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Abstract

In this paper, we propose a novel image super-resolution algorithm, referred to as interpola-
tion based on transductive regression with local and global consistency (TRLGC). Our algorithm
first constructs a set of local interpolation models which can predict the intensity labels of all
image samples, and a loss term will be minimized to keep the predicted labels of available low-
resolution (LR) samples sufficiently close to the original ones. Then, all of the losses evaluated
in local neighborhoods are accumulated together to measure the global consistency on all
samples. Furthermore, a graph-Laplacian based manifold regularization term is incorporated to
penalize the global smoothness of intensity labels, such smoothing can alleviate the insufficient
training of the local models and make them more robust. Finally, we construct a unified objective
function to combine together the accumulated loss of the locally linear regression, square error
of prediction bias on the available LR samples and the manifold regularization term, which
could be solved with a closed-form solution as a convex optimization problem. In this way, a
transductive regression algorithm with local and global consistency is developed. Experimental
results on benchmark test images demonstrate that the proposed image super-resolution method
achieves very competitive performance with the state-of-the-art algorithms.

I. INTRODUCTION

Image super-resolution, which is the art of rescaling a low-resolution (LR) image to a
high-resolution (HR) version, has become a very active research area in image processing
[1-8]. Image super-resolution is born not only in the importance of enhancing resolution
of images, such as in the fields of satellite remote sensing and consumer electronics, but
also using image super-resolution to understand the validity of different image models
in inverse problems

Considering the underlying image models during interpolation, most of image super-
resolution algorithms can be categorized as global or local ones. A global algorithm
trains the interpolation model using the whole image sample set, while a local algorithm
aims to train the model by using only useful local information. The representative global
methods are those based on classical data-invariant linear filters, such as bilinear, bicubic
[2]. These methods have a relatively low complexity, but suffer from the inability to
adapt to varying pixel structures, which result in blurred edges and annoying artifacts.
The local algorithms usually result in better empirical results since it is hard to find a
unified model with a good predictability for the whole image sample set. In the literature,
some local learning methods have been proposed with great success. Li and Orchard [4]
propose to adapt the interpolation based on the geometric duality between the LR and
the HR covariance. In [5], Zhang and Wu propose to partition the local neighborhood of
each missing sample into two oriented subsets in orthogonal directions, and then fuse the
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directional interpolation results by minimum mean square-error estimation. Takeda et al.
propose to use kernel regression as an effective tool for interpolation in image processing
[6]. Recently, Zhang and Wu propose the named SAI algorithm [7], which learns and
adapts varying scene structures using a locally linear regression model, and interpolates
the missing pixels in a group by a soft-decision manner.

Image super-resolution is an ill-posed problem. The key to this task is the prior
assumption about the properties that the intensity labels should have over the sample set.
One common assumption is intensity consistency, which means: (1) nearby pixels are
likely to have the same or similar intensity labels; and (2) pixels on the same structure
(manifold) are likely to have the same or similar intensity labels. Note that the first
assumption is local, and the second one is global. Accordingly, it is a smart idea to
consider both local and global information contained in the image sample set during
learning.

From a machine learning perspective, the available LR image pixels can be regarded as
labeled samples and the missing HR image pixels as unlabeled ones. What image super-
resolution does is to learn latent models of the image sample set in a supervised manner.
In all local methods mentioned above, interpolation models are learned only according
to the labeled samples in a local neighborhood and then mapped to the missing HR
samples to perform inference. During this procedure, unlabeled samples are left out and
the information hidden in them are not sufficiently explored. Inspired by the success of
semi-supervised learning [8-12], it is reasonable to leverage both labeled and unlabeled
data to achieve better predictions.

