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Abstract

In the paper, we present an approach to inferring 3D
subtree structures from image pairs. The 3D structure is
treated as a hidden Bayesian network, of which each node
corresponds to an attributed skeleton point. The network
structure is inferred in a bottom-up fashion. At the begin-
ning, the root node of a subtree is manually specified in the
images and then computed using stereo triangulation. Next,
the subsequent computation automatically infers the child
nodes stage by stage along the branches. At each stage, the
child node states are sampled from a posterior distribution,
which incorporates image observations in different view-
points and pre-defined priors, such as smoothness. A trace-
based stereo matching algorithm is introduced to propose
the child node candidate states for computation efficiency.
The experiments demonstrate that the proposed approach is
competent in subtree construction.

1. Introduction
3D Modeling of real tree branches is important in en-

hancing the reality of virtual scenes. Reconstruction of
a whole tree from only image information is extremely
hard due to serious occlusions. Considering that the tree
is composed of subtrees with a similar branching pattern,
a widely accepted way is to synthesize intercrossed or oc-
cluded branches with reference to already-constructed sub-
trees [10] [8].

In this paper, we propose an approach to modeling sub-
tree branches based on wide-baseline image pairs. Com-
pared to other ordinary objects, modeling branch structures
is much more challenging. First, stereo correspondences are
ambiguous due to the large-disparity of most branches and
the similar appearances among branches in color, texture
and shape. The problem becomes more challenging when
the input image pairs are wide-baseline. Second, branch

intercrosses are inevitable. This is hard to be handled by
traditional matching methods.

Stimulated by the similarity between branching struc-
tures and Bayesian Network, we represent the 3D branch
structure by a directed graphical model, of which each node
represents an attributed skeleton point on a branch. Our
objective is to infer the graphical model structure satisfy-
ing the observations of different viewpoints and pre-defined
priors using Bayesian inference. This is different from
the other methods [4] [2], in which the structures of the
graphical models were pre-constructed. Motivated by the
bottom-up natural growing process of trees, we construct
the hidden Bayesian network using one-pass bottom-up in-
ference along the branches progressively. The one-pass in-
ference demonstrates to be effective by the experimental re-
sults. Besides, branches constructed using our method have
branch-unit and skeleton-form structures, which bring great
convenience for editing without any further operation [6].

Given a pair of images about a subtree, we first calibrate
them and remove the backgrounds. Then we perform the
Bayesian inference to construct the graphical model pro-
gressively based on the calibrated foreground images. The
first node, namely the root node of the subtree, is manu-
ally specified. Next, we find an MAP (Maximum a Posteri-
ori) estimate of the child node states from their joint poste-
rior distribution stage by stage (shown in Figure 1). The
posterior distribution is computed by integrating the pri-
ors conditioned on the parent node states (such as structure
smoothness constraints), and the likelihood of generating
the foreground images. As a natural phenomenon, branches
may grow, bifurcate or terminate at any stage throughout the
modeling procedure. In another word, the number of graph
nodes may be variable at different stages. To consider this,
we adopt the stochastic algorithm MCMC (Markov Chain
Monte Carlo) to sample the node states at each stage by re-
versible jumps and diffusions. In the end, all the branches
terminate and form a complete subtree graphical model.



Figure 1. Progressive structure inference of a simple tree

In implementation, we adopt a data driven strategy to
propose child node candidate states for growing and adding
branches at each stage to accelerate the sampling. The can-
didate node states are obtained based on a 3D detection set,
which is generated by matching the 2D branch segments de-
tected in the image pair at that stage. To match the 2D seg-
ments, we introduce a reliable trace-based matching algo-
rithm. The two segments in different images are considered
to correspond to the same branch segment in 3D if any of
their 2D traces are matched. Here, the 2D traces are defined
as connected roads in the images starting from the segments
and ending with branch tips.

In summary, our approach overcomes the difficulties in
constructing branch models from wide-baseline and large-
disparity image pairs. Observations in different viewpoints
and pre-defined priors are integrated in a unified framework.
The generated models are reliable in depth due to the use of
wide-baseline image pairs. The branch intercross problem
is also conquered thanks to the bottom-up inference strategy
and the reliable stereo matching algorithm.

