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Abstract

In this paper we provide a framework of detection
and localization of multiple similar shapes or object in-
stances from an image based on shape matching. There
are three challenges about the problem. The first is
the basic shape matching problem about how to find
the correspondence and transformation between two
shapes; second how to match shapes under occlusion;
and last how to recognize and locate all the matched
shapes in the image. We solve these problems by using
both graph partition and shape matching in a global
optimization framework. A Hough-like collaborative
voting is adopted, which provides a good initialization,
data-driven information, and plays an important role in
solving the partial matching problem due to occlusion.
Experiments demonstrate the efficiency of our method.

1. Introduction

We study the problem of detecting and locating mul-
tiple object instances of similar shapes from an image.
It is a challenging vision task to find and separate the
target objects that matched with a template example, be-
cause of the various transformations, deformations and
especially occlusion between objects. There are gener-
ally three challenging problems. Firstly, due to the simi-
larities in appearance and the overlap between objects in
such images (e.g. Fig. 1), it is tough for object detectors
based on image patches. Considering the shape similar-
ities, the primary problem is to figure out the matching,
transformation and deformation between shapes. Sec-
ond, when occlusion happens traditional shape match-
ers always get into trouble. The challenge is how to
optimally match the incomplete shape parts to the tem-
plate. Finally in a cluttered image with noisy distracters,

an unknown number of target object instances which
might overlap are difficult to detect and segment.

In the literature, classical shape matching methods
aim at calculating the correspondence and transforma-
tion between two shapes, such as the Shape Context [3]
and TPS-RPM [5]. They are able to solve the first prob-
lem above. Recently, shape matching and object de-
tection have been more actively studied and combined
together to deal with more challenging situations. For
example, the proposed Contour Context Selection [11]
explores salient shape features and contextual relation-
ships among shape parts to improve shape matching.
Ferrari et al. [6] detect objects by learning shape models
of object classes. However most of the previous related
work mainly focuses on the one-to-one shape matching
problem. Although in [6] some detected results of mul-
tiple objects are shown, there is little occlusion; it does
not provide a globally optimized method and requires
training data to learn the class-specific shape models
and intra-class variations in advance.

Lin et al. [9] provide a graph matching method to
find matched structures, taking advantage of collabo-
rative and competitive interactions. Nevertheless they
have not yet considered the problem of finding multiple
similar object instances in challenging situations. Be-
sides, another related work on texture segmentation [1]
is reported to extract 2.1D texels. However, it runs in
an unsupervised way without any information about the
target object template. When the object consists of mul-
tiple texels, it would be hard to decide whether a seg-
mented element is the whole object or a part of it.

In this paper we present a Bayesian optimization
framework utilizing graph partition and shape matching
to detect and locate multiple occluded object instances,
given a predefined template. Note that the number of
matched objects is to be estimated; there exist noisy
distracters, as well as occlusion which leads to partial
matching between each object and the template. We



solve this problem as follows. (1) Initialize the graph
partition by a Hough-like voting, which utilizes the
collaborative relationships between object parts in the
space of affine transformations; (2) Match each poten-
tial target object to the template based on the TPS-RPM
method [5], in which the collaborative affine transfor-
mations generated as in (1) are used to cope with the
partial matching problem; (3) Solve the graph parti-
tion problem under the Swendsen-Wang Cuts frame-
work [2], in which the collaborative relations are used
as data-driven information. We further accelerate the al-
gorithm by adding another two dynamics of the Markov
chain – birth and death.

In the rest of the paper we introduce our method of
graph partition based on shape matching in Section 2.
The experimental results are demonstrated in Section 3.
Finally Section 4 concludes the paper.

2. Approach

Given an input image containing multiple similar ob-
ject instances and a predefined template as the reference
(in this paper it is manually labeled by the user), our
purpose is to find all the matched object instances in the
image. We formulate this problem by graph partition
and labeling, based on shape matching between each
partitioned subgraph and the template.

2.1. Problem formulation

We construct a graph G = (V,E) based on the shape
features obtained from the input image. Specifically the
shape features are edge curvelets based on the Berkeley
edge detector [10]. Each graph node in V represents
a curvelet. E denotes the edges between neighboring
graph nodes. Similarly the template is represented by a
graph T , by dividing the template contour into several
small curvelets as basic shape units for matching.

