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Depth Structure Preserving Scene Image Generation

Wendong Zhang, Bingbing Ni, Yichao Yan, Jingwei Xu, Xiaokang Yang
Shanghai Jiao Tong University

{diergent,nibingbing,yanyichao,xjwxjw,xkyang}@sjtu.edu.cn

Abstract

Key to automatically generate natural scene images is
to properly arrange among various spatial elements, es-
pecially in the depth direction. To this end, we introduce
a novel depth structure preserving scene image generation
network (DSP-GAN), which favors a hierarchical and het-
erogeneous architecture, for the purpose of depth structure
preserving scene generation. The main trunk of the pro-
posed infrastructure is built on a Hawkes point process that
models the spatial dependency between different depth lay-
ers. Within each layer generative adversarial sub-networks
are trained collaboratively to generate realistic scene com-
ponents, conditioned on the layer information produced by
the point process. We experiment our model on a sub-set of
SUNdataset with annotated scene images and demonstrate
that our models are capable of generating depth-realistic
natural scene image.

1. Introduction
Image generation has been a promising topic recently.

Among the variant methods, generative adversarial network
(GAN) shows enormous potential and becomes the most
popular method for image generation. It has been applied
to numerous domains such as image synthesis [17], image
editing [3], image super-resolution [14], etc. In contrast
to previous image generation tasks which mainly focus on
numbers, faces or birds, this work is dedicated to generate
natural scene images, which has broad application.

The main challenge of generation of scene images is how
to well organize the spatial placement of various visual ele-
ments (e.g., mountain, river, road, sea, etc.) Spatial relation-
ship between visual elements often refers to spatial proxim-
ity information in the image plane (x-y plane) as well as the
ordering information in the depth channel. For example, sea
and sky are often nearby to each other in the image, and a
river often appears closer to the viewer than the mountain
behind it. How to well encode spatial relationship between
visual elements is the key to generate realistic natural scene
images. On one hand, although two-dimensional spatial
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Figure 1. The Hawkes process in image generation in the depth
direction. We set ’sky’ as the label of first layer at depth t0 and
generate it as the background. Then, we randomly choose two
more depth t1, t2 where the possibility of different class of layers
can be calculated, and the largest one determines what kind of
output layer will be generated at depth ti, i = 1, 2. This process
is executed sequentially along the depth and generate the entire
image.

arrangements could be modeled by Markov random field
based methods [30], there lack systematic solutions to well
model the dependency information in the depth direction.
It is mainly due to the fact that restriction in depth order is
more explicit than that in the x-y image plane and should
not be violated. Further, often high order dependency in the
depth channel needs to be considered, rather than only pair-
wise relationship. Namely, one layer of object is not only
dependent on the depth layers around it, but also influenced
by the complete depth structure of the image. For example,
suppose the desert is in the farthest depth, some high trees
are in the middle and a river is the nearest element, in this
scene, if we only care about pair-wise relation between trees
and river, it is alright. However, with the desert appears in
the farthest depth, the high trees seems absurd even with a
river. These facts make depth order preserving image gener-
ation more challenging. On the contrary, depth correctness
is even more important for the authenticity of scene photo
instead of the degree of the resolution.

Unfortunately, traditional GAN methods do not explic-
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itly constrain that the generated image well follows the
depth arrangement property for various visual elements. It
is thus demanding to develop principled ways for depth or-
der aware natural scene image generation. To this end, we
are motivated by the success of point process in a wide
range of applications such as market modeling [25], earth
quake prediction [15] and social relations modeling [32]. In
a point process, two kinds of influences, excitation and inhi-
bition, are proposed to model the dependency between tem-
poral events, which might not be temporally near-by, i.e.,
events that are not temporally nearby can also have effect on
the current event (high-order dependency). Similarly, point
process can also be utilized to model the high-order depen-
dency in the depth direction. For example, if we already
know that the sky appears as background and the beach is
the nearest element to us, we can infer that the sea will be
visually in the middle position with high confidence. We
therefore propose a novel generation network called depth
structure preserving scene image generation network (DSP-
GAN).