2. Related work
Recently, appears many approaches to modeling trees,

specifically meaning branches, based on sensor data, in-
cluding images and laser data. A big obstacle presenting
ahead of this topic is occlusion and intercrossing structures
of branches. For solvability, these approaches generally es-
timate a base structure of the tree and then synthesize the
remaining parts.

To estimate the base structures, Xu et al. [10] used laser
depth images and compute the shortest path from every 3D
point to the root. This method suffers from serious noises
in the laser data especially near thin twigs. Among image-
based approaches, the number of involved images ranges
from one to tens. Han et al. [4] modeled branches from a
single image using a Bayesian method. The information in
a single image is not enough to accurately reconstruct 3D
branches. Teng et al. [9] tried short-baseline stereo method

to construct trunk models. Due to the short-baseline, the
generated 3D models looks unnatural when observed from
new viewpoints. Neubert et al. [7] used particle flows pi-
loted by two or three images to simulate branches. Trees
generated by this method deviate much from the input im-
ages. Tan et al. [8] recovered visible branches from point
cloud obtained using Structure from Motion. This multi-
view method suffer the same noise problem as the laser-
based ones. Moreover, it involves much cost in extract in-
formation from a large number of images.

For easier construction, some works first extract 2D
skeletons in images, such as [7] and [9]. 2D skeletons
help much the reconstruction process, especially in generat-
ing skeleton-form 3D models. However, they require extra
work to extract skeletons in the input 2D images.

Our approach is based on wide-baseline image pairs, and
capable of generating reliable depth. Furthermore, we do
not require 2D skeletons but can produce branches with
branch-unit and skeleton-form 3D structures, which bring
great conveniences for further editing. During the recon-
struction, only the first node should be indicated manually.

3. Problem formulation
In a pre-processing step, we capture an image pair of a

subtree. Then, we calibrate the image pair and remove the
backgrounds. For background removal, we use the magic
wand in AdobePhotoshop. Since only two images are in-
volved, the pre-processing is fast and convenient.

The core modeling procedure is formulated as a
Bayesian inference from the observed 2D profiles, denoted
as Z, to a 3D subtree structure S, which is in the form of a
set of attributed skeleton points

P (S|Z) ∝ P (Z|S)P (S). (1)

Motivated by the natural laws that trees grow from
bottom to top and subbranches are generated by their
lower-level parent branches, we adopt a Bayesian net-
work as the 3D branch structure S. S , (V, E), V ,
{ki, Xi}i, where, V and E represent a set of attributed
skeleton points, and edges connecting the points respec-
tively. ki denotes the identification number of Xi for ex-
plicit semantic structures of reconstructed models. Xi ,
(xi, yi, zi, dxi, dyi, dzi, ri, si) with (xi, yi, zi) representing
the 3D position of the skeleton point indicated by ki,
(dxi, dyi, dzi) the growing direction, and ri the radius at
that point. Here, the position and direction variables are not
independent, since the direction can be obtained by the posi-
tion and that of its parent node. The variable si is the grow-
ing step length, i.e. the inter-distance between Xi and its
child nodes. The prior P (S) specifies the branch smooth-
ness and growing step etc. Our objective is to find an opti-
mal Bayesian network structure S by maximizing the pos-
terior distribution given by formula 1.



The graphical model is constructed by using bottom-up
inference, starting from the root and proceeding progres-
sively with step length si at the node indicated by ki. Here,
we pack the variables according to different stages. For ex-
ample, kt denotes the indicator set of all the nodes at stage
t, and Xt , {Xit}|kt|

i . As seen in Figure 1, once the con-
figuration (kt−1, Xt−1) at stage t−1 are determined, we in-
fer the subsequential configuration (kt, Xt) at stage t. The
links between the nodes at stage t and those at stage t − 1
reflects the natural growing phenomenon of a tree, i.e. new
birth of sub-branches, and growth or termination of original
branches. The initial node at the bottom, as the first node
of the No.1 branch, i.e. k1 = {1}, is given by users: first,
manually specify initial growing directions and radius infor-
mation in the image pairs; then, get the node state in 3D by
stereo triangulation. At stage t, the configuration (kt, Xt)
is an MAP estimate obtained by sampling the posterior dis-
tribution, given by

