0. (8)

Since the given label is binary, it is natural to regard the validity
prediction as a binary classification problem. From the perspec-
tive of classification, we compare and analyze the behavior of
two representative classification models, i.e., SVM [41] and ran-
dom forest [42]. For SVM, the validity score for a test interest
point is given by its distance to the separating hyperplane, i.e.,
f(x̂) = wT x̂ + b, where w and b are the learned weight vector
and bias. For random forest, the validity score is the ratio of
leaves with positive labels.

However, the objective of a classifier essentially is to sepa-
rate different classes, not to predict a (continuous) score. Be-
sides, the computational cost is often high for a large amount
of training samples. For example, the complexity of support
vector machines (SVM) is more than quadratic w.r.t. the num-
ber of training samples. On the contrary, regression approaches
are more appropriate than classification models in estimating a
continuous function, and they are usually more efficient. For ex-
ample, stochastic gradient descent can be directly employed for
optimizing linear and logistic regression. Moreover, the mem-
ory complexity of regression approaches is extremely low or
nearly zero in the online prediction process. By directly mini-
mizing the difference between the output score and groundtruth
label (0/1), we can learn a continuous function that tends to
assign large value (close to 1) for inliers and small values (close
to 0) for other points. The major issue of using regression for
our validity prediction application is that only binary scores are
provided in the training. Therefore, the predicted score does
not exactly indicate the importance of an inlier, and hence we
cannot guarantee that a regression model can achieve higher
accuracy consistently than classification. This can be observed
in our experiments.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Databases and Evaluation Criteria

To analyze the performance of different interest point selec-
tion methods, we perform the image retrieval tasks on the pop-
ular databases, including MPEG-CDVS benchmark database
[10], [43], Holiday [44], Oxford5k [45], Paris6k [46] and multi-
view database [47]. Herein, MPEG-CDVS benchmark database
consists of 5 classes: graphics, paintings, video frames, land-
marks and common objects with a total of 8314 query images,
18840 reference images and a distractor set of 1 million im-
ages from Flickr [48] for the retrieval experiment. The Holiday
database includes 500 query images and 1491 reference im-
ages, which covers a very large variety of scene types (natural,
man-made, water and fire effects, etc). The Oxford5k (55 query
images, 5062 reference images) and Paris6k (55 query images,
6412 reference images) mainly includes the building images.

Specially, the multiview database is utilized to verify the
role of the depth information in interest point selection, and
it contains the depth information for each query and reference
images. To construct this database, we capture the indoors object
images with a mobile camera (Samsung S6). For each target
object, 5 ∼ 6 videos with average duration of 10 s are taken in
different cluttered scenes, and the key frames are selected every
50 frames to form the query image set. For each query image, the
depth information is estimated based on the subsequent selected
frame. In total, there are 1009 query images, and 108 reference
images, where there are 3 clean reference images are captured
for each target object. We merge the reference images with about
1 million distractor images in our experiments.

For the image retrieval, the Mean Average Precision (mAP)
is widely utilized to measure its performance. The mAP for a
set of queries is calculated as the mean of the average precision
scores for each query, which is defined as follows,

mAP =

∑Q
q=1 AP (q)
Q

, AP =
∫ 1

0
p(r)dr, (9)

where Q is the number of queries, and AP is the average preci-
sion, and p(r) is the precision function at recall r.

B. Performance Analysis on Interest Point Selection

To analyze the performance of different interest point selec-
tion strategies sufficiently, we first carry out the visual search on
MPEG-CDVS database. Two baseline interest point selection
methods, i.e., varying the LoG threshold and random selection,
are utilized in our experiments to verify the effectiveness of the
derived selection strategies. Herein, the LoG serves as the state-
of-the-art interest point detector in SIFT features, and shows
higher values near regular structures with meaningful informa-
tion. Thus, we can adapt the local feature number per image by
properly thresholding the LoG response to select the points with
the most abundant information. The random selection serves as
a sanity check which any reasonable prediction should beat.

In our performance testing, we compare the classification so-
lutions using Support Vector Machine (SVM), Random Forest
(RF) and the regression solutions using the linear and logistic
solution. Herein, the the learned parameters for linear and logis-
tic regression are [0.7044, 0.0262, 0.3680, 0.4653, 0.6822] and
[7.0848, 0.0652, 4.0804, 4.8527, 6.9627], which correspond to
scale, main orientation, the peak response value of LoG, the
ratio of the squared trace to the determinant of the Hession and
distance from center, respectively. The linear kernel function is
utilized in SVM.