There exist K potential target object instances in the
graph G (K is unknown). Each object is represented
as a subgraph Gi(i = 1, 2, ...,K). Let G0 be the set
of all the unmatched noise curvelets. So the partition
for the graph G is to be estimated. Besides, in order to
match each potential object Gi to the template T , we
need to estimate the transformation Ai (here we use the
affine transformation for computational conveniences),
deformation ωi and the correspondence Mi of the nodes
between Gi and T . The goal is to maximize a posteriori,

W ∗ = arg max
W

p(W |G, T ) (1)

where W = (K, G0, {Gi, Ai, ωi,Mi}K
i=1).

Figure 1. Multiple object recognition and location.
(a)The template; (b)The input image; (c)The initial col-
oring by voting (the curvelets marked by red circles are
the ambiguous ones relating to more than one instance);
(d)The partition result (with the thin blue ones being
noises); (e)The located and completed objects, where
the dashed lines are the completed shapes.

2.2. Initialization by collaborative voting

Voting-based methods are popularly used in object
detection [8][4][7]. Here we develop a collaborative
Hough-like voting in the space of affine transforma-
tions. Due to the pose variances among objects and
the symmetries of the shapes, each curvelet in the im-
age might be matched to different parts of the template,
which generates multiple corresponding affine transfor-
mations. This always results in spurious voting. Con-
sidering that the parts of the same object should be of
consistent affine transformations to the template, our
voting scheme is designed under this collaborative con-
straint. Specifically, we implement the voting in a 3D
space spanned by the 2D translation (x- and y-axis) and
rotation. This space is uniformly divided into small
cells. Each matching between an object curvelet and
a part of the template induces a vote in this space.

Each vote is weighted by w = L · e−
ε2

b2 to encour-
age those of large curvelet length L, and small match-
ing error ε (ε is the total Euclidean distances between
the transformed object curvelet and the corresponding
part on the template). b is a controlling parameter set as
b = L̄/3 (L̄ is the average length of the curvelets in the
image). Three hierarchical levels of curvelet groups are
adopted for voting – the original curvelets, the pairwise
and triple-wise curvelets, in order to make the voting
more robust to noises. Those over-stretched and mis-
matched votes with large errors are removed in advance.

The top K ′ ranked voting results are taken as the
initialized locations and transformations of the candi-
date objects. The related curvelets voting for the same
candidate object are colored with the same label. Note



that there may be ambiguous curvelets that are related
to more than one object. For such a curvelet, we se-
lect the most strongly collaborative object with it, and
assign the label of the object to the curvelet. Then we
have an initial coloring of the graph.

2.3. Partition based on shape matching

With the above initialization, we adopt the effec-
tive sampling algorithm Swendsen-Wang cuts [2] to
solve the graph partition problem under the MAP for-
mulation in Eq. (1). According to the Bayesian rule,
p(W |G, T ) ∝ p(W |T )p(G|W,T ). The prior model is

p(W |T ) = p(K)p(G0)p(G1...GK)
K∏

i=1

p(Ai, ωi,Mi|T ) (2)

where it is expected to find limited number of target
objects, p(K) ∝ exp{−λ1K}; there exist a number
of noises, p(G0) ∝ exp{−λ2|G0|}. The prior on the
partition follows the Potts model, in which neighboring
nodes should be more likely to have the same label l,
p(G1...GK) ∝ exp{−

∑
(m,n)∈E 1( lm = ln )}. The

transformation Ai, deformation ωi and correspondence
Mi are of uniform prior distributions. λ1 and λ2 are
scaling factors to balance the prior terms (e.g. we set
λ1 = 0.5, λ2 = 0.2 for Fig. 1).

The likelihood term is measured by the similarity of
each potential object to the template. It is computed by
their matching cost based on the TPS-RPM method.

p(G|W,T ) =
K∏

i=1

p(Gi|Ai, ωi,Mi, T ) (3)

p(Gi|Ai, ωi,Mi, T ) = exp{−Etps(Gi, T )} (4)