In this paper, we propose a novel image super-resolution algorithm, referred to as in-
terpolation based on transductive regression with local and global consistency (TRLGC).
The basic idea is to predict the intensity label of a data point according to its local neigh-
borhood in a linear way, and then uses a global optimization to ensure robust predictions.
Specially, in each neighborhood, an optimal model is estimated via regularized locally
linear regression. With this model, the intensity labels of all samples in the neighborhood
can be predicted. A loss term will be minimized to keep the predicted labels of available
LR samples sufficiently close to the original ones. Then, all of the losses evaluated in
local neighborhoods are accumulated together to measure the global consistency on the
label and unlabeled data. Furthermore, a graph-Laplacian based manifold regularization
term is incorporated to penalize the global smoothness of intensity labels, such smoothing
can alleviate the insufficient training of the local models and make them more robust.
Finally, we propose a unified loss function to combine together the global loss of the
locally linear regression, square error of intensity labels of the available LR samples and
the manifold regularization term, which could be solved with a closed-form solution as a
convex optimization problem. In this way, a transductive regression algorithm with local
and global consistency is developed for image super-resolution.

The rest of this paper is organized as follows. Section II presents the framework of
proposed image super-resolution method. Section III illustrates the algorithm details and
gives some discussion about the proposed algorithm. Experimental results are provided
in Section IV. Section V concludes the paper.

II. THE FRAMEWORK OF PROPOSED SCHEME

The image super-resolution problem could be defined as follows: given an image
sample set including n pixel points X = {x1,x2, · · · ,xl,xl+1, · · · ,xn} ∈ <2, the first l
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points are the available LR samples with intensity labels {yi}li=1, the task is to infer the
intensity labels {yi}ni=l+1 of the remaining n − l missing HR samples in {xi}ni=l+1. By
the fact that unlabeled samples are given beforehand and no other test samples will ever
be considered, this is a transductive learning problem.

A. The Global Principle
Given a set of training sample-label pairs {(xi, yi)}li=1, the global principle used for

selecting a good interpolation function f is to minimize the following global structural
risk:

Jg =
l∑

i=1

L(yi, f(xi,w)) + λ||f ||2F , (1)

where L(·, ·) is the loss function (e.g., square loss in least square regression), ||f ||F is
the induced norm of f in the functional space F (e.g., F can be a reproducing kernel
Hilbert space (RKHS) induced by some kernel k). Clearly, Eq.(1) is a supervised manner,
which only exploits labeled samples to train the interpolation function. Motivated by the
great success of semi-supervised learning, it is more reasonable to explore additional
discrimination information hidden in unlabeled samples to train a good f .

From a geometric perspective, there is a probability distribution p to generate image
samples. The available LR samples are (x, y) pairs generated according to p(x, y), the
rest missing HR samples are simply drawn according to the marginal distribution p(x) of
p. It is usually assumed [12] that there is a specific relationship between p(x) and p(y|x).
In another word, if two points x1 and x2 are close in the intrinsic geometry of p(x),
the conditional distribution p(y|x1) and p(y|x2) should be similar, i.e., p(y|x) should
vary smoothly along the geodesics in the intrinsic geometry of p(x). Accordingly, we
define a general geometric framework for model learning, which seeks a global optimal
interpolation function f by minimizing the following objective function:

Rg =
l∑

i=1

L(yi, f(xi,w)) + γA||f ||2F + γI ||f ||2I , (2)

where the additional penalty term ||f ||2I reflects the intrinsic geometric information of
the marginal distribution p(x). ||f ||2I can be approximated by

||f ||2I =
∑
i,j

(f(xi)− f(xj))
2Wij = fTLf, (3)

where Wij is the edge weight in the data adjacency graph which reflects the affinity
between xi and xj , f = (f(x1), · · · , f(xn))T is the intensity label vector of all samples.
And L = D −W ∈ <n×n is the graph Laplacian where D is a diagonal degree matrix
with D(i, i) =

∑
j Wij .

B. The Local Principle
Actually, as pointed out by [13], it is usually not easy to find an unique function which

holds good predictability in the entire data space. But it is much easier to seek some
functions that are capable of producing good predictions on some specified regions of the
input space. Accordingly, we resort to the local learning model to improve the accuracy
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of predictions. More specially, for each data point xi ∈ X, we consider the linear affine
transformation function fi(·; wi, bi) defined as follows:

fi(xi; wi, bi) = wT
i Φ(xi) + bi, (4)

where wi and bi are the weight vector and bias of the linear estimator, Φ(xi) ∈ <d×1

is the intensity label vector of four 8-connected neighboring samples of xi; fi(xi) is the
estimated intensity label of xi.

