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Abstract This paper proposes a novel method for real-

time gesture recognition. Aiming at improving the effec-

tiveness and accuracy of HGR, spatial pyramid is applied

to linguistically segment gesture sequence into linguistic

units and a temporal pyramid is proposed to get a time-

related histogram for each single gesture. Those two

pyramids can help to extract more comprehensive infor-

mation of human gestures from RGB and depth video. A

two-layered HGR is further exploited to further reduce the

computation complexity. The proposed method obtains

high accuracy and low computation complexity perfor-

mance on the ChaLearn Gesture Dataset, comprising more

than 50, 000 gesture sequences recorded.

Keywords Spatial pyramid � Temporal pyramid � One-shot

learning � Gesture recognition � DTW

1 Introduction

Gestures are the unsaid words of human beings, which are

expressed in the form of actions [1]. They are considered as

the most natural expressive means of communication

between human beings and computers in a virtual system

[2]. For the purpose of improving human beings’ interac-

tion with machines, considerable scholarly work has been

undertaken on HGR whose extensive applications include

sign language recognition [3], socially assistive robotics

[4], directional indication through pointing [5], immersive

gaming technology, virtual controllers, and remote control.

Hand gesture recognition (HGR) is of great importance

owing to the hand’s freer expressions than other body parts

[6]. Although hand postures and gestures are frequently

considered as being identical, there are marked differences

as explained in [7]. The hand posture is a static motionless

pose, such as making a palm posture and holding it in a

certain position, while the hand gesture is a dynamic pro-

cess consisting of a sequence of changing hand postures

over a short duration. Hand gestures are powerful human–

human communication interface components. However,

their fluency and intuitiveness have not been extensively

utilized for human–computer communication interface.

The techniques are still too fragile or too coarse grained to

be of any universal use for HGR. They still lack robustness

and ability to recognize gestures in a convenient and easily

accessible manner. Therefore, the more efficient techniques

for human–computer interface with hand gestures should

be developed.

In the literature, many researchers have tried to study

HGR with different equipments [8, 9]. These sensor-based

methods have high recognition accuracy because they can

precisely catch the movement of hands. However, due to

the high cost of the sensors used, these techniques are

impractical in real applications [10]. Consequently, com-

puter vision-based HGR, which can perform recognition as

naturally as in human–human interaction, has been con-

sidered to be the most promising method. Generally,

numerous phases and imaging restrictions and other con-

straints are needed to get better performance [8]. The well-

known ‘‘come as you are’’ expression [11] stands for a

human–computer communication interface without con-

straints, such as the user using markers, color gloves, or
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sleeves, and the environment having uniform background.

It is a challenge problem for computer vision-based HGR

to get better performance without these constraints.

1.1 Hand gesture recognition with Kinect devices

3D sensors have been thought as the key to resolving

gesture recognition problems. Depth sensors, multiple

camera systems, and 3D scanners have been used to rec-

ognize gesture in 3D space [12–15]. However, due to high

equipment cost, inconvenience to use, and the complexity

of modeling, they have not become the mainstream devices

for gesture recognition.

In June 2011, Microsoft released a Kinect Software

Development Kit (SDK), which includes a set of powerful

algorithms for extracting scene depth and object silhou-

ettes and subsequently building a skeleton model of a

person in front of the camera in real time. Kinect’s target

application was video games; however, its 3-D informa-

tion capture capabilities have helped spawn numerous

research projects in the field of human–computer inter-

faces. Although its resolution and accuracy are low, its

low cost promises to make it the primary 3D information

capturing device in gesture recognition. Some work has

been done related to Kinect-based gesture recognition and

other similar areas [16, 17]. Usually, a set of parameters,

such as thresholds on joint locations, velocities, and

accelerations, is specified to localize and track move-

ments. Accordingly, a number of applications have been

developed using Flexible Action and Articulated Skeleton

Toolkit (FAAST) [18].

The challenge of HGR lies in the understanding of the

unique characteristics and cues of the gestures themselves.

