
828 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 6, JUNE 2015

Weighted Component Hashing of Binary Aggregated
Descriptors for Fast Visual Search

Ling-Yu Duan, Member, IEEE, Jie Lin, Zhe Wang, Tiejun Huang, Senior Member, IEEE, and
Wen Gao, Fellow, IEEE

Abstract—Towards low bit rate mobile visual search, recent
works have proposed to aggregate the local features and compress
the aggregated descriptor (such as Fisher vector, the vector of
locally aggregated descriptors) for low latency query delivery
as well as moderate search complexity. Even though Hamming
distance can be computed very fast, the computational cost
of exhaustive linear search over the binary descriptors grows
linearly with either the length of a binary descriptor or the
number of database images. In this paper, we propose a novel
weighted component hashing (WeCoHash) algorithm for long
binary aggregated descriptors to significantly improve search
efficiency over a large scale image database. Accordingly, the
proposedWeCoHash has attempted to address two essential issues
in Hashing algorithms: “what to hash” and “how to search.”
“What to hash” is tackled by a hybrid approach, which utilizes
both image-specific component (i.e., visual word) redundancy and
bit dependency within each component of a binary aggregated
descriptor to produce discriminative hash values for bucketing.
“How to search” is tackled by an adaptive relevance weighting
based on the statistics of hash values. Extensive comparison
results have shown that WeCoHash is at least 20 times faster than
linear search and 10 times faster than local sensitive hash (LSH)
when maintaining comparable search accuracy. In particular,
the WeCoHash solution has been adopted by the emerging
MPEG compact descriptor for visual search (CDVS) standard
to significantly speed up the exhaustive search of the binary
aggregated descriptors.

Index Terms—Aggregating local features, hamming space,
hashing, visual search.

I. INTRODUCTION

V ISUAL search regards the discovery of images con-
tained within a large database that depict the same

objects/scenes as those depicted by query images. In general,

Manuscript received August 07, 2014; revised December 13, 2014 andMarch
21, 2015; accepted March 23, 2015. Date of publication April 06, 2015; date of
current version May 13, 2015. This work was supported by the Chinese Nat-
ural Science Foundation under Contract 61271311 and Contract 61390515, and
by the National Hightech R&D Program of China (863 Program) under Grant
2015AA016302. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Cees Snoek.
The authors are with the Institute of Digital Media, School of Electronics

Engineering and Computer Science, Peking University, Beijing 100871,
China (e-mail: lingyu@pku.edu.cn; jielin@pku.edu.cn; zhew@pku.edu.cn;
tjhuang@pku.edu.cn; wgao@pku.edu.cn).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2015.2419973

state-of-the-art image search systems [21]–[26] are built upon
a visual vocabulary model with an inverted indexing structure,
which quantizes local features (e.g., SIFT [3] or SURF [4]) of
query and database images into visual words. Each database
image is then represented as a Bag-of-Words (BoW) histogram
and is invert indexed by quantized words of local features in the
image. Recently, the Fisher Vectors (FV) [1], [5] and the Vector
of Locally Aggregated Descriptors (VLAD) [2], [30] have
extended the BoW by encoding higher-order statistics of the
distribution of local features. Most of the state-of-the-art image
retrieval systems are built upon the aggregated descriptors such
as BoW, FV and VLAD. Compared to the BoW with a large
vocabulary (e.g., 1 million visual words), both FV and VLAD
have achieved the state-of-the-art search performance at a much
smaller visual vocabulary (e.g., hundreds of visual words) [30].
The high-dimensional image-level representations such as

FV and VLAD are often compressed to binary aggregated de-
scriptors, without degrading the discriminative power [5]–[7],
[39]. Binary aggregated descriptors allow for fast Hamming
distance computation as well as light storage of visual descrip-
tors extracted from either query or database images. To tackle
the query latency issue of mobile visual search [10], [36],
[11], recent work [6], [7] focuses on directly extracting binary
aggregated descriptors of query images at the mobile end and
sending compact descriptors to the server end. At the server
end, an exhaustive linear search is performed by computing
the Hamming distance between the query and database images
based on the binary aggregated descriptors. The retrieval ac-
curacy can be further improved by weighting the Hamming
distance [37]. In particular, the topic of compact descriptors
is closely related to the MPEG standardization of Compact
Descriptors for Visual Search (CDVS) [8], [9], [15]. A scalable
compressed Fisher Vector (SCFV) [7] has been adopted by the
emerging MPEG CDVS standard to specify the technology of
aggregating local features’ descriptors to form an image level
global descriptor.
For the state-of-the-art binary aggregated descriptors, even

though Hamming distance can be computed very fast, the accu-
mulated computational cost from exhaustive linear search be-
tween query and database images grows linearly with the de-
scriptor length as well as the scale of image database. In this
work, our goal is to develop fast approximate nearest neighbor
(ANN) search algorithms for the binary aggregated descriptors
towards large scale visual search.
Generally speaking, state-of-the-art ANN search approaches

may be categorized into three groups: tree-structured search
(e.g., randomized KD-trees [14]), clustering (e.g., Hierarchical

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

DUAN et al.: WEIGHTED COMPONENT HASHING OF BINARY AGGREGATED DESCRIPTORS FOR FAST VISUAL SEARCH 829

Fig. 1. Image search framework by applying hashing algorithms to binary aggregated descriptors like the binarized Fisher vectors (FV) or vector of locally
aggregated descriptors (VLAD). “What to hash” in the offline stage relates to the construction of hash tables, while “How to search” in the online stage relates to
the hash value collision based candidates retrieval as well as the hamming distance computing based linear search over the short list of recalled candidates.