To compute the model parameters, we split the whole input space into c local neigh-
borhoods and formulate model learning as a set of optimization problems. It is usually
more effective to minimize the following local cost function for each neighborhood
Ni(1 ≤ i ≤ c):

J i
l =

l∑
j=1

K(xj − ci, εi)L(yj, fi(xj; wi, bi)) + γA||wi||2F , (5)

where K(xj − ci, εi) is a local kernel centered at ci with width εi.
In this way, we define a function f with parameter (wi, bi) for each local region Ni

centered at ci, that is, we define c local interpolation functions {fi}ci=1. Now it is natural
to add together the losses estimated on all of the c neighborhoods, and the total local
structural risk is

Jl =
c∑

i=1

J i
l . (6)

Now let us return to the semi-supervised learning scenario, which aims to learn from
both labeled and unlabeled data samples. In some bridge regions (e.g., regions connecting
different texture or objects), the number of label points is usually not enough to train a
robust predictor. To solve this problem, we propose to introduce a set of pseudo labels
{f1, f2, · · · , fn} playing the same role as in some Bayesian methods such that fi directly
determines the final estimated label of xi. Then we can redefine the total local structural
risk as

Jl =
c∑

i=1

n∑
j=1

K(xj − ci, εi)L(fj, fi(xj; wi, bi)) + γA||wi||2F . (7)

In this way, interpolation models are trained locally using {xi, fi}ni=1. Note that by
minimizing Jl we can obtain the optimal {fi}ni=1 and {(wi, bi)}ci=1.

C. Local and Global Consistency
Recalling the graph-Laplacian regularization framework introduced before, we may

also expect fi to have some geometrical properties. More concretely, we hope {fi}ni=1

to be sufficiently smooth with respect to the intrinsic data graph. Ultimately, we can
construct a unified objective function which uses both labeled and unlabeled data and
achieves local and global consistency:

Rl =
l∑

j=1

L(yj , fj) + λ ·

(
c∑

i=1

n∑
j=1

K(xj − ci, εi)L(fj , fi(xj ;wi, bi)) + γA||wi||2F

)
+ γI fT Lf, (8)

where the first term is called as prediction loss, and its minimization will cause fi
sufficiently close to yi on the labeled data points. The second term is called as local
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structural loss, and its minimization will cause f to the have the desired properties as we
minimize Eq.(7) regarding fi as the label of xi. These two terms punish the predictability
and complexity of the local prediction functions, which are therefore called as local
regularization. The third term is called as manifold regularization term, which penalizes
the smoothness of the intensity labels over the entire data graph and is thus referred as
global regularization.

III. IMPLEMENTATION DETAILS

In the previous section, we introduce the global and local principal for image super-
resolution, and construct a unified framework to perform transductive regression with
local and global consistency. To derive a practical image interpolation algorithm, we
should define a proper local kernel K and derive an efficient solution for the objective
function defined in Eq.(8). In the following, let us take these two issues into account.

A. Patch-based Bilateral Kernel Weights
In the proposed framework, local kernel weights play a very important role. We hope

local kernel weights could provide the prior with the flexibility to model explicitly the
local salient features of an image, and could efficiently handle the statistical outliers in
transductive regression.

Some efforts in other image processing tasks have been initiated in this direction.
bilateral filter [14] is proposed to combine gray levels based on both their geometric
closeness and their photometric similarity. The bilateral weights can be represented by
the following equation:

K(xj − ci, εi) =
1

Ci

exp

{
−||xj − ci||2

ε2i

}
exp

{
−||y(xj)− y(ci)||2

ε2i

}
, εi > 0, (9)

where Ci is the normalization factor. The underlining idea of the bilateral filtering is
to do the smoothing according to pixels not only close in the space domain, but also
close in feature domain as well, thus the edge sharpness is preserved by avoiding the
cross edge smoothing. Bilateral filter performs well in presence of moderate noise, but the
comparison of the grey level or color values at a single pixel is no more robust when these
values get noisier. This drawback is overcome by the non-local-means algorithm [15],
in which each weight is proportional to the similarity between the local neighborhood
of the pixel being processed and the neighborhood corresponding to other image pixels.
The non-local-means weight is defined as follows:

K(xj − ci, εi) =
1

Ci

exp

{
−G · ||SW (xj)− SW (ci)||2

ε2i

}
, εi > 0, (10)

where G is a Gaussian kernel used to take into account the distance between the cen-
tral pixel and other pixels in the patch, and SW (x) represents the pixel patch whose
components are intensity values of pixels in the similarity window centered on x. This
patch comparison permits a reliable similarity measure involving pixels which can fall
far away from each other.