Firstly, we analyze the impact of the preprocessing using the
Probability Distribution Function (PDF) in interest point selec-
tion stage. Given an image, we first detect the interesting point
candidates using the ALP method [49] in CDVS, and then apply
the regression and classification based interest point selection
method w/o preprocessing, respectively. For each image, we
select the number of local features from 50 to 800 and ag-
gregate them into Scalable Compressed Fisher Vector (SCFV),
which is adopted in MPEG-CDVS standard. Fig. 6 shows the
comparison results for image retrieval application on different
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Fig. 6. Performance comparisons on MPEG-CDVS datasets. (a) Graphics, (b) Painting, (c) Video, (d) Building, (e) Objects, (f) Average results on all the datasets.

sub-databases of CDVS. From the results, we can see that the
preprocessing is very useful in improving retrieval performance,
achieving about 5%∼10% improvement on mAP compared with
that without preprocessing. In addition, when the number of the
local features is beyond 400, the image retrieval performance is
almost stable with marginal performance fluctuation. This phe-
nomenon shows that it is enough to represent an image with
meaningful or salient objects using only 300∼400 local fea-
tures by a SCFV aggregated descriptor. The more local features
with trivial information would serve as noise and drop the ex-
pressiveness ability of SCFV to capture the salient information
in an image, which also shows the importance of interest point
selection in global feature construction. In general, the regres-
sion based methods perform better than that of classification
methods, especially with much fewer local features. The classi-
fication based method, SVM, achieves better results compared
with that of regression method for the building database, where
there are much more regular structures.

To further evaluate the effectiveness of interest point selec-
tion, we carry out the image retrieval and pairwise matching
experiments on CDVS database at different descriptor lengths
using both the global and local features. Table I lists the numer-
ical results for the six interest point selection strategies, where
the regression and classification based interest point selection
methods have applied the PDF preprocessing. Compared with
the random selection method, the others all achieve very obvious
performance improvement at all the descriptor length scenarios,
which further proves that selecting local features have signifi-
cant influence in visual search. In addition, compared with the
LoG selector, the regression and classification based methods
are more effective in low bit-rate scenario. While at high bit-rate

cases, although the LoG detector, regression and classification
based method achieve approximate performance, the reasonable
interest point selection still have significant influence on the re-
trieval and matching performance. This conclusion can be de-
rived from the comparison with random selection. Even at high
bit-rate scenario, the LoG, regression and classification based
selection methods significantly outperforms the random selec-
tion. Moreover, the regression based methods performs much
better than that of classification based methods, and this may be
attributed to that the regression methods attempt to project the
local feature importance into a continuous space which is more
suitable for feature ranking than that of binary classification.
Furthermore, in the pairwise matching experiments, we only
use the local feature matching to show the influence of interest
point selection on the local features. From the matching results
in Table I, the regression based methods, especially the logistic
regression, achieve more accurate results, which shows that the
selected interest points using regression methods, usually falling
into the texture region with consistent structure, are suitable for
geometric consistent check.

By comparison between proposed logistical regression
method and random method, we can see that the MPEG-CDVS
features with 512 bytes generated using the proposed interest
point selection method can outperform the MEPG-CDVS with
16 KB length generated from random selected interest points.
In other words, it means that the proposed interest point selec-
tion achieves more than 96% bandwidth saving compared with
random selection strategy for visual search.

To show the selection results intuitively, we visualize the
interest point candidates and the final determined points by dif-
ferent interest point selectors in Figs. 7 and 8, where the yellow
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT INTEREST POINT SELECTION METHODS USING THE PREPROCESSING

AT DIFFERENT DESCRIPTOR LENGTH ON MPEG-CDVS DATATSET

Methods/Descriptor Length Image retrieval (mAP) Pairwise Matching, TPR@FPR = 0.01