Drawing inspiration from these cues and organizing the

recognition algorithms accordingly are crucial steps toward

the improved HGR performance. The proposed spatial and

temporal pyramid-based real-time gesture recognition

takes into account both the simultaneous and sequential

organization of gestures. Aiming at improving the effec-

tiveness and accuracy of HGR, spatial pyramid is applied

to linguistically segment gesture sequence into linguistic

units and a temporal pyramid is proposed to get a time-

related histogram for each single gesture. Those two

pyramids can help to extract more comprehensive infor-

mation of human gestures from RGB and depth video. A

two-layered HGR is further exploited to further reduce the

computation complexity. The overall framework that

integrates all of the above is evaluated on data from Cha-

Learn Gesture Dataset (CGD2011) [19].

The remainder of the paper is organized as follows:

Related works are presented in Section II. Section III

elaborates the architecture and detailed implementation of

two-layered HGR. Extensive experimental results are

reported in Section IV and finally in Section V, we sum-

marize this paper.

2 Related work

In vision-based HGR, a set of features is extracted from

every frame, and then, a classifier is applied to recognize

different gestures. The vision-based HGR can be divided

into two categories, namely the three-dimensional (3D)

hand model-based methods and the appearance-based

methods [20]. 3D model-based methods provide a geo-

metrical representation of the hand configuration using the

joint angles of a 3D hand’s articulated structure recovered

from the sequence of images [21]. The 3D hand model-

based technique provides a rich description that permits a

wide range of hand gestures. However, since the 3D hand

models are articulated deformable objects with high degree

of freedom, a large image database is required to deal with

the entire characteristic shapes under several views.

Appearance-based techniques extract image features to

model the visual appearance of the gesture and then com-

pare these features with pattern classification module [22],

which is widely used in vision-based HGR.

2.1 Feature extraction

Feature extraction is intended for collecting data about

gesture position, orientation, and temporal progression. In

early works, the feature extraction is simplified consider-

ably by requiring the subjects to wear single or differently

colored gloves [23, 24]. Using colored gloves reduces the

encumbrance to the gesturer but does not remove it

completely.

A more natural, realistic approach is not to use color

gloves. The most common approach extracts the features

with skin color model [25–28] where a common restriction

is the wearing of long-sleeved clothes. Often feature

extraction is simplified by restricting the background to a

specific color or at the very least keeping it uncluttered and

static [16]. Akyol and Alvarado [29] improved the original

color-based skin segmented tracker by using a combination

of skin segmentation and MHIs to detect the hands. Awad

et al. [25] presented a face and hand tracking system that

combined skin segmentation, frame differencing, and pre-

dicted positioning in a probabilistic manner. These reduced

the confusion with static background images but continued

to suffer problems associated with bare forearms.

There are other methods used in the gesture feature

extraction. Wong et al. [30] used PCA on motion gradient

images of a sequence to obtain features for a Bayesian

classifier. In [31], Zahedi et al. used intensity images, skin

color images, and different first- and second-order
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derivative features to recognize words of American Sign

Language, and good results are achieved. Cooper et al. [10]

proposed a method for sign gesture recognition on a small

sign subset that bypasses the need for tracking entirely.

They classified the motion directly by using volumetric

Haar-like features in the spatiotemporal domain and

demonstrated that non-tracking-based approaches can also

be used at the sub-unit level.

Depth information from a calibrated camera pair or

direct depth sensors such as Light Detection and Ranging

(LiDAR) is a good indication. If the person is expected to

face the camera(s), the closest objects may be considered

as the hands. Many tentative works have been done with

Kinect [16, 17]. The skeleton information offered by

Kinect is more effective in the expression of human action

than pure depth data. However, there are a lot of cases that

skeleton cannot work such as interaction between human

body and other object (e.g., moving a box) and micro-

movement in close distance (e.g., making a fist). Besides,

when action is too fast or hands occlude each other, the

positions of hands are difficult to locate. Therefore, in

HGR, it is better to avoid the dependence on the skeleton

information offered by Kinect.

2.2 Classification

Classification can be integrated with feature extraction

such as the boosting method including a combination of

weak detectors. Other approaches include a distinct trans-

lation step into feature space and subsequent classification.