K-Means [22] or Product Quantization [40]) and hashing1
[12]–[14]. The tree-structured and clustering based ANN
approaches are designed basically for real-valued descriptor
vectors in Euclidean space, which would seriously underper-
form in dealing with binary vectors, which will be revisited
in Section II. By contrast, hashing algorithms, such as the
well-known Locality Sensitive Hashing (LSH) for binary
vectors [12], can significantly alleviate the exhaustive Ham-
ming distance computing by reducing the search space from
the whole database to a small subset of candidate images.
Specifically, any hashing approach involves offline hash tables
construction and online search (see Fig. 1). Each hash table
corresponds to a hash key formed by selecting a whole binary
vector or part of a binary vector. Each hash key relates to a set
of buckets, by which an inverted index structure is employed to
index the binary vectors of database images. In online search,
given a query binary vector, a subset of candidate images can
be figured out by the collision in the buckets, and then linear
search using the whole binary vector is performed over the
subset of candidate images to return the final results.
However, to solve the problem of ANN search with the bi-

nary aggregated descriptors, hashing techniques have yet to ad-
dress two key issues of (1) generating discriminative hash keys
to index binary vectors effectively and (2) reducing the required
number of candidate images for exhaustive linear search. One
may simply increase the number of hash keys (each incurring a
hash table) to improve search accuracy, but slow search speed
and heavy memory cost of hash tables would result. This will be
qualitatively discussed in Section II and quantitatively validated
in Section IV. Distinct from existing hashing algorithms, the
proposed WeCoHash applies the statistics of binary aggregated
descriptors, including visual words redundancy to generate dis-
criminative hashing keys towards an optimal hashing strategy.
To address an optimal hashing strategy for binary aggregated

descriptor, we study two key issues of “What to hash” and “How
to search”, which are essential to implement an hashing algo-
rithm [16], [20], [41]. The former works on the offline hash ta-
bles construction and the latter online search. “What to hash”
aims to deploy discriminative hash values into buckets. Firstly,

1The term “hashing” in this work refers to data structure for indexing high-
dimensional binary aggregated descriptors, in which effective algorithms have
to be developed to realize fast search in a collision mechanism. This is different
from another popular Hashing topic that learns binary embedding to covert real-
valued descriptors into compact binary codes. More discussion of these two
terminologies can be found in [31].

each hash value involves a subset of bits from a binary aggre-
gated descriptor. As the discriminative power of each bit would
vary with its statistical importance, not all hash values are of
equal importance to distinguish an image. To discard the noisy
hash values we may remove the image specific redundancy in
terms of informative hash values. Secondly, by using the global
bit statistics over the image collection, the bit-wise dependency
between binary aggregated descriptors can be further removed
to reduce the dimensionality of hash values. “How to search”
aims to maximize the search accuracy, while minimizing the
size of candidates for linear search during online search. Our
practice is to exploit the statistical relevance of hash values be-
tween query and database images, to weigh the similarity score
for generating the shortlist of “good” candidates.
In this paper, we propose a novel weighted component

hashing (WeCoHash) algorithm for indexing the state-of-the-art
long binary aggregated descriptors. Extensive experiments
have shown that WeCoHash significantly improves search
speed as well as reduces the memory footprint of hash tables,
while search accuracy is well maintained. Below, we brief the
WeCoHash based image search framework: First, we extract
the aggregated descriptor FV [1] (or VLAD [2]), followed by
sign binarization [5] to generate the high-dimensional binary
aggregated descriptors, which represents the state-of-the-art
compact yet discriminative visual descriptors [5]–[7]. Second,
we address the issues of “What to hash” and “How to search”
by the proposed WeCoHash approach. In the offline stage (see
Fig. 2), we partition a binary aggregated descriptor into dis-
joint components by visual words. Given a binary aggregated
descriptor, the informative components with high statistical
reliability are adaptively selected, followed by de-correlated
bits selection to produce dim-reduced hash values. In the on-
line search, we calculate an adaptive weight w.r.t. each query
hash value, and introduce score weighting to improve search
performance.
In summary, our contributions are three-fold, as follows.
1. Towards “What to hash”, we propose a novel hybrid ap-

proach to produce discriminative hash values for the state-
of-the-art binary aggregated descriptors by taking advan-
tages of the image specific local redundancy statistics and
the collection based global bit dependency statistics. To the
best of our knowledge, this approach serves as the first to
investigate the issue of discriminative hash values to con-
struct compact hash tables, for the high-dimensional binary
aggregated descriptor to accomplish fast visual search.

830 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 6, JUNE 2015

Fig. 2. Offline constructing hash tables via discriminative hash values derived
from image specific component selection (a sort of image-level local statis-
tics) and de-correlated bits selection (a sort of global statistics over an image
collection).

2. Towards “How to search”, we propose an adaptive rele-
vance weighting to boost the online search performance
by exploiting the statistics of hash values. Distinct from
existing hashing algorithms, our method calculates vari-
able weights to adapt the Hamming distance according to
the hash values of a query. The proposed weighting ap-
proach significantly reduces the number of candidates for
linear search, while maintaining comparable search accu-
racy. Hence, the search process can be greatly accelerated
due to the reduced number of candidates for linear search.