P (kt, Xt|Zt, kt−1, Xt−1) ∝
P (Zt|kt, Xt)P (kt, Xt|kt−1, Xt−1),

(2)

where, Zt , {Zit}i, and Zit represents the measurement
variable of Xit. The first term at the right-hand side of for-
mula 2 is the likelihood model, which expresses the prob-
ability we would have observed the measurement Zt given
the states (kt, Xt) at stage t. The observation of different
branches are assumed to be independent

P (Zt|kt, Xt) =
|kt|∏

i=1

P (Zit|kit, Xit). (3)

The second term in formula 2, i.e. the growing prior, re-
stricts the state space at stage t given the previous states at
stage t − 1. As we know, jointly inferring the child node
states of the nodes at stage t − 1 suffers from exponential
complexity in the number of the nodes at stage t− 1. Con-
sidering the computation efficiency, we assume the child
node states inference of different nodes at stage t − 1 are
independent, i.e.

P (kt, Xt|kt−1, Xt−1) =

|kt−1|Y
i=1

P (kt·i, Xt·i|ki(t−1), Xi(t−1)),

(4)

where, (kt·i, Xt·i) denotes the child nodes set of
(ki(t−1), Xi(t−1)). The independent assumption is deduced
by the proposed matching algorithm in section 4, which is
used to propose child node state candidates.

The growing prior for each node at stage t − 1 in for-
mula 4 can be decomposed as the distribution of the indica-
tor set kt·i and that of Xt·i conditioned on kt·i

P (kt·i, Xt·i|ki(t−1), Xi(t−1)) =

P (Xt·i|kt·i, ki(t−1), Xi(t−1))P (kt·i|ki(t−1), Xi(t−1)),
(5)

in which, P (kt·i|ki(t−1), Xi(t−1)) models which branch is
likely to be continued, added, or terminated, and is realized

based on a set of operations on a 3D detection set as we will
explain in section 4. P (Xt·i|kt·i, ki(t−1), Xi(t−1)) can be
further decomposed as

P (Xt·i|kt·i, ki(t−1), Xi(t−1)) = P (Xt,v)P (Xit|Xi(t−1)), (6)

where, P (Xt,v) is the prior for the branches whose
states change, namely being newly added or terminated.
P (Xit|Xi(t−1)) is the smoothness prior for the branch con-
tinually growing, and Xt·i = {Xt,v, Xit}.

3.1. Prior for on-growing branches P (Xit|Xi(t−1))

The priors are given according to the specific charac-
teristics of real trees. At stage t, we define priors for the
on-growing branch respectively on its position Xit,p ,
(xit, yit, zit), radius rit and step length sit. Xit,p is con-
strained by its parent node Xi(t−1) for smoothness of the
recovered 3D model

Xit,p ∼ Φ(Xit,p|Xi(t−1),p)
Y

{i,j}
ψ(Xit,p, Xjt,p). (7)

Here, Φ(Xit,p|Xi(t−1),p) is defined as a Gaus-
sian distribution on a spherical surface with center
(xi(t−1), yi(t−1), zi(t−1)) and radius ri(t−1), namely, a
truncated Gaussian distribution defined on [−π, π]

Xit,p ∼ N(µgp, σ2
gp), (8)

in which, µgp is 0 degree, showing the position on the
spherical surface indicated by the direction of Xi(t−1). σgp

is given by observing the real target trees.
ψ(Xit, Xjt) models the interaction among the adjacent

nodes i and j, and is defined as

ψ(Xit, Xjt) = e−g(Xit,Xjt). (9)

g(Xit, Xjt) is a penalty function, given by

g(Xit, Xjt) = max(2(rit + rjt)− dij , 0). (10)

Here, dij is the Euclidean distance of the adjacent nodes i
and j.

The prior constraining the radius is also Gaussian with
mean ri(t−1), and variance σ2

gr as

rit ∼ N(µgr, σ
2
gr), (11)

in which, µgr = ri(t−1), and σgr = ri(t−1)/γ. γ is also
given by the target trees.