The extracted features are then provided to classifiers, such

as generic support vector machines and highly customized

shape classifiers [32]. Hand gesture classification approa-

ches are mainly machine learning based, in which map-

pings between feature sets and gestures are carried out by

machine learning methods [33–36]. Fuzzy min–max NNs

[37], adaptive neuro-fuzzy inference system networks [38],

and hyper rectangular composite NNs [39] are used for

hand shape classification. 3D Hopfield NN [40] is applied

for sign classification. HMM-based classification, which

was widely used in continuous speech recognition, has

dominated HGR after the mid-1990s. Wang et al. [41] and

Bauer et al. [42], respectively, implement 2D motion

model and perform recognition with HMM. In the works

[43, 44], HMM is improved to adapt to various situations.

Yet for the whole recognizing system, its performance

does not only depend on the inherent properties of the

object to be recognized and the design of classifier, but also

on the size and quality of the training data. Traditional

statistics is the science of asymptotic theory; the perfor-

mance of various methods based on it can be guaranteed in

theory only when the number of samples inclines toward

infinity, for instance the uniformity of estimation, unbiased

estimation, as well as the bound of the estimate of variance,

all embodiment of this asymptotic theory. Therefore, large

numbers of training data are required of the statistical

model to get fairly satisfactory recognition performance. In

the case of insufficient training data being available,

complex models that have extensive parameters to learn are

very likely to encounter the over fitting problem, such as

HMM, AdaBoost, and decision trees methods [45, 46]. One

disadvantage of collecting large numbers of gestures data is

that the work load is heavy, especially in the insertion of

new gesture. To facilitate the adaptation to new gestures,

Kaggle is organizing a one-shot-learning challenge for

gesture recognition, and some recent works exploiting one-

shot learning [47–49] show interesting results. Focusing on

the CHALEARN gesture challenge, this paper designs

effective HGR in this challenging condition.

3 Two-layered hand gesture recognition

There are significant differences between postures and

gestures although they are frequently considered as the

same. A posture is a static pose, such as making a palm

posture and holding it in a certain position, while a gesture

is a dynamic process consisting of a sequence of the

changing postures over a short duration. Compared to

postures, gestures contain much richer motion information,

which is important for distinguishing different gestures,

especially those ambiguous ones. The main challenge of

gesture recognition lies in the understanding of the unique

characters of gestures. Exploring and utilizing these char-

acters in gesture recognition are crucial for achieving

desired performance. Two crucial linguistic models of

gestures are the phonological model drawn from the

component concurrent character and the movement-hold

model drawn from the sequential organization character.

The component concurrent character indicates that com-

plementary components, namely motion, location and

shape components, simultaneously characterize a unique

gesture. Therefore, an ideal gesture recognition method

should have the ability of capturing, representing, and

recognizing these simultaneous components.

Based on the key cues in the gesture meaning expression

and motivated by the above observation, this paper pro-

poses a novel two-layered HGR architecture as shown in

Fig. 1, which has two layers, namely the motion compo-

nent classifier and the location component classifier.

In the proposed two-layered HGR, each layer analyzes

its corresponding component. The output of the first layer

limits the possible classification in the second layer. These

classifiers complement each other for the final gesture

classification. Once the motion component analysis and

classification at the first layer is accomplished, the original
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complete gesture vocabulary is divided into possible and

impossible candidates’ lists. The possible candidates’ list is

then input to the second layer for the location component

analysis and classification. In the second layer, the best

match gesture is output as the final gesture recognition

result. These two layers analyze the gesture components,

respectively, and weakly coupled in HGR, which ensures

the effectiveness of their complementarily.

3.1 Motion component analysis and classification

In the hand gesture sequence, each frame has the relevant

movement with respect to its adjacent frame and initial

position. These movements and their statistical information

are valuable in the analysis of the gesture sequence, which

is processed and analyzed in the first layer. The principal

motion [50] is improved in the process of analyzing and

classifying the gesture motion component. The neighboring

block overlapping is proposed in the partitioning of bins.

Furthermore, the RGB data and depth information are

concatenated as input. By excluding the aliened gesture

candidates, a list of possible candidates is then forwarded

to the second layer.

3.1.1 Principal motion method

In [50], Escalante and Guyon use a set of histograms of

‘‘motion energy’’ information to represent a gesture

sequence and implement a reconstruction approach to HGR

based on principal components analysis (PCA). For an N

length gesture sequence, ‘‘motion energy’’ is calculated by

subtracting consecutive frames (from frame 1 to N - 1).