3. Finally, the proposed WeCoHash solution has been
adopted by the emerging MPEG CDVS standard [8], [9],
[15] as a core technique to solve the problem of scalable
visual search based on high performance and low com-
plexity standardized compact descriptors, where Fisher
vector [5], [7] is applied to yield the compact binary
aggregated descriptor. Extensive comparison experiments
over a variety of benchmark datasets have shown the
advantages of significantly improved search efficiency,
promising search accuracy, as well as much reduced
memory cost of Hash tables.

This paper is organized as follows. Section II introduces the
related work. In Section III, we describe the proposed WeCo-
Hash for indexing high-dimensional binary aggregated descrip-
tors for fast visual search over large database. In Section IV,
we present the experimental results of WeCoHash and com-
pare with the state-of-the-art. Finally, we conclude this paper
in Section V.

II. RELATED WORK

In this section, we firstly review the state-of-the-art aggre-
gated descriptors and the schemes of compressing high-dimen-
sional descriptors into binary vectors. Then, we compare var-
ious hashing algorithms in solving the problem of ANN search
with binary vectors. An extended discussion will be given to
typical non-hashing ANN search approaches.

Aggregated Descriptors. The BoW histogram [21] is the most
popular image-level descriptor aggregated from local invariant
features (e.g., SIFT and SURF). Each bin of the BoW histogram
counts the number of the local feature distribution quantized to
the corresponding visual word in a visual vocabulary, which
encodes the 0-order statistics of local features (unlike FV or
VLAD). Many research efforts have been made to improve the
BoWmodel, such as training a large vocabulary for fine-grained
partition of the local feature space (e.g., 1 million visual words)
[22], [23], Hamming embedding for a coarse-to-fine quantiza-
tion of local features [26], soft assignment of descriptors to mul-
tiple visual words for reducing quantization errors [25], and geo-
metric consistency check (GCC) to re-rank the retrieval results
[28]. Despite performance improvements, those conventional
BoW approaches bring about heavy memory cost from a large
visual vocabulary as well as a big index file in dealing with a
large scale image database. For example, the memory cost for
inverted indexing 1.1 million images at a vocabulary of 1 mil-
lion visual words may reach up to 4.3 GB [23].
Perronnin et al. proposed FV [1] to extend BoW by encoding

high-order statistics of the local feature distribution. FV em-
ploys a Gaussian Mixture model (GMM) to estimate the dis-
tribution of local features over a training set. Given an image,
the gradient vectors of all local features w.r.t. the parameters
(i.e., mean or variance) of each Gaussian are aggregated into a
vector representation. FV is finally formed by concatenating the
1-order (mean) and/or 2-order (variance) aggregated vectors of
all Gaussians. Jégou et al. [2] proposed the VLAD to aggregate
the residual vectors between local features and their quantized
visual words, which can be regarded as a non-probabilistic ver-
sion of FV. Compared to the BoW, both FV and VLAD signifi-
cantly reduce the dimensionality of aggregated descriptors and
their computational complexity, for instance, from a -dimen-
sional BoW histogram down to a FV with thousands of dimen-
sion. In particular, the discriminative power of FV and VLAD
can be further improved by injecting vector normalization [43],
[45], vocabulary adaptation [43], spatial information [43], fu-
sion with attribute features [44], orientation covariant aggrega-
tion [49], or democratic aggregation of local features [46].
In this work, our focus is on the accelerated matching be-

tween high-dimensional binary codes derived from visual words
based aggregated descriptors, subject to the performance main-
tenance against the exhaustive linear search. The proposed vi-
sual words based WeCoHash is supposed to be compliant with
the state-of-the-art aggregated descriptors including a variety of
improved FV or VLAD methods like the latest democratic ag-
gregated descriptor [46].
Binary Aggregated Descriptors. There are lots of work on

learning binary codes from real-valued descriptors, such as
ORB [17], SH [32], ITQ [34], MLH [35], USB [18], BRIEF
[19] and BPBC [39]. The basic idea is to setup an intermediate
embedding of original descriptors (say, dimension reduction
by PCA), then binarize the projected vectors into binary codes.
However, most of them work on relatively low-dimensional
descriptors such as SIFT and GIST [29]. In addition, the
projection matrices in the embedding stage incur considerable
memory (e.g., hundreds of megabytes) and bring about extra
computation for the dimension reduction of original descriptors.

DUAN et al.: WEIGHTED COMPONENT HASHING OF BINARY AGGREGATED DESCRIPTORS FOR FAST VISUAL SEARCH 831

An alternative is to directly binarize the original descriptors
[21], [5], [6], which can save out a lot of computation and
memory resources for computing the dim-reduced descriptors
and storing the big projection matrices. Sivic et al. [21] pro-
posed to binarize the BoW histogram entries, without incurring
any significant performance loss for large vocabularies. Per-
ronnin et al. [5] proposed sign binarization to binarize FV.
Recent works [6], [7] have further verified the discriminative
power of these binarzied descriptors, which obtains comparable
search accuracy to original descriptors. These results have
shown that a high-dimensional (long) code is necessary to
preserve discriminative power of aggregated descriptors, while
the binarized operation has less impact on the performance.
However, exhaustively computing the distance between long