The proposed network structure is hierarchical and het-
erogeneous, as illustrated in Figure 1. On top is an asyn-
chronous layer generation module built on point process.
In order to model depth dependency among visual ele-
ments, the input image is first decomposed into differ-
ent layers located at different depth in scene to obtain
asynchronous event-like visual element sequence. The
asynchronous network is then applied to model the de-
pendencies between layers and stochastic layer sequences
are simulated for generating novel depth layers. At bot-
tom is a layer-dependent hierarchical generative adver-
sarial network to generate layer-dependent natural image
patches/segments/part. In particular, we propose an en-
hanced version of composite generative adversarial net-
work [12], which uses multiple generators and alpha blend-
ing to generate depth-specific image parts. We also pro-
pose an end-to-end training procedure for hierarchical GAN
training. We have experiments on a subset of SUN2012
dataset [26] which contains natural scene images with com-
plicated spatial structure, and our generated samples show
high quality and natural results, along with depth-structure-
realistic effects.

The rest of this paper is organized as follows. In section
2, some related works in image generation and Hawkes pro-
cess are reviewed. In section 3, we explain the details of our
work and it is further decomposed into three subsection fo-
cus on the application of Hawkes, architecture of our model
and the value function we used in our training process. We
give our generated images in section 4 and compare them
with images generated by other methods and discuss the re-
sult in section 5.

2. Related Work
Image generation. Recent approaches proposed for

generating realistic images could be mainly categorized
into three kinds of models: variational autoencoder
(VAE) [5], generative adversarial network (GAN) [6] and
auto-regressive model [1].

Auto-regressive models use a product of conditional dis-
tributions to regress the joint distribution of the raw pixels in
the image based on deep neural networks [24, 7, 18]. How-
ever, because of straightly extracting the iner-dependencies
between pixels, structures in image are omitted and it is hard
to generate more realistic images.

Variational autoencoder (VAE) is a famous approach
to unsupervised model complicated distribution and have
been applied in many generative models especially im-
age generation. It contains a encoder used to approxi-
mate a posterior distribution and a decoder used to recon-
struct data from latent variables [5]. Gregor et al. com-
bine the recurrent neural networks with variational autoen-
coders and introduces attention mechanism to build a se-
quential generative model [8]. Yan et al. develop a lay-
ered generative model based on conditional variational au-
toencoders [28]. Although different kinds of complicated
data could be modeled by VAEs, generating more realistic
images is still very hard for it. Generative adversarial net-
work (GAN) [6] is another popular approach for generative
model. Many recent works are based on GAN. Some works
focus on the architecture of original GAN for better perfor-
mances [31, 4, 20, 2]. Conditional generative adversarial
network [16] constrains the output by adding extra infor-
mation to the input and many works follow this approach to
solve more complicated tasks. Other applications such as
image edition [3], image super-resolution [14], style trans-
formation [23, 11] and unsupervised representation learn-
ing [21] also shows impressive results.

Hawkes process. Hawkes process [13] is a classical type
of self-exciting point processes for continuous-time events
modeling. What self-exciting means is that the occurrence
of one event will increase the possibility of others for some
period of time. Hawkes process has been applied in vari-
ant domains such as market modeling [25], earth quake
prediction [15], crime modeling [22] and even trailer gen-
eration [27]. Additionally, multidimensional Hawkes pro-
cess [9] is also proposed to tackle the problem of extracting
hidden influence network. In computer vision, spatial point
processes are introduced for object detection task [19].

In this paper, we take advantages of both Hawkes pro-
cesses and generative adversarial networks to build a depth
structure preserving scene image generation network. We
focus more on how to model the spatial dependency be-
tween objects in images. Our works are build on [12] which
uses recursive structure and generates images part-by-part.
Another closely related work is proposed by [29]. It also
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Figure 2. The architecture of the DSP-GAN.

employs a recursive structure but attempt to synthesise im-
age composition by three attributes: appearance, shape, and
pose. However, our model differs in following ways: 1)
We focus more on how to model the spatial dependency
between objects in images and we introduce Hawkes pro-
cesses to tackle this problem. 2) Our separate sub-networks
are trained for generating specific layers and the inputs are
information of the structure instead of random noises. 3)
We experiment our model with natural scene images which
contain more complicated and strict spatial constrains. The
results show that our model is capable of generating realis-
tic images with more complicated spatial structure in depth
channel.