Image priors in product form are very attractive since they have the ability to enforce si-
multaneously many properties on an image. In this paper, we combine the edge-preserving
property of bilateral filter and the robust property of non-local-means weight to design
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efficient local kernel weights, which are called patch-based bilateral kernel weights as
define in Eq. (11).

K(xj − ci, εi) =
1

Ci

exp

{
−||xj − ci||2

ε2i

}
exp

{
−G · ||SW (xj)− SW (ci)||2

ε2i

}
, εi > 0.

(11)
For the data adjacency graph in manifold regularization term, the affinity weight Wij can
be computed in the same way.

B. Optimizing the Objective Function
Now return to the total local loss defined in Eq. (7). With the local kernel K defined

above and the loss function L(·, ·) defined as square loss, the total local loss can be
further formulated as

Jl =
c∑

i=1

∑
xj∈N (xi)

θ(xi,xj)(w
T
i Φ(xj) + bi − fj)2 + γA||wi||2, (12)

where θ(xi,xj) is the non-local-means part of K, and N (xi) represents the local neigh-
borhood centered at xi. Similarly, the local structural loss in each neighborhood can be
rewritten as

J i
l =

∑
xj∈N (xi)

θ(xi,xj)(w
T
i Φ(xj) + bi − fj)2 + γA||wi||2. (13)

Let

Gi =

[
ΦT

i 1√
γA · Id 0

]
,Φi = [Φ(xi1),Φ(xi2), · · · ,Φ(xini

)], f̂i = [fi1 , fi2 , · · · , fini
, 0T ]T ,

(14)
where xij is the j-th neighbor of xi, ni is the cardinality of N (xi), Id is the d × d
identity matrix, 1 = [1, 1, · · · , 1]T ∈ <ni×1 and 0 is a d× 1 zero vector, Eq. (13) can be
formulated in the matrix form as

J i
l =

(
Gi

[
wi

bi

]
− f̂i

)T

· V ·
(

Gi

[
wi

bi

]
− f̂i

)
, (15)

where V = diag
(
θ(xi,xi1), θ(xi,xi2), · · · , θ(xi,xini

), 1, · · · , 1
)
∈ <(ni+d)×(ni+d). V is a

diagonal matrix, so the above equation can be further formulated as

J i
l =

(
Gi

[
wi

bi

]
− f̂i

)T (
V

1
2

)T
· V 1

2

(
Gi

[
wi

bi

]
− f̂i

)
=

(
V

1
2 Gi

[
wi

bi

]
− V

1
2 f̂i
)T (

V
1
2 Gi

[
wi

bi

]
− V

1
2 f̂i
)
.

(16)

Let G̃i = V
1
2 Gi and f̃i = V

1
2 f̂i, the above equation becomes

J i
l =

(
G̃i

[
wi

bi

]
− f̃i

)T (
G̃i

[
wi

bi

]
− f̃i

)
. (17)
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To derive the optimal transformation parameters (wi, bi), we take the derivative of the
loss function J i

l with respect to (wi, bi) and set the derivative to 0, then the optimal
solution can be represented by[

wi

bi

]∗
= (G̃i

T
G̃i)

−1G̃i

T
f̃i (18)

With this solution, the total structural loss defined in Eq. (12) becomes

Jl =
∑
i

J i
l =

∑
i

f̃i
T

Ĝi

T
Ĝif̃i, (19)

where Ĝi = I− G̃i(G̃i

T
G̃i)

−1G̃i

T
. For Ĝi, we have the following theorem.