binary descriptors in Hamming space over a very large data-
base is demanding. The traditional hashing algorithms cannot
decently address the efficiency and effectiveness issues of ANN
search over the high-dimensional binarized FV (or VLAD)
descriptors. In this work, the proposed WeCoHash came up
with a novel hashing mechanism to accomplish remarkable
search speed up and significantly reduced memory footprint,
while maintaining promising search accuracy.
Hashing Binary Vectors for ANN Search. As introduced be-

fore, hashing binary vectors for ANN search can be divided into
two stages: offline hash tables construction and online search
over the hash tables. Considering the length of a binary vector,
hashing algorithms can be classified into “Single key Hashing”
and “Multiple keys Hashing”:
1) “Single key Hashing” (denoted as S-Hashing) refers to di-

rectly use the whole binary vector as a hash key when its
length is small (i.e.,). Thus, there is a single hash
table to build up. For example, recent works on learning
short binary codes (such as Spectral Hashing [32], and
Minimal Loss Hashing [35]) adopt S-Hashing to accom-
plish the offline hash table construction in which the length
of binary codes is no longer than 32.

2) “Multiple keys Hashing” (denoted as M-Hashing) refers
to build up multiple hash tables when binary vector is long
(i.e., a binarized FV descriptor with length). Each
hash table corresponds to a hash key of a binary vector.
However, the memory resource limits the choice of hash
keys, as the number of buckets increases exponentially
with the length of a hash key [41].

Most of existing M-Hashing methods rely on the LSH for bi-
nary vectors [12], which selects random subsets of bits from a
binary vector as hash keys. Random hash keys generation may
lead to unbalanced bit selection, for example, some bits may be
selected more frequently than others, or even some of them may
not be selected at all [16]. One can simply increase the number
of random hash keys to alleviate the problem, but this leads to
more search time and heavier memory use. To the best of our
knowledge, there is few work studying how to generate optimal
hash keys, which, as shown in our work for the binary aggre-
gated descriptors, is crucial for improving the search speedup
as well as reducing the memory footprint of hash tables.
Beyond hash tables construction, Esmaeili et al. [20] pro-

posed error weighted hashing (EWH) to enhance the online
search of LSH. EWH differs from LSH in the way that the can-

didates are chosen. In LSH, any database image that presents
a hash value identical to the query (i.e.,) in at least one
hash key is adopted as a candidate, while EWH uses -bit dif-
ference of hash values to find candidate images (i.e.,).
For each hash table, EWH first enumerates all the hash values

() having -bit difference with the corre-
sponding hash value of a query, and add a weighted similarity
score to the database images in the buckets corresponding to

. This procedure is repeated for all hash tables, and results
in a list of database images ranked by similarity scores. Finally,
a similarity threshold is applied to select the database images
with higher scores as candidates. Compared to LSH, EWH can
generate a much smaller subset of candidates but yield better
search accuracy by tolerating erroneous hash values of the query
[20]. However, the weights only relate to Hamming distance
and are empirically fixed, while the statistics of hash values are
ignored.
While we focus on ANN search, there also exist hashing

algorithms for finding exact nearest neighbors. Norouzi et al.
[41] proposed Multi-Index Hashing (MIH) to find -neighbors.
The search radius is meant to constrain the search range to
be smaller or equal to , where the range is measured by the
Hamming distance between the query and its nearest neigh-
bors. MIH contiguously partitions a long binary code into
disjoint sub-vectors, builds up multiple hash tables using these
sub-vectors as hash indices, and finds -neighbors for each
sub-vector. MIH has sub-linear search time for uniformly dis-
tributed codes when the search radius is small. But if we apply
MIH to ANN search with high-dimensional binarized VLAD
or FV (e.g., thousands of bits), a large search radius is normally
needed for satisfactory search accuracy, which exponentially in-
creases search time in scanning the buckets.
Approximate Nearest Neighbor Search. Besides the classical

hashing, many other ANN algorithms have been proposed for
indexing and searching real-valued descriptors. The most rep-
resentative are tree-structured search and clustering algorithms.
Tree-structured search algorithms like KD-tree [51] or random-
ized KD-tree [52] build up a set of trees independently, where
each tree is constructed by recursively splitting a collection of
descriptor vectors along the dimension randomly chosen from
the top ranked dimensions with the largest variance at each
level. Given a query, it traverses each tree down to a leaf node,
followed by backtracking to check other nodes for better candi-
dates. However, the tree-structured search approaches performs
very poor when dealing with binary vectors because the query
vector can easily move to the wrong branch if a single bit is
flipped [16].
Clustering algorithms such as k-means [21], Hierarchical

K-Means (HKM) [22] and Product Quantization (PQ) [40]
approximate the nearest neighbors search by vector quantizing
descriptors. For example, PQ [40], [53]–[56] partitions an
original descriptor into disjoint sub-vectors and quantize each
sub-vector separately with a pre-trained codebook. The original
descriptor is thus represented by short codes composed of the
quantizer indices. The distance between original descriptors is
approximated by the distance between their quantized visual
words, which can be efficiently read from a lookup table.
However, to obtain satisfactory search accuracy, PQ generally

832 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 6, JUNE 2015

requires fine quantization with short sub-vectors associated
with large codebooks. As a consequence, it would lead to slow
search speed and heavy memory footprint of lookup tables
during online search, especially for high-dimensional binary
vectors. This will be quantitatively validated in Section IV.
Both tree-structured search and clustering are designed for

real-valued descriptor vectors, while few work attempted to
apply these algorithms to binary descriptors, especially for
large scale image search. However, hashing with binary de-
scriptors exhibits sub-linear search time and light storage of
hash tables for uniformly distributed binary descriptors with
a proper search radius. More importantly, it supports exact
nearest neighbors search [41], which guarantees the best search
accuracy.