The distribution of the growing step sit is given by

P (sit|rit) ∼ N(µgs, σ
2
gs), (12)

where, µgs = crit. c is a constant. In section 4.1, we will
explain how to estimate it.



3.2. Prior for variable branches P (Xit,v)

The prior for new-born branches plays an important role
in filtering wrong state candidates. In the paper, the adding
prior is modeled in three aspects. They are respectively that
1) the number of the new-born child nodes of a parent node
is restricted with a maximum number Na, by using an ex-
ponential model exp(−λ max (na −Na, 0)), where, na is
the added child node number and λ = 0.5 in the paper; 2) to
avoid conflicts with other branches, the interactions among
adjacent nodes are modeled as done in section 3.1; 3) the
angles for new-born branches are constrained by a Gaussian
distribution N(µa, σ2

a), where the mean µa and the standard
deviation σa are also given by observing the modeling tar-
gets. The prior for terminating branches is simply assumed
to be uniform in the paper.

3.3. Likelihood model P (Zit|Xit)

The likelihood for each node models the observations in
the image pair. In the previous formulas, for clarity, the pro-
jection parameters are omitted. Here, we explicitly express
them in the likelihood distribution

P (Zit|kit, Xit; M) =

mY
j=1

P (Zit|kit, Xit; Mj), (13)

where, m = 2, representing the number of images, and
Mj is the projection matrix corresponding to image j. The
appearance model of Xit in image j takes the form

P (Zit|kit, Xit; Mj) ∝ e−f(tp,ge), (14)

where,

f(tp, ge) =
1

Np

X
pi∈p

tpi +
1

Ne

X
ei∈e

(1− gei). (15)

tpi
is the transparency of pixel pi, and gei

is the gradient
of ei in the outward direction. The set p (different from the
one in subsection 3.1) consists of the pixels lying on the T
shape in Figure 2a as the supporting points of the branch
segment, and Np is the number of pixels in set p. The set
e , {e1, e2} is composed of the two terminals as shown in
Figure 2a, and Ne = 2.

4. Bottom-up inference
The 3D structure S, in the form of a graphical model, is

obtained by a one-pass bottom-up inference progressively.
At each stage, we compute the child node states by finding
an MAP estimate from the posterior distribution given by
formula 2. The MAP estimate is produced by using RJM-
CMC (Reversible Jump Markov Chain Monte Carlo) [3]
due to the following considerations. First, our branch grow-
ing problem is a little bit similar with the tracking problem
in [5], in which, the authors tracked a variable number of
interacting targets and proved the computation efficiency of

Figure 2. Demonstrations: a. definition of the likelihood model; b
and c. the effects of over small and large step length in detecting
2D subbranches.

RJMCMC. Second, in this paper we aim at establishing a
general framework of stereo-based inference, in which any
independent assumptions can be relaxed and any forms of
botanical priors or observations can be freely integrated.
Therefore, RJMCMC is adopted due to its ability in sam-
pling complex distributions and its efficiency in traversing
spaces of high dimensionality.

As done in [4] [5], to speed up the computation, we uti-
lize a data-driven strategy to propose child node state can-
didates. As shown in Figure 3, for each node at stage t− 1,
we detect 2D candidates (the squares in Figure 3) in the
image pair and store a set of 3D candidates (the plates in
Figure 3) computed by all corresponding subbranches in
the image pair. To prune the wrong 3D candidates appear-
ing due to ambiguous stereo correspondences, we develop
a trace-based stereo matching algorithm. After the match-
ing, the remaining candidates form a detection set kd. kd

is used to propose node state candidates to accelerate RJM-
CMC sampling. The reliable matching procedure promotes
us to make an assumption of the independent child node
states inference of the nodes at stage t− 1 for consideration
of computation efficiency, since the detection set for differ-
ent nodes at stage t − 1 are separated after the matching
procedure. Therefore, we can determine the configuration
(kt, Xt) by growing, dividing or terminating the nodes at
stage t− 1 one by one.