3. Depth Structure Preserving Scene Image
Generation

Most existing image generation methods only employ
2D information which can be directly obtained from train-
ing data. However, relationship among different layers in
depth direction has not been well investigated, especially
for those images with hierarchical spatial structures. Al-
though some related works are proposed [28, 29] for gen-
erating foreground and background layers independently,
these methods cannot be directly applied to more compli-
cated images such as natural scene (i.e., which contain con-
siderable information in depth direction).

To explicitly address this issue, we proposed a DSP-
GAN to explicitly model the relationship of different im-
age depth layers and perform layer-wise image generation,
which is described in Figure 2. The framework proposed
is heterogeneous and hierarchical, which include: 1) a
between-layer generation module which is built on Hawkes

process to model the influence among layers and generate
realistic scene layer structure; and 2) a within-layer genera-
tion module which is conditioned on the depth layer struc-
ture and further generate layer-wise image contents. Note
that although Markov random field based approaches [30]
can also model between layer relationship, however, depth
structure in scene image are very complex which are far be-
yond pair-wise (i.e., layers nearby) relationship. In contrast,
Hawkes process based approach can well model higher or-
der depth structure and more complex layer-by-layer inter-
action (i.e., even far away layers). Details of the proposed
framework are explained as follows.

3.1. Between-Layer Generation Module

In the depth direction, a natural scene image can be de-
composed into different classes of layers, such as sea, sky,
mountain, etc. All layers are stacked one-by-one to form
the entire image, and there exists strong structural prior for
the spatial arrangement of different layers in image. For
example, suppose that we observe sea in the image, more
likely we will find an island or some rocks in it instead of
forest or grass, and usually a beach would appear nearby.
In other words, there are mutual influence between layers.
For example, layers appear at farther depth will increase the
probability of specific layers at nearer depth. In this work,
we aim to explicitly model relationship among various lay-
ers, i.e., some of the interacting layers are situated far from
each other in the depth direction.

Our proposed method is inspired by the Hawkes pro-
cess [13]. The Hawkes process is originally proposed to
model the relationship between continuous-time events. In
a Hawkes process, each occurrence of event will excite the
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process in the way that the probability of a subsequent oc-
currence is increased for a period of time after the first one.
We adapt the original Hawkes process to our problem based
on the underlying similarity between an event sequence and
a depth layer sequence. Here depth layer sequence means
a sequence of ordered image layers arranged according to
their depth values, along with each layer’s label (e.g., sky,
sea, grass). Formally, we denote ti ∈ [0, 1] as the depth of
i-th layer in sequence, where ti = 0 means the farthest lo-
cation and ti = 1 means the nearest w.r.t. the image plane,
and ui ∈ 1, 2, . . . , U as the predefined label of the same
layer (e.g., 1 represents ’rock’), where U is the total num-
ber of layer class. Then for each image, a depth-ordered
layer sequence can be represented as {(ti, ui)ni=1}, where n
is the total number of layers in the image.

A multi-dimensional Hawkes process is applied to
explicitly model the influence between different layers.
Specifically, we employ a U -dimensional point processNu

t ,
u = 1, . . . , U , and the conditional intensity function for the
u-th dimension can be formulated as:

λu(t) = µu +
∑
i:ti<t

auui
g(t− ti), (1)

where µu is called the ”base intensity” for the u-th Hawkes
process, and g(t) is the decay kernel for modeling the im-
pact trends. While we use exponential kernel g(t) = αe−αt

in this work, other positive kernels can also be embedded
in our framework. Coefficient auui

shows the mutually-
exciting property between the u-th and ui-th dimension.
Suppose u = 1 represents the label of ”rock” and ui = 3
represents the label of ”sea”, the value of auui reflects the
impact intensity to the layer of ”rock” with a layer of ”sea”
appears before it. A large value of auui

means that layers of
class ui are more likely to excite the appearance of layers u
at the subsequent depth. In this way, spatial arrangement in
the depth direction is well modeled.