512 B 1 KB 2 KB 4 KB 8 KB 16 KB 512 B 1 KB 2 KB 4 KB 8 KB 16 KB

Random 0.4210 0.4619 0.5200 0.5747 0.5771 0.5712 0.5509 0.6410 0.7578 0.8268 0.8907 0.9110
LoG 0.6380 0.6894 0.7226 0.7515 0.7533 0.7504 0.6605 0.8241 0.8701 0.8965 0.9177 0.9255
Linear regression (PDF) 0.6721 0.7060 0.7334 0.7573 0.7564 0.7535 0.7322 0.8481 0.8881 0.9067 0.9242 0.9308
Logistic regression (PDF) 0.6717 0.7062 0.7330 0.7584 0.7571 0.7546 0.7344 0.8470 0.8892 0.9070 0.9246 0.9306
SVM (PDF) 0.6580 0.7010 0.7300 0.7530 0.7520 0.7490 0.6979 0.8486 0.8873 0.9065 0.9249 0.9322
Random Forest (PDF) 0.6440 0.6890 0.7240 0.7500 0.7490 0.7440 0.6190 0.8169 0.8749 0.9017 0.9226 0.9283

Fig. 7. Illustration of selected features by using different interest point selection methods. (a) Random selector, (b) LoG selector, (c) Linear regression selector,
(d) Logistic regression selector, (e) SVM selector, (f) Random Forest selector.

dots represent the interest point candidates obtained from the
local extremes in LoG scale space, and the red circles repre-
sent the final determined points (selecting 200 local features).
We can see that although there are many extremes in LoG scale
space, most of them are meaningless for image retrieval, because
for most of the users the building are the most concerned con-
tent, which are the most likely to be queried information, while
the trees or the background sky are useless for users in visual
search which even may mislead the retrieval results when too
many useless local features are selected. The LoG selector fo-
cuses on the points with large variations in a neighborhood, e.g.,
edges or textures, which does not consider the salient content
prior distribution. Thus, most of selected local features are dis-
tributed among the tree trunks. By combining more attributes in
the regression and classification based selectors, most of the
selected interest points are more concentrated on the build-
ings. Especially, as a practically useful prior the attribute of
“Distance from Center” is an effective complementary to LoG,

which assumes that most of the meaningful objects tend to be
located in the center of images. So we can get a more reason-
able results for interest point selection by jointly utilizing these
attributes.

C. Computation Complexity Analysis on Feature Extraction

Another merit of interest point selection is to directly reduce
the local feature description complexity since the interest point
selection method does not rely on the descriptor. As shown
in Fig. 9, we compare the percentage change of running time
for different modules of CDVS, and the results are tested on
a DELL PC with 3.40 GHz Intel Core(TM) i7@6700 CPU
and 16 GB RAM in a mode of single core and single thread
by averaging the CDVS extraction time for 1000 images with
VGA resolution. When applying the interest point selection
after the local feature description, the computational bottleneck
is local feature description, but if we apply the interest point
selection before feature description, the running time percentage
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Fig. 8. Illustration of selected features by using different interest point selection methods. (a) LoG selector, (b) Logistic regression selector, (c) SVM selector.

Fig. 9. The time cost comparison of MPEG-CDVS core modules by incor-
porating interest point selection, (a) extracting local feature descriptors before
interest point selection, (b) extracting local feature descriptors after interest
point selection.

Fig. 10. The time consumption for local feature description, compression and
aggregation at different number of local features.

of local feature description decrease from 51% to 35%. This is
why MPEG-CDVS and MPEG-CDVA adopt the interest point
selection before description without using the descriptors as an
attribute for interest point selection.

From the above results, we also note that the running time
consumption of interest point selection is marginal, smaller than
1%. That’s what we claim as a merit of lightweight interest point
selection method. To show the effects of the interest point se-
lection on its subsequent modules, we further show the running
time variations of the three major modules, i.e., local feature
description, compression and aggregation, along with the num-
ber of local features, as shown in Fig. 10. We can see that the

running time of the three modules almost increase linearly along
with the number of local features, indicating that interest point
selection is very useful to reduce the computation complexity
(especially at smart frontal-end devices) for large-scale visual
search with real-time requirements.