Thus, the gesture with N frames is associated to N - 1

‘‘motion energy’’ images. Then, a grid of equally spaced Nb

bins, as shown in Fig. 3c, is defined over the ‘‘motion

energy’’ image. Upon averaging motion energy in each of the

cells of the grid, an Nb bins’ histogram for each difference

image is obtained. Accordingly, an N frame gesture is rep-

resented by a matrix Y of dimensions N � 1ð Þ � Nb. Having

represented each training gesture sequence in the gesture

vocabulary of sizeKwith matrices Yk, k 2 {1, …, K}, PCA

is applied to each of these matrices Yk. Then, the top

c eigenvalues, W, and corresponding eigenvectors, U for

each training gesture, i.e., (W, U){1,…,K} are stored.

In the recognition process, each test gesture is processed

similarly as training gestures, and it is represented by a

matrix of S. Then, S is projected into each of the K-spaces

induced by W ;Uð Þ 1;...;Kf g back. Assuming R1; . . .;RK

denote the reconstructions of S according to the K PCA

models, respectively, the reconstruction error for each Rk is

measured as follows:

eðkÞ ¼ 1

n

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1

Rkði; jÞ � Sði; jÞð Þ2

vuut ;

where n and m are the number of rows and columns of S,

respectively. Finally, the gesture is assigned to the PCA

model that obtained the lowest reconstruction error, that is:

argmink (e(k)).

3.1.2 Improved principle motion and classification

Firstly, in the representation of motion, an overlapping

neighborhood is adopted while computing the gird bins’

values. Gestures are usually performed with significant

deformation as shown in Fig. 3. In [50], motion represen-

tation is based on bins, which are strictly limited in posi-

tion. Each bin is analyzed independently, having no

consideration on the space interdependency among the

neighboring bins. Actually, this interdependency is

important to the effective expressing motion component of

gesture, especially in the condition of gesture deformation.

Accordingly, for each bin, the current 20 9 20 region, an

overlapping neighborhood, is proposed which includes all

3 9 3 equally spaced neighbor bins in an 60 9 60 square

region. The averaged motion energy in the square region is

assigned to the current bin’s value to provide more toler-

ance to subtle differences in large amplitude gestures, as

shown in Fig. 2.

Secondly, principle motion is applied on both the RGB

and depth data. The RGB image is transformed into gray

image before subtracting consecutive frames. For each

frame in the reference gesture sequence, two 192 bins’

histograms are obtained with depth difference image and

gray difference image, respectively.

For each reference gesture, the top 10 eigenval-

ues,W 1�10ð Þ, and corresponding eigenvectors, U(192910), are

Fig. 1 Proposed two-layered hand gesture recognition
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stored as the reference gesture model in this paper. The

final K reconstruction errors of test gesture based on the

reference gesture models are obtained by multiplying the

reconstruction error of depth data and that of the RGB data

accordingly. Then, these K reconstruction errors are

assigned as input for the division of the gesture vocabulary

of size K into two categories, possible candidates and

impossible candidates, for matching the test gesture. This is

done using the K-means algorithm, and then, the possible

candidates list is forwarded to the second layer. The

recognition process is illustrated in Fig. 3.

We validate the performance of the proposed improved

principal motion method on the first 20 development bat-

ches of CGD 2011. Using the provided code [50, 27] as

baseline, in the case of principal motion, normalized

Levenshtein distance [51] is 44.92 %, and in the case of

improved principal motion, a better performance, a dis-

tance 38.66 % is achieved. The Levenshtein distance is

also known as ‘‘edit distance,’’ and this error metrics is in

accordance with the Leaderboard in CHALEARN gesture

challenge [21]. The first layer classifier can filter gestures

with high accuracy and speed.

3.2 Location component analysis

Considering the scale and rotation variance of human’s

gestures in daily life, the SIFT and BOW model is regarded

as one of most promising methods in one-shot-learning

gesture recognition [52], while there are two major disad-

vantages that restrict the accuracy of recognition seriously.