Etps is the TPS energy, calculated by Eq. (13) in [5].
Due to occlusion as well as the incomplete shapes

to be matched during the partition process, there is the
partial matching problem, i.e., how to find the corre-
sponding part on the template and match the incomplete
shape to it. To solve this problem, we take advantage
of the affine transformations induced as in the collab-
orative voting scheme in Section 2.2. The nodes of Gi

are used to vote for a collaborative affine transformation
A∗

i to the template. And Gi is transformed according to
A∗

i , which generates G∗
i and its corresponding parts on

the template T ∗. Then the TPS-RPM matching is done
based on G∗

i and T ∗.
Implementation by the Swendsen-Wang Cuts. To

sample a connected component V ∗, the probability of
turning on an edge is set proportional to the collabora-
tive strength of the nodes (in terms of their affine trans-
formations to the template). As in [2], the Markov chain

dynamics – split, merge and regroup are adopted, in
which one connected component can be split to generate
a new subgraph (i.e. potential object), merged into an
existing subgraph or grouped to another subgraph from
an old one, respectively. Besides, we add two new dy-
namics – birth and death to accelerate the algorithm.
A new subgraph can be created from the noises and
an existing one may degenerate to noises. We use the
Metropolis method here. The probability of accepting
one transition is α(W → W ′) = min

{
1, p(W ′|G,T )

p(W |G,T )

}
.

For each kind of dynamics,

p(W ′|G, T )
p(W |G, T )

=



e−λ1+λ2n · p(G′
l′ |T ), birth

eλ1−λ2n · 1
p(Gl∗ |T )

, death

e−λ1 ·
p(G′

l′ |T )p(G′
l∗ |T )

p(Gl∗ |T )
, split

eλ1 · p(G′
l
|T )

p(Gl|T )p(Gl∗ |T )
, merge

p(G′
l
|T )p(G′

l∗ |T )

p(Gl|T )p(Gl∗ |T )
, regroup

where l∗ is the label of the connected component V ∗

in G, n = |V ∗|, l′ = K + 1, l ∈ {1, ...,K}. We
use the collaborative transformations as data-driven in-
formation. For example, a sampled connected compo-
nent is proposed to merge or regroup to the most col-
laborative subgraph; strong collaborative curvelets from
noises may birth into a new object, while a subgraph of
weekly collaborative nodes may probably die.

When the best partition is sampled, we can recognize
and locate the multiple target instances according to
their related curvelets based on the labeling results. The
occluded parts are completed by transforming the tem-
plate to the objects, according to the estimated corre-
spondences and transformations (as shown in Fig. 1, 2).

3. Experiments and discussions

Fig. 2 shows some selected results of our exper-
iments. The collaborative voting gives good initial-
izations for coloring, although there are ambiguous
curvelets (marked by red circles) and spurious votes.
The initialization greatly reduces the computational
costs and accelerates the convergence of the algorithm.

In our implementation the matching energy Etps is
found to be one of the most important factors that af-
fect the final results. It is easy to fall into local max-
ima by directly using the TPS-RPM algorithm if the
shape is severely occluded; while our strategy provides
an effective way to solve the partial matching prob-
lem. Meanwhile, because the initial transform provides
a good alignment between the potential object instance
and the template, we can lower the initial temperature
in the TPS-RPM matching for quicker convergence.



Figure 2. Experimental results. (a)The templates;
(b)The input images; (c)The initial coloring by voting;
(d)The partition results; (e)The results of located and
completed objects.

However, this partial matching strategy tends to relax
the penalties on the incomplete matching cases, which
may lead to too many spurious matched partial objects.
So we add the evaluation of the completeness for each
potential object. Also the parameter λ1 in the prior
model can be adjusted to avoid this problem. Never-
theless some noises are labeled to nearby objects by
mistake (e.g. in the apple image), for that they help
to form more complete shapes very similar to the tem-
plate. And the underlying occluding relations are not
estimated here.

In the goose image it detects a “smaller” one for the
right most goose. The reason is some contour curvelets
are not detected due to the color similarity between the
goose body and the water, which leads the outer contour
to be of large matching cost.

Table 1 lists the performance of our method. The ra-
tio of the correct labels is computed based on the num-
ber of curvelets with the right coloring. For the Hough
voting it excludes the wrong and ambiguous ones. The
recognized object rate is computed based on the total
area of the correctly localized objects in each image.
The missing objects and hallucinated spurious objects
are considered as errors.

4. Conclusion

This paper provides a framework to detect, locate
multiple object instances that matched a given template.

Table 1. Our average performance

Labels of Hough Labels of SWC Recog. objects
78.04% 89.11% 89.82%

A global optimization algorithm based on graph parti-
tion and shape matching is introduced. It is effective
by the good initialization strategy and data-driven in-
formation based on the collaborative voting. One of the
limitations is that we currently only use the shape infor-
mation. In the future we will enrich the object model
by adding appearance model, pose estimation to obtain
more accurate results.
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