Figure 3. Ambiguous stereo correspondences



For each node Xi(t−1) at stage t − 1, we perform
the Metropolis-Hastings algorithm to find its child nodes
(kt·i, Xt·i) at stage t. Given a configuration (kt·i, Xt·i), we
select a move type from predefined dynamics, with prob-
ability qa, qd, qg , qs, ql respectively for adding, deleting,
growing, terminating, and location diffusion (qa +qd +qg +
qs + ql = 1), and then propose a new state (k

′
t·i, X

′
t·i) with

acceptance ratio

A(k
′
t·i, X

′
t·i; kt·i, Xt·i) = min(1, α) (16)

in which, α is given by

α =
P (k

′
t·i, X

′
t·i|Zt·i)

P (kt·i, Xt·i|Zt·i)
Q(kt·i, Xt·i; k

′
t·i, X

′
t·i)

Q(k
′
t·i, X

′
t·i; kt·i, Xt·i)

. (17)

If α > 1, the state is certainly accepted. Otherwise, it is
accepted with probability α.

4.1. Detection for data-driven sampling

The detection set used to propose child node states for
a node, whose configuration is (ki(t−1), Xi(t−1)), in stage
t−1 is formed as follows: first, we define a part of spherical
surface with center (xi(t−1), yi(t−1), zi(t−1)), radius ri(t−1)

and a pre-defined detection scope in the form of inter-angle
with (dxi(t−1), dyi(t−1), dzi(t−1)). Then, we project the
maximum circle corresponding to each image in the spher-
ical surface part to each image (the dash arcs in Figure 3).
Third, we find the disconnected arc segments as 2D detec-
tions (the squares in Figure 3); Fourth, the 3D detection set
kd is computed using those matched 2D detections. The
stereo matching algorithm will be introduced in section 4.2.

It should be noticed that for effective 2D detections, a
proper step length sit is essential. A small step cannot gen-
erate a valid arc for identifying the 2D candidates (the left
branch in Figure 2b is missed) and takes a risk of losing
branches due to asynchronous detection (as we will explain
in section 5). While a large one will bring deviations from
correct junctions, like the right subbranch in Figure 2c. Be-
sides, a large step can not produce smooth 3D models. To
handle the above problems, we should adapt step variable
to the global subtree structures. However, the adaptive step
distribution is hard to model in our current framework since
branches are constructed stage by stage without any infor-
mation about their following structures. It will be consid-
ered in future work. Here, we simply set the step variable
to being conditioned on the radius variable as given in for-
mula 12, in which the constant c is estimated by balancing
the above factors.

4.2. Trace-based matching

As we know, stereo matching is a difficult task espe-
cially for large-disparity and wide-baseline image pairs. As
shown in Figure 3, the 2D detections in the image pair form

nine 3D candidates. It is hard to find the true three using
traditional color-based methods, such as NCC (Normalized
Cross Correlation) and SSD (Sum of Squared Difference)
etc., due to the similar appearances among branches. In
view of the branching structures, we propose to use traces
for matching. Given a 3D candidate, we grow it step by step
along the proposed roads computed by 2D detections in the
image pair as done in section 4.1. The detections near junc-
tions will provide multiple 3D roads, in which the one mak-
ing the trace of the candidate straightest is preferred first for
efficiency, since branches are generally growing straightly.
The extension along a 3D road terminates until there is no
detection in one or two images. The first kind of termina-
tion means the 3D candidate is correct. In the second termi-
nation, another road is selected and traversed as described
above. The road searching iteration ends until the 3D can-
didate is proved to be correct or all the possible roads are
traversed. Figure 4 shows some matching results, in which
lines with the same colors (and the same number) in the two
images are the trace projections of the same 3D candidate.

As other matching criterions, the trace-based matching
algorithm does not always work well. Although not a com-
mon phenomenon, sometimes two 2D traces of a false 3D
candidate in the image pair may have the very same length.
In this case, they will be matched. For such cases, the
growing priors in section 3 take effect to filter unnatural 3D
candidates. As we have noted, the potential limitation of
the matching algorithm is its efficiency, especially for those
bent branches and those confusedly interacting with other
branches. As shown in Figure 4, the No.2 trace ever tried a
wrong 3D road and then found the right one.