On the one hand, the SIFT algorithm is difficult to perform

the temporal segmentation and gesture recognition con-

currently, so pre-segmentation is needed to segment mul-

tiple gestures sequence into single gestures [51]. On the

other hand, the common BOW algorithm generally puts all

descriptors of the gesture together neglecting the signifi-

cance of time order. Our proposed methodology aims at

solving those two problems by building spatial pyramids

[53] for DTW and temporal pyramids [54] for histograms

of BOW model.

A normal method of using SIFT ? BOW for gesture

recognition is shown in Fig. 4. In the training process, the

normal method transforms a single gesture video to a

unique histogram by obtaining key points from RGB video,

extracting descriptors of each key point from RGB and

depth video, clustering descriptors to a codebook, and

getting histogram to uniquely represent the single gesture

video. In the testing process, since a test video may contain

several single gestures, DTW ? Viterbi is used to divide

the test video into several single ones. And after getting the

histograms, KNN is used for final classification. Our pro-

posed method builds spatial pyramids for DTW when

dividing multiple gestures video into single ones (marked

red in Fig. 4) and builds temporal pyramids in both training

and testing process. By making more use of spatial and

temporal information than normal SIFT ? BOW, the pro-

posed method can earn a better performance.

Fig. 2 Same people performing the same gesture with significant

deformation (a, b), clipped form the development data CGD 2011.

c Is the grid of equally spaced bins in principle motion. d Is a

description of the overlapping neighborhood that includes all 3 9 3

equally spaced neighbor bins

Depth and RGB Video Sequence of Test Gesture

 Motion Energy
Calculation

Principal Motion  Models  
of K Reference Gestures

Projection and Reconstruction of 
Test Gesture in each of K spaces

K Reconstruction 
Errors

Possible Candidates
For The Next Layer

Fig. 3 Motion component analysis and classification Fig. 4 General process of gesture location classification
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3.2.1 Spatial pyramid

The gesture recognition algorithm can only recognize single

gestures, so multiple gestures video should firstly be cut into

several small sequences, i.e., linguistic units. The method of

cutting multiple gestures is DTW ? Viterbi algorithm. DTW

is a dynamic programming algorithm, which can calculate the

similarity of two time sequences. DTW inputs two time

sequences and outputs a DTW distance. Lower DTW distance

means higher similarity of two gesture videos. The normal

DTW usually resizes a gesture video from W 9 H 9 F se-

quence (namely Width * Height * Frames) to

3 9 3 9 F sequence and then formats to a 9 9 F sequence.

On the one head, resizing frame of a gesture video to

3 9 3 matrix is too rough to contain all gesture features.

On the other head, resizing it to 10 9 10 matrix or larger is

so sensitive that a small bias of human gesture (which

should be recognized as the same gesture) will lead to an

obviously different matrixes. To contain more information

without making it too sensitive, the proposed method adds

spatial pyramid when using DTW. Each frame in the video

is resized to 3 9 3 and 7 9 7 matrix, as shown in Fig. 5b.

Then, transforming 3 9 3 and 7 9 7 matrix into a 58

dimension vector, the whole video will be transformed into

a 58 9 F vector sequence. Finally, the Euclidean distance

of the vectors is calculated. As shown in Fig. 5a, each

block represents a Euclidean distance of two 58 dimension

vectors. The similarity of two gesture videos can be

expressed by cumulative distance, which accumulates local

Euclidean distance from the first frame to the last frame.

The cumulative direction of DTW in each step is

restricted as demonstrated in the following two formulas:

cði; jÞ ¼ dðqi; cjÞ þ minfðcði� 1; j� 2Þ; cði� 1; j� 1Þ;
cði� 1; jÞÞg

ð1Þ

cði; jÞ ¼ dðqi; cjÞ þ minfðcði� 1; j� 3Þ; cði� 1; j� 2Þ;
cði� 1; j� 1Þ; cði� 1; jÞÞg

ð2Þ

where q and c are DTW vector sequences of videos, and

c(i, j) is the cumulative distance at i; jð Þ. Formula 2 is

suitable for the situation that the gesture velocity of q is

similar to the gesture velocity of c. And Formula (3) is

suitable for the situation that the gesture velocity of q is

fairly faster the gesture velocity of c.