Theorem 1. G̃i is a orthogonal projection matrix
According to the property of orthogonal projection matrix, Jl can be rewritten as

Jl =
∑
i

J i
l =

∑
i

f̃i
T

Ĝif̃i. (20)

We split the matrix Ĝi into four blocks after the ni-th row and column:

Ĝi =

[
Ai Bi

Ci Di

]
, (21)

where Ai ∈ <ni×ni . Let fi = [fi1 , fi2 , · · · , fini
]T and K = diag

(
θ(xi,xi1), θ(xi,xi2), · · · , θ(xi,xini

)
)
∈

<ni×ni , then

f̃i = V
1
2 f̂i =

[
K

1
2

Id

] [
fi
0

]
=

[
K

1
2 fi
0

]
. (22)

According to Eq. (21) and Eq. (22), we can derive

f̃i
T

Ĝif̃i = [fTi K
1
2 0T ]

[
Ai Bi

Ci Di

] [
K

1
2 fi
0

]
= fTi K

1
2 AiK

1
2 fi = fTi Âifi. (23)

For Âi, we have the following theorem:
Theorem 2.

Âi = Ini
−
(

ΨTF−1i Ψ +
ΨTF−1i ΨΥΥTΨTF−1i Ψ

1− e
− ΨTF−1i ΨΥΥT

1− e
− ΥΥTΨTF−1i Ψ

1− e
+

ΥΥT

1− e

)
,

(24)
where ΨT = K

1
2 ΦT

i , Υ = K
1
2 1, and Fi = ΨΨT + γAId, e = ΥTΨTF−1i ΨΥ.

Let f = [f1, f2, · · · , fn]T ∈ <n×1 be the intensity vector of all samples, f̂ = [fT1 , f
T
2 , · · · , fTc ] ∈

<(ni×c)×1 be the concatenated label vector , and defining the selection matrix S which
is a 0-1 matrix with Sij = 1 if xj ∈ N (xi), we can get f̂ = Sf. We further define the
block-diagonal matrix

G =

 Â1 0
. . .

0 Âc

 ∈ <(ni×c)×(ni×c),

then Eq. (20) can be rewritten as
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Jl = fTSTGSf. (25)

Let M = STGS, so finally Eq. (12) can be rewritten as

Jl = fTMf. (26)

Therefore, we can derive the final formulation of the loss function

Rl = (f− y)TJ(f− y) + λfTMf + γIfTLf, (27)

where y records the intensity labels of the labeled image samples and J ∈ <n×n is
a diagonal matrix whose diagonal elements are one for labeled samples and zero for
unlabeled data. By taking ∂Rl/∂f = 0, we can derive a closed-form solution as

f = 2
(
2J + λ(M + MT ) + 2γIL

)−1 Jy. (28)

C. Discussion
In our method, the first term in Eq. (27) is related to intensity label fitting, which

means that the predicted intensity labels of the LR image samples should not change
too much from the original ones. The second term is the sum of local loss on all
neighborhoods, which means the predicted intensity labels should not change too much
between neighboring samples. The third term is the graph-Laplacian based manifold
regularization term, which keeps the intensity labels globally smooth and can alleviate
the insufficient training of the local models and make them more robust. Meanwhile,
intensity label information is propagated from labeled samples to unlabeled ones through
Laplacian graph, and finally a global optimal propagation is achieved.

It is much easier to understand our method from a mixed-regularization perspective.
That is, the last two terms of Eq. (27) can both be reviewed as regularization terms
with different regularization matrices, one is derived from local learning and the other is
derived from global geometric. Different types of regularization matrices may better reveal
different (maybe complementary) information and thus could provide a more accurate
predictor.

IV. EXPERIMENTAL RESULTS

In this section, experimental results are presented to demonstrate the advantage of the
proposed TRLGC algorithm. For thoroughness and fairness of our comparison study, we
exploit some widely used images as test ones. Fig. 1 lists the used seven sample images
in our experiments. Our algorithm is compared with some representative work in the
literature. More specifically, seven approaches are included in our comparative study: (1)
bicubic interpolation [2], (2) locally-adaptive zooming algorithm (LAZA) [3], (3) new
edge-directed interpolation (NEDI) [4], (4) DFDF [5], (5) kernel regression (KR) for
image reconstruction [6] (6) SAI interpolation [7], (7) our approach.