D. Outlook for Interest Point Selection

Although we employ five attributes derived from scale space
analysis to solve the formulated problem of interest point selec-
tion by classification or regression, there are more other types of
image attributes like those shown in Fig. 5. What are the optimal
image attributes or useful priors and what are the global optimal
combination for them remain as open issues for future work,
which is expected to be explored under the formulated regres-
sion and classification frameworks. For example, as a meaning-
ful extension, we further explore another interesting attribute,
Relative Depth Characteristic (RDC) [47], which can be de-
rived from neighboring frames when applying visual search on
videos. In the attribute combination, we utilize the nonlinear
regression function to combine the above five attributes and the
RDC to predict the function of selecting interest points (denoted
as RDC_regression). Table II shows the image retrieval results
on the multi-view database at different descriptor lengths. We
can see that RDC is also a very good attribute for visual search,
which achieves the best performance on the multi-view database
compared with the other attributes individually. However, when
we combine it with other attributes, the performance of image
retrieval is further improved, which shows that the significance
of interest point is also associated with the depth information.
The objects with salient information are usually with moderate
depth near the focal length of the camera.

Recently, very promising results have been achieved by com-
bining the CNN feature descriptors and handcrafted feature de-
scriptors [14], [51]. To explore the performance impact of inter-
est point selection on this combination, we compare the visual
search performance of state-of-the-art CNN feature descriptors
combined with handcrafted SCFV descriptors (CDVS global
feature descriptor) generated from different interest point selec-
tion strategies, as shown in Table III, where three state-of-the-art
CNN feature descriptors, RMAC [13], NIP [14], [52] and Gordo
[15], are utlized. In our experiments, the dimensions of NIP and
RMAC descriptors are 512, and Gordo’s CNN feature is 2048
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TABLE II
PERFORMANCE COMPARISON FOR DIFFERENT INTEREST POINT SELECTION METHODS AT DIFFERENT

DESCRIPTOR LENGTH ON MPEG-CDVS DATASET MEASURED BY MAP

Methods/Descriptor Length 512 B 1 KB 2 KB 4 KB 8 KB 16 KB

RDC 0.8213 0.8900 0.9041 0.9426 0.9366 0.9356
Scale 0.7193 0.8409 0.8848 0.9271 0.9352 0.9355
Orientation 0.6855 0.6477 0.7811 0.8914 0.9244 0.9199
LoG 0.7770 0.8927 0.9151 0.9464 0.9476 0.9481
CurveRatio 0.7506 0.8798 0.9072 0.9351 0.9401 0.9390
DistCenter 0.8065 0.8885 0.9102 0.9430 0.9483 0.9470
Method in [50] 0.8450 0.9118 0.9229 0.9495 0.9510 0.9505
RDC_regression 0.8859 0.9189 0.9259 0.9497 0.9500 0.9496

TABLE III
PERFORMANCE COMPARISON OF CNNS AND ITS COMBINATION WITH MPEG-CDVS GLOBAL FEATURES GENERATED FROM SELECTED LOCAL FEATURE

DESCRIPTORS FROM DIFFERENT SELECTION STRATEGIES ON MPEG-CDVS DATASET MEASURED BY MAP

Descriptors/Database Holiday Oxford5k Paris6k Graphic Paintings Video Buildings Objects Descriptor Length

SCFV [11] 0.7122 0.4291 0.4535 0.9254 0.9457 0.9775 0.6760 0.7904 4 KB
RMAC [13] 0.8623 0.6213 0.7917 0.4207 0.3930 0.5190 0.5450 0.9320 2 KB
Random + RMAC 0.8715 0.6275 0.7982 0.5485 0.6189 0.8393 0.6910 0.9486 4 KB
LoG + RMAC 0.8868 0.6357 0.8043 0.7254 0.7269 0.8838 0.7018 0.9646 4 KB
Regression + RMAC 0.8887 0.6422 0.8107 0.7817 0.7360 0.8890 0.7020 0.9660 4 KB
NIP [14] 0.8980 0.6323 0.7695 0.5057 0.4410 0.7280 0.7070 0.9630 2 KB
Random + NIP 0.8991 0.6414 0.7775 0.6276 0.5134 0.8649 0.7395 0.9752 4 KB
LoG + NIP 0.9147 0.6498 0.7840 0.7965 0.7595 0.9444 0.7712 0.9793 4 KB
Regression + NIP 0.9180 0.6518 0.7909 0.8259 0.8020 0.9440 0.7840 0.9790 4 KB
Gordo [15] 0.9147 0.8289 0.9279 0.5250 0.6917 0.8106 0.7065 0.9500 8 KB
Random + Gordo 0.9187 0.7666 0.9062 0.5970 0.7859 0.8866 0.7544 0.9688 10 KB
LoG + Gordo 0.9376 0.7762 0.9082 0.7641 0.8840 0.9482 0.8062 0.9775 10 KB
Regression + Gordo 0.9378 0.8346 0.9264 0.8025 0.8921 0.9387 0.8076 0.9735 10 KB