To divide test-multiple-gestures video, Viterbi is used

together with DTW. The test-multiple-gestures can be

considered as a state sequence, the train-single-gesture is a

state, and DTW distance represents the possibility of the

state. So Viterbi algorithm can be used to calculate the

implicit state sequence. The general idea is finding the

most possible combination of train-single-gesture videos,

which has the minimum DTW cumulative distance with the

test-multiple-gestures video. Specifically, in Fig. 6

58 9 F dimension test-multiple-gestures sequence serves

as x-axis, and 10 train-single-gesture sequence connecting

together as y-axis. All combination of train-single-gesture

sequences and their DTW distance with the test-multiple-

gestures sequence will be calculated. And finally, the

optimal DTW path will be found (green line in Fig. 6), and

then, the divide point of test-multiple-gestures video will

be found as well (red arrow in Fig. 6). There are in fact

many tricks to accelerate those processes rather than

repeatedly calculate all combinations, and the implemen-

tation of normal DTW ? Viterbi can be found in [52].

3.2.2 Temporal pyramid

After segmenting multiple-gesture video into single ones,

the SIFT and BOW model is used to extract unique features

from every single-gesture video.

Fig. 5 Spatial pyramid building in DTW. a Calculate Euclidean

distances of two-vector sequence by DTW. b Transform one frame

into a 1 9 58 vector

Fig. 6 DTW with Viterbi to divide test-multiple-gestures video
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There are three steps in SIFT model. Step one is

detecting key points with Gaussian pyramid, noting that the

key points should get from RGB frame rather than depth

frame because of the strong impulse noise in depth frame.

The step two is removing the key points with small

velocity. Optical flow is adopted to compute the velocity of

each key point, after that the key points with the velocity

less than a fix threshold will be discarded. The third step is

calculating the descriptors around the filtered key points so

that the whole single gesture can be represented by several

local descriptors. Each descriptor is a vector with 128 9 6

elements containing gradient and velocity feature in xy, xz,

yz plane [52].

The descriptors extracted from SIFT model have dif-

ferent lengths. In order to compare the features of each

gesture, the BOW model is applied. The process of BOW is

as follows: K-means algorithm [55] is used to make the

features transformed into a unified dimension. The algo-

rithm clusters all descriptors into k centers to compose a

visual codebook, and then, each descriptor can be descri-

bed by the visual codebook. The number of centers can be

calculated as follows:

k ¼ a� n ð3Þ

where n is the number of descriptors, and the constant

value a is 0.4. The codebook calculated by k-means is a

k 9 768 matrix, and each center of the codebook is a

1 9 768 vector. And the descriptors are also 1 9 768

vectors. So the distance between centers and descriptors is

Euclidean distance, which is easy to compute.

After that a histogram is adopted to statistics the

descriptors. The histogram is a k 9 1 vector with statistical

information, which can represent a single gesture uniquely.

Then, KNN is used to match the histogram in test process

with the histogram in training process to get the final result

of gesture recognition.

According to the above description, the method of cre-

ating histogram has great influence on gesture recognition.

The normal k-means mixes all key points (red points in

Fig. 7) together, neglecting temporal relationship of the

key points, so the normal k-means loses useful information

about temporal order. To make full use of the temporal

information, a temporal pyramid is built when creating

histograms as shown in Fig. 7.

A single-gesture video is cut into two parts at the middle of

the video. Each part has half number of the total frames. The

part1 of the video has 3 key points, and the part2 has 2 key

points. Put the key points in part1 into codebook, we will get

a k 9 1 histogram for part1. Put the key points in part2 into

codebook, we will get a k 9 1 histogram for part2. And put

all 3 ? 2 key points into codebook, we will get a k 9 1

histogram for whole video. Our proposed histogram con-

nects three k 9 1 histograms together. ‘‘Histogram for whole

video’’ is the normal histogram extract by SIFT ? BOW

(base layer of pyramid); ‘‘Histogram for whole video’’ and

‘‘Histogram for whole video’’ are the temporal constraints

for gesture video (upper layer pyramid). Combining those

three histograms can effectively capture more useful infor-

mation for gesture recognition.

3.3 From component level to final gesture

classification

In the proposed HGR, the classifiers complement each

other. Once the motion component analysis and classifi-

cation at the first layer is accomplished, the original com-

plete gesture vocabulary is divided into possible and

impossible candidates’ lists. The possible candidates’ list is

then input to the second layer for the location component

analysis and classification. The best match gesture is output

as the final gesture recognition result.