III. WEIGHTED COMPONENT HASHING

A. Problem Definition

Assume that an image is represented as a binary aggregated
descriptor with elements, each element is either
0 or 1. The similarity between binary aggregated descriptors
is measured by Hamming distance. The objective of hashing
is to construct (multiple) hash tables for indexing the binary
aggregated descriptors of database images, and support efficient
image search. Accordingly, the problems of “What to hash” and
“How to search” can be defined as follows (see Fig. 1):
• What to hash generates the -th hash key function by
selecting a subset of bits from binary aggregated de-
scriptor

(1)

As the quality of selected bits impacts search accuracy and
memory cost of hash tables, the hash value derived
by from an image shall be discriminative for describing
that image.

• How to search matches individual hash values
between query and database image with an

ANN search and accumulates the matching scores to gen-
erate similarity score as

(2)

where denotes the matching score of hash
values and , and denote the number of hash
keys (hash tables) and the number of database images, re-
spectively. Given a query, a subset of candidate images is
produced by collecting database images with high simi-
larity score. To maintain the search accuracy of exhaus-
tive search and reduce the number of shortlisted candidate
images, the matching score shall be informative to dis-
tinguish the nearest neighbors of the query image.

To address these two problemswith the state-of-the-art binary
aggregated descriptors, we propose the WeCoHash solution as
presented in the next subsections. First, Section III-B briefs
the extraction of binary aggregated descriptors in this work.
Then, we present the WeCoHash in two parts (1) the offline

hash tables construction based on image-specific local sta-
tistics in Section III-C and globally optimized bit selection
in Section III-D, and (2) the online search based on adaptive
relevance weighting in Section III-E. Finally, we analyze the
complexity of WeCoHash in Section III-F.

B. Binary Aggregated Descriptors
Let denote a collection of local features

extracted from an image. In this work, we use a variant of SIFT
descriptor, RootSIFT [42]. RootSIFT simply applies square root
to each element of SIFT. Principal Component Analysis (PCA)
is employed to project the dimensionality of 128-dimensional
RootSIFT to dimension [2]. These pre-processing operations
are beneficial to the overall performance [42], [2], [7]. As dis-
cussed in Section II, the 0-order, 1-order and 2-order statistics
of transformed local feature distribution are employed to gen-
erate the raw aggregated descriptors. Concretely speaking, FV
is applied to perform the aggregation, while VLAD is a simpli-
fied non-probabilistic version of FV.
FV [38], [1] firstly employs a Gaussian Mixture model

(GMM) with Gaussians (visual words) to estimate the dis-
tribution of local features over a training set. We denote the
set of Gaussian parameters as: ,
where , and are the weight, mean vector and variance
vector of the th Gaussian, respectively. For each Gaussian,
the gradient vectors of all local features w.r.t. the mean are
aggregated (averaged) into a -dimensional vector

(3)

where denotes the poste-
rior probability of local feature being assigned to the th
Gaussian. FV is formed by concatenating the sub-vectors

of all Gaussians and is therefore
-dimensional.

As proved in [30], the VLAD [2] is a simplified non-prob-
abilistic version of FV. In other words, VLAD can be derived
from FV by replacing the GMM soft clustering with k-means
clustering. Accordingly, (3) degenerates to the form

, where denotes the subset of local features
in an image that are assigned to the th visual word.
Finally, we generate binary aggregated descriptors by quan-

tizing each dimension of FV or VLAD into a single bit 0/1 based
on a sign function. Formally speaking, we project each element
of descriptors to 1 if ; otherwise, 0

if
otherwise (4)

which yields a binary descriptor with
bits that will be used for the subsequent hashing.

C. Image-Specific Component Selection
For multiple hash tables construction, both query and data-

base images are supposed to be represented by a common set
of hash keys, each hash key comprising of a subset of bits from
a binary aggregated descriptor [5], [6], [7]. “What to hash”
is meant to tackle the problem that not all hash keys equally

DUAN et al.: WEIGHTED COMPONENT HASHING OF BINARY AGGREGATED DESCRIPTORS FOR FAST VISUAL SEARCH 833

contribute to describing an image. Given a pool of hash keys,
image-specific component selection uses local statistics to
figure out part of discriminative hash keys to establish hash
table buckets in an adaptive way.
As shown in (3), the aggregated descriptors are formed by

concatenating residual vectors computed for all visual words,
while each residual vector is aggregated from local features
being assigned to the corresponding visual word. Let us define
the occurrence of a visual word as the number of local features
quantized (the nearest) to that visual word. The occurrence of
different visual words may vary within an image, while the vi-
sual words with low occurrence are supposed to be less dis-
criminative for describing the image [21]. In an extreme case,
if none of local features is assigned to a visual word, all the
elements of the corresponding residual vector are zero, which
means that this visual word shall not be taken into account for
image description.
Therefore, a natural way is to partition a binary aggregated

descriptor into disjoint components by visual words and regard
each component as a hash key. The goal is to adaptively select
part of discriminative components for each image, through se-
lecting the subset of visual words with high reliability. In this
paper, we define the reliability as a soft-weighted occur-
rence of the th visual word

(5)