TABLE IV
IMAGE RETRIEVAL AND PAIRWISE MATCHING PERFORMANCE COMPARISON WHEN APPLYING DIFFERENT INTEREST POINT

SELECTION METHOD IN THE COMBINATION OF MEPG-CDVS AND NIP ON MPEG-CDVA DATASET

Descriptors/Database Image retrieval (mAP) Pairwise Matching, TPR@FPR = 0.01

large objects small objects scenes large objects small objects scenes

Random 0.480 0.716 0.380 0.602 0.820 0.443
LoG 0.576 0.903 0.602 0.767 0.946 0.650
Regression 0.598 0.917 0.594 0.784 0.951 0.645
NIP [14] 0.719 0.817 0.843 0.832 0.928 0.953
Random + NIP 0.734 0.849 0.846 0.822 0.947 0.946
LoG + NIP 0.739 0.914 0.865 0.833 0.951 0.951
Regression + NIP 0.749 0.923 0.861 0.830 0.952 0.951

dimensional. 4 bytes are used for each dimension, leading to
2 KB representation for NIP and RMAC, 8 KB for Gordo’s
CNN feature. From the results, we can see that although both
CNN feature descriptors achieve good results, their overall per-
formances are further improved by incorporating handcrafted
SCFV descriptors. In Table III, the methods with “Regression
+ X” mean that they utilized the proposed interest point se-
lection method to generate the MPEG-CDVS features, while
the methods with “Random + X” and “LoG + X” mean that
they utilized the random strategy and LoG detector to select
interest points. The improvements of NIP with MPEG-CDVS
global descriptors generated from the proposed interest point
selection method (i.e., the Regression + NIP) are up to and

0.36 compared with NIP in terms of mAP. For Paris6k and
Oxford5k, the Gordo’s CNN descriptors achieve much better
performance since its model has been fine-tuned on the images
with buildings, but the incorporation of MPEG-CDVS global
descriptors may further improve its performance on Holidays
and Oxford5k, as illustrated in the Regression+Gordo. By us-
ing different interest point selection methods we can see varying
performance when combining the MPEG-CDVS global descrip-
tors with CNN. And the regression based interest point selec-
tion outperforms the random and LoG selectors in most of the
databases except for the Objects, where the LoG local feature
selector achieves better performance. Therefore, the globally
optimal interest point selector is still an open research issue,
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and the most efficient lightweight image attribute and their op-
timal combination should be further explored in future.

To further verify the effectiveness of interest point selection,
we perform the large scale visual search and pairwise matching
tasks on more challenging CDVA dataset, a >1000 hours video
benchmark for the emerging MPEG-CDVA standard. Table IV
shows the retrieval and pair matching results using SCFV de-
scriptors with different interest point selection strategies, i.e.,
random, LoG and regression. The same conclusion is reached
that the multiple image statistical attributes based interest point
selection method achieves better performance on both the re-
trieval and pairwise matching tasks. This also proves that interest
point selection consistently plays an important role in compact
descriptor construction for video analysis, especially for the
emerging MPEG-CDVA standard.

VII. CONCLUSION

In this paper, we have explored the interest point selection
problem in visual search, and formulated it as an optimization
problem. The problem can be solved using regression and clas-
sification via data-driven methods. We suggested an effective
and efficient approach to learning a low-complexity predictor
based on matching and non-matching points. A light-weight re-
gression approach is proposed to resolve the problem of interest
point selection in MPEG-CDVS and MPEG-CDVA. Moreover,
we also explored the potential performance for interest point
selection with the extension to combine other types of attribute
like depth cue. Finally, the combination of the CNN feature with
handcrafted global feature descriptors generated from different
interest point selectors is also explored, which demonstrates the
performance improvement room for the state-of-the-art inter-
est point selector. How to construct the global optimal solution
with more image statistical attributes or priors will be further
explored in our future work.
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