4 Experiments

In this section, extensive experimental results are presented

to evaluate the proposed multi-layered HGR performance.

All the experiments are performed in MATLAB 7.12.0 on

Dell with Duo CPU E8400. ChaLearn Gesture Dataset

(CGD2011) is used in the experiments, which is designed

for one-shot learning. CGD2011 is the largest gestures

dataset recorded with Kinect [19], which consists of 50,000

gestures (grouped in 500 batches, each batch including 47

sequences and each sequence containing of 1–5 gestures

drawn from one of 30 small gesture vocabularies of 8–15

gestures), with frame size 240 9 320, 10 frames/second,

recorded by 20 different users. In our experiments,

Levenshtein distance is used to evaluate the HGR perfor-

mance, which is also used in CHALEARN gesture chal-

lenge. Levenshtein distance is the minimum number of edit

operations that have to perform from one sequence to

another, and the Levenshtein distance is also known as

‘‘edit distance’’ [56].

4.1 Proposed location component HGR evaluation

There are three experiments in this part. The effects of

applying spatial pyramid and temporal pyramid are eval-

uated, respectively. Experiment C compares the proposed

method with other state-of-the-art methods.

4.1.1 Spatial pyramid

The spatial pyramid can be built based on either RGB data

or depth data. So before building the pyramid, an experi-

ment on comparing RGB data and depth data is conducted.
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As illustrated in Sect. 2, each vector in the DTW vector

sequence contains 58 9 1 elements. To test the effect of

RGB data in DTW, the RGB image is resized to a 3 9 3

matrix. Then, the 3 9 3 matrix is transformed into a 9 9 1

vector and replace the 58 9 1 vector. The process of

testing depth data is the same as the process of testing RGB

data. To evaluate the performance of RGB data and depth

data, the number of the videos after pre-segment is coun-

ted. DTW and Viterbi algorithm segment multiple gestures

video into single gesture. If the total number of videos is

less than 100 after being processed by DTW and Viterbi

algorithm, it means that there are some multiple gestures,

which were not cut by DTW and Viterbi algorithm. And if

the total number of videos is more than 100, it means that

some single gestures were wrongly cut by DTW and

Viterbi algorithm. Figure 8 shows the effect of adding

temporal pyramid in DTW.

The result in Fig. 8 shows that the adoption of temporal

pyramid decreases the variance of the result, which makes

the pre-segment more robust and precise. It is demonstrated

that the result of using depth data for DTW and Viterbi

algorithm is better than the result of using RGB data. In

fact, any attempt to combine depth data with RGB data

cannot have a better performance than using depth data

alone. For instance, the final 27 dataset is difficult for

gesture recognition, and the number of videos after pre-

segment for final 27 is only 81, as shown in Fig. 8. The

other experiment is about the restriction of cumulative path

in DTW. The comparison between the result of adopting

formula (1) and formula (2) is shown in Fig. 9.

If the number of videos after pre-segment is more than

100, it means that some single gestures are not recognized

correctly as a series of multiple gestures, which reduces the

final accuracy of gesture recognition drastically. So although

the average number of pre-segment videos for formula (2) is

closer to 100 than formula (1) as shown in Fig. 9, formula (1)

can get a lower error rate of gesture recognition as Table 1

shows. Figure 9 together with Table 1 demonstrates that

formula (1) is suitable for normal situation that the velocity

of train gesture is similar to the one of test gesture. And

formula (2) beats formula (1) obviously for the situation that

the velocity of train gesture is fairly faster than the one of test

gesture, such as final 7 dataset.

Fig. 7 Process of building

temporal pyramid

Fig. 8 Comparison between the normal DTW (with 3 9 3 matrix)

Fig. 9 Comparison between adopting and the proposed method (with

temporal pyramid) formulas (1) and (2)
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4.1.2 Temporal pyramid

An experiment comparing the normal histogram and his-

togram with temporal pyramid is performed. The evalua-

tion criterion of the final result of gesture recognition is LD

score. LD score is a measurement of the error rate. Lower

LD score means higher accuracy of gesture recognition.