Figure 4. Trace-based matching of four subbranches as divisions
of the branch at the bottommost

4.3. Five Dynamics

Since the branches at stage t − 1 are assumed to be
independent, we determine their states at stage t one by
one. Given a node Xi(t−1), its child nodes, denoted as
(kt·i, Xt·i) at stage t are inferred by using Markov chain
jumps to traverse the solution space in different dimensions.
Five dynamics are designed to drive five types of proposals,
namely continuous growth, division and its reverse jump,
terminate and its reverse jump.



4.3.1 Dynamic 1. Location diffusion

This dynamic aims to find the best location for the node
Xit, as a continuation of node Xi(t−1). For efficiency, the
diffusion is performed by data-driven. A 3D candidate Xd

is chosen from the set kd·i with uniform probability. Then,
a new state X

′
it is proposed from a Gaussian distribution

defined on a spherical surface with center (xd, yd, zd) and
radius rd. The new state is accepted with

αl =
P (Zit|X ′

it)P (X
′
it|Xi(t−1))

P (Zit|Xit)P (Xit|Xi(t−1))

1

Q(X
′
it; kd·i)

. (18)

Here,
Q(X

′
it; kd·i) = N(µl, σ

2
l ), (19)

where, µl is 0 degree, showing the position on the spher-
ical surface indicated by (dxd, dyd, dzd), and σl is given
by arctan((rd + σc)/ri(t−1)). σc is a spatial length near
Xd, which corresponds to a pixel in images under perspec-
tive projection. Apparently, for short-baseline image pairs,
σc will be very large, thereby resulting in large searching
space for location diffusion and risking an optimal location.

4.3.2 Dynamic 2. Adding branches

This dynamic is used to give birth to subbranches. First,
uniformly select a candidate a from kd·i \kt·i, which means
branches in kd·i while not in kt·i. Then, add a to kt·i with

αa = P (Za|Xa)
P (k

′
t·i, X

′
t·i|ki(t−1), Xi(t−1))

P (kt·i, Xt·i|ki(t−1), Xi(t−1))

qd|kd·i \ kt·i|
qa|kd·i ∩ k

′
t·i|

,

(20)
where, |kd·i ∩ k

′
t·i| denotes the intersection of kd·i and k

′
t·i.

4.3.3 Dynamic 3. Deleting branches

This is the reversible jump of the adding operation. First,
select a branch d from the intersection of kd·i and kt·i, i.e.
|kd·i ∩ kt·i| with uniform distribution. Then, delete d from
kt·i with

αd =
1

P (Zd|Xd)

P (k
′
t·i, X

′
t·i|ki(t−1), Xi(t−1))

P (kt·i, Xt·i|ki(t−1), Xi(t−1))

qa|kd·i ∩ kt·i|
qd|kd·i \ k

′
t·i|

.

(21)

4.3.4 Dynamic 4. Growing the branch

The following two reverse dynamics are used to terminate
the branch with tip node (ki(t−1), Xi(t−1)). If the growth
is terminated, i.e. Xit is invalid, we regrow the branch by
sampling a distribution Q(X

′
it; kd·i) as done in Dynamic 1

and add the sample to kt·i with

αg = P (Zit|X
′
it)

P (k
′
t·i, X

′
t·i|ki(t−1), Xi(t−1))

P (kt·i, Xt·i|ki(t−1), Xi(t−1))

qs

qgQ(X
′
it; kd·i)

.

(22)

4.3.5 Dynamic 5. Terminating the branch

To terminate the branch, we delete it from kt·i with

αs =
1

P (Zit|Xit)

P (k
′
t·i, X

′
t·i|ki(t−1), Xi(t−1))

P (kt·i, Xt·i|ki(t−1), Xi(t−1))

qgQ(Xit; kd·i)
qs

.

(23)

Figure 5. Subtree 1: a and b. the input images; c. the back projec-
tions of the 3D reconstructed model on one input image; d. close-
up of the back projection

Figure 6. Subtree 2: the reconstructed model with the input im-
ages in Figure 4; a. the 3D model observed from an original view-
point; b. a novel viewpoint

4.4. Post-processing

It should be noted that the graphical model is constructed
stage by stage, during which only conflicts at the same stage
are considered. To avoid branch conflicts at different stages,
a post-processing step is adopted to prune constructed 3D
tree models by taking subbranch as a unit. Next, for prac-
tical applications, we convert the skeleton forms into mesh
models simply by triangulating the surface vertices, which



are sampled from the shapes determined by two consecutive
skeleton points and their corresponding radii.