Specifically, for the continuous FV model, is defined as
the sum of posterior probabilities of local features
being assigned to the th visual word: .
For the discrete VLAD model: .
Each local feature can be soft quantized to multiple visual
words. Given a local feature, we rank all the visual words
based on the distance between the local feature and the cen-
troid of each visual word. The visual word ranked at the -th
position is called the -th nearest neighbor visual word of the
local feature. denotes the number of local features
whose the -th nearest neighbor visual word is , and the
associated weight. The smaller is, the larger will be. The
soft-weighted occurrence is more stable as the rank informa-
tion is considered. In the experiments, we empirically set the
weights as .
We have empirically studied the impact of component se-

lection on the distribution of Hamming distance of match/non-
match image pairs. We generate 2,550 match image pairs and
25,500 non-match image pairs from the UKbench dataset (see
Section IV). As shown in Fig. 3, it is easier to separate match and
non-match image pairs, when Hamming distance is computed
over the selected components rather than all the components.
This demonstrates the necessity of discarding “noisy” compo-
nents within a binary aggregated descriptor.
For offline hash tables construction, we compute the relia-

bility of components for each database image using (5) and se-
lect a subset of components with high reliability. For each se-
lected component, we store the database image ID in the hash
bucket with an identical hash value. The rest of components
are discarded. In online search, we apply component selection

Fig. 3. Effects of image-specific component selection on the probability distri-
bution of Hamming distance of 2,550 match image pairs and 25500 non-match
image pairs from the UKbench dataset (solid lines are with component selec-
tion, while dotted lines without component selection). The binaried FV is with

and in this experiment.

to query images as well and perform search using the selected
components. In practice, we apply a uniform number of selected
components for all images. The selected components may vary
in different images.
By selecting a subset of components for hashing, the number

of database image IDs stored in the buckets may decrease,
thereby reducing the memory cost of hash tables. Meanwhile,
as “noisy” entries are removed from the buckets, the required
number of shortlisted candidates can be largely reduced.
Accordingly, search speedup can be further improved, while
comparable retrieval accuracy is maintained.

D. Globally Optimized Bit Selection

After image-specific component selection, each component
(visual word) is regarded as a hash key and the dimensionality
of each hash key equals to the dimensionality of a visual word.
Ideally, for a -dimensional hash key, there exist hash values
(buckets) in the corresponding hash table. If is large, it costs
huge memory to maintain the data structure of buckets. For in-
stance, when , thememory cost of buckets (frommemory
address) is bytes (4 bytes for each bucket [41]2). Besides,
the number of buckets to check increases near exponentially
with search radius , resulting in less efficient search. More im-
portantly, even though we perform visual word level component
selection to remove redundancy from a binary aggregated de-
scriptor, there probably exists bit-level redundancy among hash
values within each selected component. Therefore, we propose
bit selection to further reduce the dimensionality of components,
while maintaining search performance as well.
A naive solution is to apply random bit selection, which, how-

ever, ignores the bit correlation within a component. Given the

2As analyzed in the MIH paper [41], the data structure of a hash table is actu-
ally an array of pointers. The size of each pointer (corresponding to a bucket) is 4
bytes (for a 32-bits operating system). Even a bucket is empty, a 4 bytes pointer
should be occupied; otherwise additional data structure is needed to identify
which pointers are dismissed due to the null bucket, while extra complexity is
incurred.

834 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 6, JUNE 2015

Fig. 4. Visualization of bit correlations of (a) randomly selected 32 bits and
(b) globally optimized selected 32 bits from a selected component with
of binarized FV descriptors (in which 64-dimensional PCA reduced RootSIFT
is applied) over the UKbench dataset (10,200 images). Bright colors indicate
strong bit correlation.

th component with dimension , we define
the bit correlation between bit and as

(6)

where and denote the joint entropy and the
mutual information of a pair of bits and , respectively.
Due to limited space, we add these definitions into Appendix.
Fig. 4(a) visualize the exemplar statistics of bit correlations be-
tween any two bits within a component, where 32 bits are ran-
domly selected from a 64-dimensional hash key. As one can see,
the majority of bits are correlated more or less with each other.
In this paper, we propose a globally optimized bit selection

based on mutual information minimization [47] to produce dim-
reduced informative hash values. Formally speaking, for the th
component from a binary aggregated descriptor, the goal
is to generate a hash key by selecting () bits that
carry as much information as possible, let us denote the hash
key as the position of selected bits
with . The globally optimized bit selection is
formulated as an entropy maximization problem

(7)

where denotes the position (ranging from 1 to d) of the
selected bits from a component, and denotes the actual
bit element of that position. As this combinatorial optimization
is computationally intractable, we employ a greedy algorithm
[48] to solve (7)

(8)

(9)

We firstly choose the single bit with maximum entropy
from a component, then iteratively pick up the bit
which minimizes its mutual information with the already

chosen bits . Equation (9) can be solved effi-
ciently as we only compute the entropy of two variables (bits).
The mutual information minimization de-correlates the selected
bits towards discriminative hash values of reduced dimension.
Fig. 4(b) visualizes bit correlations between 32 selected bits
from a 64-dim component by the global optimization. By com-
paring Fig 4(a) and (b), one can see that the mutual information
minimization based selected bits are much less correlated than
random bit selection.
Finally, we summarize the proposed multiple hash tables con-

struction method combining image-specific component selec-
tion and globally optimized bit selection in Algorithm 1.