Following the same setting as SAI, we downsample these HR images by a factor of
two in both row and column dimensions to get the corresponding LR images, from which
the original HR images are reconstructed by the proposed and competing methods. Since
the original HR images are known in the simulation, we can compare the interpolated
results with the true images, and measure the objective and subjective quality of those
interpolated images. Table I tabulates the objective quality comparison with respect to
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Fig. 1: Seven sample images in the test set.
TABLE I: The PSNR(dB)and SSIM results comparison of seven interpolation algorithms

Image
Bicubic LAZA NEDI DFDF KR SAI TRLGC

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Airplane 30.17 0.9119 30.17 0.9122 28.74 0.9117 30.53 0.9144 29.11 0.9049 30.72 0.9177 30.88 0.9183
Tower 39.84 0.9882 38.43 0.9875 39.85 0.9905 39.69 0.9892 40.28 0.9897 41.49 0.9919 41.73 0.9940
Girl 31.54 0.7651 31.84 0.7809 31.95 0.7884 31.81 0.7741 31.92 0.7775 31.77 0.7702 32.15 0.7890

Peppers 27.58 0.9105 27.51 0.9050 27.21 0.9082 27.83 0.9152 27.02 0.9122 27.66 0.9200 27.99 0.9208
Flowers 25.44 0.6759 25.65 0.6850 25.70 0.6929 25.74 0.6844 25.79 0.6848 25.96 0.6973 26.19 0.7015

Door 32.23 0.8617 32.28 0.8618 32.22 0.8587 32.27 0.8607 32.20 0.8505 32.46 0.8643 32.60 0.8660
Splash 33.65 0.9293 33.45 0.9281 33.38 0.9290 33.79 0.9256 33.38 0.9245 33.54 0.9298 33.99 0.9320

Average 31.49 0.8632 31.34 0.8658 31.29 0.8685 31.67 0.8662 31.39 0.8634 31.94 0.8702 32.17 0.8745

PSNR of the seven different methods when applied to the seven test images of Fig. 1.
It can be observed that for all instances the proposed TRLGC algorithm consistently
works better than other methods. Compared with global methods, such as bicubic, the
proposed method can significantly improve the objective quality of generated HR images.
The average gains is 0.68dB. Our method also outperforms the edge detection based
local methods, such as LAZA and FDI, for which the average gains are 0.83dB and
0.5dB respectively. By exploiting labeled and unlabeled samples together and keeping
local and global consistency in transductive regression, our method leads to a significant
performance benefits compared with kernel regression interpolation. The gain is 0.78dB
in terms of average PSNR. NEDI and SAI are both based on auto-regression model. Our
method is more effective compared with them. The TRLGC method can improve 0.88dB
and 0.23dB with respect to average PSNR compared with NEDI and SAI respectively.

PSNR can measure the intensity difference between two images, but it may fail to
describe the visual perception quality of the image. How to evaluate the visual quality
of an image is a very difficult problem and an active research topic. The SSIM index
proposed in [16] is one of the most commonly used measures for image visual quality
assessment. We further use SSIM to measure the visual quality of these interpolation
algorithms. From Table I, it could be seen that TRLGC again achieves the highest average
SSIM scores among the competing methods. It means our method can keep the image
structure more wonderful.

V. CONCLUSION

In this paper, we presented an efficient image super-resolution algorithm based on
transductive regression with local and global consistency. Our method is novel in two
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aspects: (1) both labeled and unlabeled data are explored in the process of model learning.
Such a transductive manner is particularly crucial for some bridge regions (e.g., regions
connecting different texture or objects) and can further boost the performance; (2) local
and global consistency is achieved during regression, which can make the predictor more
robust. These two aspects can be cast into a unified optimization framework, which can
be efficiently solved with a closed-form solution. Experimental results on benchmark test
images demonstrate that the proposed method achieves very competitive interpolation
performance with the state-of-the-art interpolation algorithms.
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