5. Results
We tested the proposed algorithm in four different forms

of subtrees (as shown in Figure 5, Figure 6, Figure 7, and
Figure 8). To capture their photos, the subtrees can be first
cut from large trees and then photographed indoor (as we
did for subtree 1). This way is more reasonable for seri-
ously occluded trees and has controllable shooting condi-
tions. Alternatively, they can be captured directly as part of
large trees (as we did for subtree 3 and 4). The captured im-
ages are first segmented to remove the background. Since
the proposed method can discriminate intercrosses, there is
no need to treat all unusable branches as background during
the segmentation.

Figure 5 shows a subtree cut from a large tree as a typical
pattern and pictured indoor with inter-angle about 450. The
subtree is more than 40cm high but the radii of its twigs are
less than 2mm. It is hard to match the line-shape twigs in
the wide-baseline image pair (Figure 5a and b) even using
our eyes. The proposed approach successfully constructs
a 3D model, simply requiring us to specify an initial node
in 2D forms in the images. From the back projections of
the reconstructed model (Figure 5c and d), we can see that
the model is consistent with the observations in the input
images.

Another highlight of the method is its ability in generat-
ing 3D models with semantic structure, which is unavailable
using traditional stereo-based method [1]. Figure 7 shows
a type of subtree captured directly outdoor, with inter-angle
around 400. Once the starting node is indicated in the im-
age(as shown in Figure 7a and b), the proposed approach
construct the model branch by branch. Each branch own its
unique label(as shown in Figure 7f). This structure with se-
mantic meaning provides great convenience for further edit-
ing, such as animation.

The wide-baseline stereo can generate reliable 3D mod-
els. As shown in Figure 8, the subtree is first captured in
three different viewpoints(Figure 8a, b and e). The first two
images with inter-angle around 240 are adopted to construct
the 3D model. Then we back-projected to the third im-
age(Figure 8e), with inter-angle around 350 to the second
image. Figure 8g shows a close-up to the back projection
part in Figure 8f. From this picture, we can see that the 3D
model is consistent with the new viewpoint image.

Figure 6 gives an indoor plant without leaves, cap-
tured with about 300 inter-angle. Such branches take more
chances of having almost the same length. Therefore, few
branches are wrongly matched and added as real ones.
However, they do not influence the natural appearance of
the 3D model as observed from Figure 6a and Figure 6b, an
original viewpoint and a new viewpoint result respectively.

Figure 7. Subtree 3: a and b. original images; b and c. back
projection onto the original images; c. the reconstructed textured
model; d. the model with branch-unit materials.

The reason for this is that they passed the filtering of our
adding priors (section 3.2). This example demonstrates that
our approach can reconstruct not only subtree patterns but
also branches of simple structured whole trees. Since our al-
gorithm aims at recovering natural branches based on stereo
matching, those branches being large-partially occluded in
any one of the image pair are certainly omitted.

6. Conclusion

The paper described a framework to conveniently con-
struct branching structures from wide-baseline image pairs.
The models, in the form of Bayesian networks were con-
structed by progressively inferring child node states stage
by stage. At each stage, an MAP estimate of the child node
states was computed by sampling a posterior distribution,
which integrates observations in different images and mul-
tiple pre-defined priors. A trace-based matching algorithm
was introduced to propose child node state candidates for
computation efficiency of the sampling. The prior parame-
ters involved can be easily given by observing the real target



Figure 8. Subtree 4: a and b. the used image pair; h. the textured 3D model; c and d. back projection of the 3D model onto image a and b;
e. another image not involving in the reconstruction; f: back projection of the 3D model onto image e; g. close-up of the projected part in
image f.

trees. Besides, it is straightforward to integrate any knowl-
edge, such as the spatial distribution prior defined in [4],
into our framework. Future work will focus on the adapted
step size as we mentioned on section 4.1 and large tree re-
construction according to its images and its subtree patterns.
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