Algorithm 1: The offline hash tables construction through
image-specific component selection and globally optimized
bit selection.

Input: Binary aggregated descriptors of database images
. Number of components (visual words) .

Output: Hash tables .
1: Clear each hash table .
2: for i from 1 to do
3: for j from 1 to do
4: if the -th component of is selected based on its

reliability then
5: Generate hash value from based on the

corresponding hash key (i.e., bit selection mask)
.

6: Insert image ID into hash bucket .
7: end if
8: end for
9: end for
10: .
11: return .

E. Adaptive Relevance Weighting

To answer “How to search”, we propose an adaptive rele-
vance weighting to boost the online search performance by ex-
ploiting the hash value relevance between query and database
images. Recall that existing weighting approaches such as EWH
[20] extend the traditional -bit difference mechanism by setting
different weights for different Hamming distance ().
That is, when using multiple hashing tables, a higher weight is
empirically assigned to the similarity score derived from a col-
lided hash value that generates a lower Hamming distance to
that of a query. However, the weights just relate to the Hamming
distance, while the statistical information from hash values is
ignored; moreover, the empirically fixed weights cannot adapt
to different hash values. In this work, we propose to incorporate
the statistics of hash values into the weighting process, resulting
in adaptive weights with respect to different hash values.
We attempt to model the statistical relevance between query

and database images in terms of hash values, which is useful
for adaptive weighting of hash values. The basic idea is that the
most promising nearest neighbors returned by hashing collision
are supposed to fall into the buckets with low Hamming dis-
tance to query hash value. Meanwhile, for those low Hamming

DUAN et al.: WEIGHTED COMPONENT HASHING OF BINARY AGGREGATED DESCRIPTORS FOR FAST VISUAL SEARCH 835

Fig. 5. Online search based on the adaptive relevance weighting. Given a query
hash value from a selected component, we generate all binary vectors (i.e., hash
values) () having -bit difference with the query hash value,
each binary vector corresponding to a bucket in the hash table and each bucket
counting the hash value collisions of database images (e.g.,) for the adap-
tive weighting (e.g.,).

distance buckets, a smaller number of collision means that the
corresponding hash value tends to be more informative in dis-
tinguishing the “true” nearest neighbors from “noisy” database
images, which follows a similar idea of inverted document
frequency (IDF) [21] in retrieval. Specifically, the matching
score between dim-reduced hash value and in (2) is
rewritten as follows:

(10)

where is defined as the adaptive relevance
weight between hash values and with -bit difference

otherwise

where denotes the Hamming distance between two bi-
nary vectors; the total number of database images
falling into colliding buckets of the th component, each bucket
corresponding to a hash value with Hamming distance
to ; the number of database images.
As illustrated in Fig. 5, given a query, we initially reset the

similarity scores of all database images to zero. For the query
hash value from the -th selected component, we firstly
generate all hash values () having -bit differ-
ence with , each hash value corresponding to a bucket in the
hash table and each bucket accumulating the hash value colli-
sions of database images for the adaptive weighting in (10). For
each selected component, this procedure is repeated for all hash
values that differ from by bits, respectively;
then this procedure is repeated for all the selected components

of the query. As a result, a list of similarity scores of the data-
base images are generated. A threshold is applied to select the
images with high similarity scores as candidates. Finally, an ex-
haustive linear search is performed on the shortlisted candidates
with a full-length binary descriptor to find out the nearest neigh-
bors. The online search process is summarized in Algorithm 2.
During online search, we have to calculate the weight in (10)

for all the query hash values of selected components and all
Hamming distance , which inevitably slows down the search
process. To address the issue, we propose a fast look-up table
method. For each component, we enumerate all the possible
query hash values and compute their weights at different Ham-
ming distance using (10). Thus, there are in total
elements to be stored in the lookup table. In online search, given
a query hash value of a component and Hamming distance ,
we can quickly retrieve the weight value from the lookup table.
The memory cost of a lookup table is mainly determined by the
number of selected bits , which is usually a small value (e.g.,
less than 16). For instance, when , , , only
6 megabytes is needed to store the lookup table.
In summary, the proposed relevance weighting as the simi-

larity scoring weights, differs from EWH [20] in two aspects
(1) the adaptive relevance weighting incorporates the statistical
information of hash values in addition to the Hamming distance.
(2) the adaptive weighting employs the hashing value statistics
of both query and database images to distinguish discriminative
hash values for improving search performance.

Algorithm 2: The online search based on adaptive relevance
weighting.

Input: Binary aggregated descriptor of query . Hash
tables . Hash keys (bit selection
masks) . Size of database . Look-up
table computed from (10). Similarity threshold .

Output: approximate nearest neighbors of the query.
1: Initialize the similarity scores to 0, , .
2: for i from 1 to do
3: if -th component of query is selected based on

its reliability then
4: Generate hash value from based on

the corresponding hash key .
5: for r from 0 to do
6: Enumerate , the set of hash values for

all binary vectors that have r-bit difference
with .

7: Compute using look-up table
and add it to that are within the
corresponding buckets of hash table
.

8: end for
9: end if
10: end for
11: Collect all the database images whose similarity

scores are greater than threshold as candidates.
12: Compute the Hamming distance between the query

and candidates, and return the top K nearest neighbors.