With the samples c and conditional intensity functions
λu, the log-likelihood function of model parameters Θ =
{A, µ} can be proposed as follows:

L(A, µ) =
∑
c

(

nc∑
i=1

log λuc
i
(tci )−

U∑
u=1

∫ 1

0

λu(t)dt), (2)

where A = (auui) is the collection of mutually-exciting co-
efficients called ”infectivity matrix”, and µ is the collection
of base intensities. Both A and µ can be estimated by max-
imizing the log-likelihood function above using algorithm
ADM4 [32].

For generating new images, layer sequences are sampled
from the learned Hawkes process. Given the information of
the first layer {t1, u1}, at any depth ti, ti > t1, the probabil-
ity of any class of layer can be calculated according to the
intensity functions λu. The one with the largest probability

value will be chosen as the layer class appearing at depth ti
and the result will influence the samples of layers behind it.
This processing can be continued until ti = 1.

3.2. Within-Layer Generation Module

Given the layer sequence sampled from the learned
Hawkes process, generating images with proper spatial dis-
tribution is still challenging. One straightforward way is to
generate each layer separately and combine them together
to obtain the entire image. However, the influence between
different layers is missed if the generator has no access to
previous layers. To solve this problem, a recurrent neural
network, e.g., LSTM [10] is proposed to model the under-
lying dependency in layer sequence.

For a depth layer sequence {(ti, ui)ni=1}, at layer l, we
transform the information of the layer (tl, ul) into a vector
xl by setting the depth tl in the ul-th position. Suppose
tl = 0.5 and ul = 4, then we set the forth value in vector
xl as 0.5 and other elements equal to zero. The vector xl
is further used as the input to a LSTM structure which is
updated as follows:

il = σ(Wixl + Uihl−1 + Vicl−1 + bi), (3)
fl = σ(Wfxl + Ufhl−1 + Vfcl−1 + bf ), (4)
cl = fl · cl−1 + il · tanh(Wcxl + Uchl−1 + bc), (5)
ol = σ(Woxl + Uohl−1 + Vocl + bo), (6)
hl = ol · tanh(cl), (7)

where σ is the sigmoid function, · denotes the element-wise
multiplication operator. W∗, T∗ and V∗ are the weight ma-
trices, and b∗ are the bias vectors. il, fl, ol, gl, cl ∈ RN are
input gate, forget gate, output gate, input modulation gate
and memory cell. The output of hidden unit hl at each time
step will be used as input for each layer-wise image genera-
tor. LSTM structure ensures that the input for layers which
will be generated later contains all the information of layers
generated before. In our model, it means that the generator
is aware of the class and depth of layers which have been
generated before it (in the depth direction). In this way, the
correlations between layers are well mapped from layer se-
quence to generation process.

In our model, generators produce both image layer and
its corresponding mask layer (for final layer fusion) at the
same time. The image layer shows the appearance accord-
ing to the specific label and the mask layer with the value
between 0.0 to 1.0 controls the transparency of image layer
at the same timestep on pixel level. These two layers form
an intermediate image which is not only a component of the
entire image but also used for training the layer-dependent
generator which will be explained later. Given the gen-
erator G1, G2, . . . , Gn, image and mask C1, C2, . . . , Cn,
M1,M2, . . . ,Mn, the generation process of intermediate
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images F1, F2, . . . , Fn can be described as follows:

Ci,Mi = Gi(hi), (8)

Fi = Ci ·Mi, (9)

F =

n∑
i=1

Fi, (10)

where F denotes the final generated image. These elements
are also shown in Figure 2.

3.3. Value Function

Based on the work of [12], extra discriminators
D1, D2, . . . , Dn are added to each independent generator
to form sub-GANs in our model, and the generators are also
connected to the final discriminatorD, which completes the
whole architecture of our generative network.

In our model, each sub-GAN with generator Gi and dis-
criminator Di is trained with the value function as follows:

min
Gi

max
Di

(Exs∼pdata(xs)[logDi(xs)]

+Ehi∼LSTMi
[log(1−Di(Gi(hi)))]),

(11)

where hi represents the hidden unit of the LSTM at timestep
i, and xs is the object pieces segmented according to the
labels from the whole image data x. This value function
means that each sub-GAN is required to generate mean-
ingful layer according to the label and depth we provide.
The whole hierarchical GAN network including the LSTM
structure is trained end-to-end.