Table 2 compares the LD score between normal histogram

and long histogram with temporal pyramid. K-means is

random function, so the LD score changes in a small scale

even if nothing changes in the program. The experiment is

conducted for three times to ensure the reliability of the

final result.

4.1.3 Compared with other methods

The proposed method is compared with other popular

methods [57, 58] in Fig. 7. The independent variable of x-

axis is the a in formula (3). The variable a determines the

size of the histograms and has an important impact on the

final result.

Figure 10 shows that the proposed method can obtain

high performance than other state-of-the-art methods. In

addition, an experiment comparing RGB data with RGB-D

data is conducted. It demonstrates that for the proposed

Table 1 Levenshtein distance for formula (1) and formula (2) on first

20 development batches of CGD2011

Dataset Formula (%)

Formula (1) Formula (2)

Final 1 9 10

Final 2 1 1

Final 3 9 12

Final 4 24 27

Final 5 13 12

Final 6 12 15

Final 7 33 29

Final 8 33 34

Final 9 15 16

Final 10 10 12

Final 11 2 2

Final 12 15 22

Final 13 14 13

Final 14 23 24

Final 15 2 2

Final 16 0 0

Final 17 0 0

Final 18 20 28

Final 19 21 20

Final 20 7 8

Average 13.3 14.4

Table 2 Comparison between normal histogram and long histogram

with temporal pyramid in LD score

Batch Normal Temporal pyramid

1 0.134 0.128

2 0.126 0.121

3 0.130 0.123

Average 0.130 0.124

Fig. 10 Comparison with other methods by adopting different a

Table 3 Recognition performance of using the second layer, first two

layers, and three layers on first 20 development batches of CGD2011

[19] (TeLev is the average Levenshtein distance)

Batch number First two layers for recognition

TeLev (%) Recognize time per gesture (s)

1 8.70 2.90

2 5.21 6.60

3 8.75 2.49

4 23.67 1.60

5 12.62 2.55

6 11.94 2.19

7 14.51 1.20

8 0.00 1.64

9 12.44 2.00

10 9.13 1.74

11 1.36 3.48

12 11.06 1.50

13 12.93 0.70

14 10.13 0.40

15 4.21 0.59

16 6.27 3.71

17 9.55 4.60

18 22.21 0.31

19 17.32 2.34

20 8.23 0.90

Average 12.90 2.22
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method, 3D sensors that capture RGB data and depth data

have an obvious advantage over normal sensors in gesture

recognition.

4.2 Proposed two-layered HGR evaluation

Table 3 shows the HGR performance on the first 20

development batches. For the first layer, the average

Levenshtein distance is 24.02 % with total 1.03 s/gesture.

For the first two layers, the average Levenshtein distance is

12.79 % with total 2.73 s/gesture.

For the comparison on the first 20 batches of CGD2011,

the proposed multilayered HGR is further compared with

Lui [48]: a nonlinear regression framework on manifolds

(Manifold LSR), Wu et al. [47]: extended-motion-history-

image and maximum correlation coefficient (extended

MHI), and Mahbub et al. [59]: the motion history-based

silhouettes and Euclidean distance-based classifiers (mo-

tion history) on the first 20 development data batches, as

listed in Table 4.

The first layer is fast and robust. The correct gesture can

be mostly identified as the possible candidate within

approximately 80 fps (frames per second). For the second

layer, the average Levenshtein distance is 14.4 % and its

computing time is 10 times than that of the first layer. For

the two-layer HGR, the average Levenshtein distance is

19.62 % and 15 fps is achieved (faster than 10 fps in

CGD2011).

5 Conclusion

This paper proposes a novel HGR system using Kinect.

The proposed recognition architecture and the choice of

algorithms take into account both the simultaneous com-

ponents and sequential organization of gestures. The

analysis and classification of hand gesture basic compo-

nents: motion, location and hand shape, integrate into a

multi-layered framework, according to the consideration on

accuracy and computation complexity. High recognition

accuracy and real-time performance are achieved. In the

future, research work may focus on more advanced

appearance-based descriptor, which could better assist the

system in discriminating static gestures and explores the

adoption of more complex classification model with

enlarged training set of synthetically generated dynamic

multi-stream samples.
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