Moreover, for the whole generative adversarial network
with generators G1, G2, . . . , Gn, another value function is
proposed:

min
G1,G2,...,Gn

max
D

(Ex∼pdata(x)[logD(x)])

+Eh1,h2,...,hn∼LSTM [log(1−D(
∑
i

Gi(hi))]),
(12)

where
∑
i

Gi(hi) represents the entire image F . This value

function means that we want to modify the final image for
better performance after the generation of specific layers.
These two value functions are trained alternately in our ex-
periment and the algorithm of our model is illustrated in
Algorithm 1.

Additionally, two different loss functions for mask layer
generation are also added to the training process. In train-
ing of the whole generative network, the loss function is as
follows :

LMi = |p−
∑

Mi|+
∑
−(Mi − 0.5)2, (13)

where p is a predefined bound for the sum of pixel value in
mask layer. While in training of each sub-GAN, we only
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Figure 3. Samples of training data. The values in brackets rep-
resent the depth. The first three rows are different layers and the
forth row is the entire image.

constrain the value of each pixel in mask layer to be near
zero or one:

LM ′
i

=
∑

(Mi − 0.5)2. (14)

Both loss functions are added to the generator loss.

Algorithm 1 The algorithm of with-in layer generation
module
Input: training data x, layer sequences t, u, the number of

generators n, mini-batch size m, the number of steps for
training sub-GANs k
Initialize the parameters of all discriminator and genera-
tors, as well as the LSTM network
for number of training iterations do

for k steps do
Sample m data {x1,x2, . . . ,xm} ⊂ x randomly
Sample m layers sequences
{{ti, ui}1, {ti, ui}2, . . . , {ti, ui}m} according
to x and input to LSTM obtain hidden vectors
{{hi}1, {hi}2, . . . , {hi}m}
for i = 1 to n do

Update the generatorGi and discriminatorDi ac-
cording to the value function in Equation 11.

end for
end for
Update the generator G1, G2, . . . , Gm and discrimina-
tor D according to the value function in Equation 12.

end for

3.4. Training and Testing Details

In training phase, the Hawkes process is learned by
optimizing the log-likelihood function Equation 2 with
the ADM4 algorithm proposed by [32] based on a multi-
dimensional Hawkes process. For the generative network,
the input of our model is the layer sequence which contains
the depth and labels of specific image. The sequence is
further transformed into n 128-dimensional vectors where
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Figure 4. Intensity matrix A = (auui) estimated from the training
data.

each vector contains the information of the specific layer
and n is the number of layers in the image. The learn-
ing rate for training the whole hierarchical GAN network
is 0.0002 with RMSPROP optimizer, while for sub-GANs
the learning rate is 0.0001. The number of steps for training
sub-GANs is 8 and the iteration number of training process
is about 8000.

In testing phase, new images are generated based on the
layer sequences sampled form the Hawkes process. For
convenience, we first use the training data to learn the
Hawkes process, and based on the intensity functions we
sample from Hawkes process and obtain some layer se-
quences for testing. The sampling process is organized as
follows: for the fist layer, we always set the label u1 as
’sky’ which is a common background in natural scene and
the depth t1=0, while during the generation a small value
is added to t1 to avoid zero input. Then, to thoroughly
test the capability of our model, two more depth values
t2, t3 ∈ (0, 1], t2 < t3 are randomly selected for the gen-
eration of new layers. After that, according to the intensity
functions we have obtained, we calculate the probability of
all classes of layers at depth t2 and the class with the largest
probability is chosen for generation, the same process is
then performed at depth t3. Although we only generate 3
layers in our experiments, our method is easy to extend to
arbitrary number of layers.

4. Experiments
In this section, we present extensive experimental eval-

uations and in-depth analysis of the proposed method. We
also qualitatively compare our method with some related
generation methods.

As there exists no dataset which contains natural scene
images with depth information, we manually segment the
fully annotated images chosen from SUN2012 dataset [26]
into different layers according to the labels provided with
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Figure 5. Results of our model. The values in brackets represent
the depth. The first three rows are different layers and the forth
row is the entire generated image.

the images. About 800 annotated natural scene images are
used as training data with totally 13 different labels. We
segment all images into two or three layers and resize the
images and layers into 64×64 pixels for training our model.
Some training data are shown in Figure 3.

4.1. Intensity Matrix in Hawkes Process

Given the layers sequences, we optimize the log-
likelihood function in Equation 2 and obtain the intensity
matrix A = (auui

) which represents the mutual influence
between layers with label u and ui. The matrix is shown in
Figure 4.

We can intuitively observe the intensity of the influence
between different classes of layers according to the color
code. We have two observations. On one hand, the in-
tensity matrix is asymmetrical, which shows obvious con-
strains on the order that different class of elements appears
along depth direction in natural scene. On the other hand,
the results shown in the matrix are consistent with our cog-
nitive, such as island usually appear with sea or pool while
forest can be observed in variant scene. Therefore, the in-
tersection areas of these classes are highlighted.

These results demonstrate that depth spatial distribution
in natural scene is an important factor in image generation
and can be well modeled by Hawkes process.
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Figure 6. The nearest training data. Images in the left column are
generated images by our model.

Figure 7. Results of our model without LSTM.

4.2. Generation Results

Some of the generated samples of our model are shown
in Figure 5. We have three observations: 1) the specific
object is clearly generated in each layer with sharp appear-
ance boundary. 2) the relationship between different layers
is successfully maintained during the generation. For exam-
ple, the mountain layer always appears before the grass and
the river always shows on the plain. 3) the entire image re-
mains realistic even with the sharp appearance boundary of
each layer. We also show the nearest examples in training
data for some of our generated results in Figure 6, which
further demonstrates that our generative network is not sim-
ply copy of the training data.

The generated layers also show high diversity which is
influenced by not only the depth and label, but also the spa-
tial distribution of layers generated before. In other words,
even with the similar depth and same label, the generated
layer will show huge difference if the layers before it are
changed. We also show the nearest examples in training
data for our generated results which further demonstrates
the effectiveness of our method.

4.3. Component Analysis

We further provide component analysis on our model.
We remove LSTM from our model and change the input for
generating a specific layer from input vector x to a noise
vector z sampled from a normal distribution where the mean
value and standard deviation are replaced by the label µ and
the product of the label µ and depth t. The results are shown
in Figure 7. We can obviously see that no correlation exists
between different layers and the model falls to generate re-
alistic images, which demonstrates that hierarchical genera-
tion plays an important part in maintaining the relationship
between different layers.

4.4. Comparison with Other Methods

We compare our results with deep convolutional gener-
ative adversarial network (DCGAN) [21] which is a fun-
damental architecture of GAN and widely used as a basic
model in many works. We also show the results of compos-
ite generative adversarial network (CGAN) [12] on which
we build our work. For both DCGAN and CGAN, the in-
put is the noise z sampled from a particular noise distribu-
tion without any extra information, while we further test the
CGAN using the input in our model to evaluate the improve-
ments of our generative network. The results are shown in
Figure 8.

From Figure 8, we observe that the samples generated by
DCGAN suffer from severe blur effect. The quality of these
results is lower to us not only in the whole image level, but
also in the layer level. This is because previous methods
try to generate the whole image at once and leave out the
relationship between different layers. Therefore, it is very
hard for DCGAN to generate natural scene image which
contains complicated spatial distribution. While for the re-
sults of CGAN with noise input shown in 8, we can see that
the quality of the generated samples is obvious lower even
compared with the results of DCGAN. Some image layers,
such as the second and the third layers, have little or no con-
tribution to the entire images. Although this architecture is
similar to the model proposed by us which also combines
multiple generators to make the entire image part-by-part,
no extra information is provided to guide each generator to
focus on distinct components. Therefore, CGAN can not
be directly applied to images with complicated hierarchical
structure. While given the same input of depth and labels,
our DSP-GAN successfully produce natural scene images
with high quality, as can seen in Figure 8.

5. Conclusions
In this paper, we demonstrated that the depth structure

preserving scene image generative framework we proposed,
which is motivated by Hawkes process and hierarchical and
heterogeneous generative networks, succeeds in generating
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Figure 8. Comparison with other methods. The CGAN1 shows the results which are generated from noise and the CGAN2 shows the
results generated from layer sequence.

natural scene images with high complicated spatial distri-
bution.
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