836 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 6, JUNE 2015

F. Analysis of Time and Memory Complexity
Let us denote the number of database images as , the number

of visual words , the dimensionality of a visual word , the
number of selected components for each image , the length of
dim-reduced hash value , the number of candidate images
and the computation time cost of Hamming distance between
-dimensional binary vectors , we analyze the search time and
memory cost of the proposed WeCoHash algorithm as follows:
1) Search time. Given a query, search time cost mainly con-

sists of two parts: (1) : visit
all buckets from hash tables that are within -bit differ-
ence to the hash value of a query, where de-
notes the average number of entries (database image IDs)
in each bucket and the number of hash values having
-bit difference with query. The entries in the buckets are
considered as candidates. (2) : Hamming distance
based exhaustive linear search on the candidate images
to return nearest neighbors. The first part can be ignored
when is small (e.g.,), search time is then deter-
mined by the cost of exhaustive search on the candidates,
i.e., the number of returned candidates.

2) Memory cost. The memory cost of hash tables consists of
two parts: (1) : the cost of data structure to main-
tain the buckets. (2) : the entries in the buckets. In
general, the length of dim-reduced hash value and the
number of visual words are small values, so the first part
can be ignored, and the memory footprint mainly depends
on the number of entries in the buckets (i.e., the number
of database images as well as the number of selected
components).

IV. EXPERIMENTS

A. Datasets
To evaluate the advantages of WeCoHash algorithm, we per-

form extensive comparison experiments over publicly available
benchmark datasets, including UKbench, INRIA Holidays and
Stanford Mobile Visual Search (SMVS) dataset, combined with
1 million distractor images collected from the Flickr website
(FLICKR1M).
UKbench [22] contains 10,200 images with 2,550 objects.

There are 4 images per object involving variances in viewpoints,
lightings, occlusions and affine transforms. All the 10,200 im-
ages are used as reference images and each image is used as a
query as well.
INRIA Holidays dataset [26] is a collection of 1,491 holiday

photos. There are 500 image groups where the first image of
each group is used as a query. The remaining 991 images are
used as the reference images.
Stanford Mobile Visual Search (SMVS) dataset [50] contains

4,500 phone camera images of products, CDs, books, outdoor
landmarks, business cards, text documents, museum paintings
and video clips. The dataset has posed several challenges of rec-
ognizing rigid objects in the context of mobile imaging such
as: widely varying lighting conditions, perspective distortion,
clutter, realistic ground-truth reference data, and heterogeneous
query data collected from low and high-end camera phones.
There are 2,800 queries and 1,700 reference images.

FLICKR1M dataset contains 1 million distractor images,
which are merged with the reference images of the benchmark
datasets including UKBench, INRIA Holidays, and SMVS to
evaluate the retrieval performance over a large scale database.
In addition, an independent image dataset, Oxford buildings

[23], is used in all training stages, including PCA projection
matrix training of RootSIFT, visual vocabulary training based
on k-means or GMM clustering, bit selection model based on
mutual information minimization, etc.

B. Evaluation Criteria
Search Accuracy. For all experiments we use the mean Av-

erage Precision (mAP) to measure the search accuracy. mAP is
defined as follows:

where is the number of queries; the number of relevant
images for the th query; is the precision at rank r.
Besides mAP, we employ the Success rate for Top Match

(STM) to measure the precision at rank 1, which is defined
as: (number of times the top retrieved image is rele-
vant)/(number of queries).
Note that for UKbench dataset, we report the average number

of relevant images in top 4 returns, i.e., , which is
the commonly used measure over this dataset [22].
Search time cost is defined as

where denotes the time cost for visiting the buckets in
multiple hash tables and the linear search time cost
for Hamming distance computation on the candidate images to
return the nearest neighbors.
Memory cost is measured by

where and denote the memory cost of buckets
(addresses) and inverted indices in the buckets, respectively.

C. Comparison Baselines
Evaluation of “What to hash” and “How to search”. We

present group of comparisons to evaluate the technical advan-
tages of the Image-specific Component Selection (denoted as

), the globally optimized bit selection based on Mutual In-
formation Minimization (denoted as), and the ADAp-
tive relevance weighting (denoted as) for online search.
A few alternatives in each stage are selected for comparison.
(1) For , we setup two intuitive component selection strate-
gies: RANdom Component selection (denoted as), and
TF-IDF based component selection [21] (denoted as);
(2) For , we compare it with two bit selection baselines:
RANdom Bit selection (denotes as) adopted by the clas-
sical hashing algorithms LSH [12], and UNIform bit selection
(denotes as) proposed by [16] to improve ; (3) For

, we setup two weighting baselines for online search: -bit

DUAN et al.: WEIGHTED COMPONENT HASHING OF BINARY AGGREGATED DESCRIPTORS FOR FAST VISUAL SEARCH 837

difference based on FIXed weights (denoted as) used in
the EWH algorithm [20], and the IDF-based weights (denoted
as).
Specifically, for “What to hash”, we compare different

component selection methods when bit selection is fixed
(i.e., , and), and dif-
ferent bit selection methods when component selection is
fixed (i.e., , and). Based on
the optimal “What to hash”, we evaluate “How to search” in
terms of without weighting (i.e.,), and with different
weighting schemes (i.e., ,
and). In addition, we compare the perfor-
mance of the proposed WeCoHash (i.e.,)
with the exhaustive linear search by using Euclidean distance
over uncompressed aggregated descriptors, in which the latter
generally serves as the performance upper bound of ANN
search accuracy.
Comparison with the state of the art. We establish the

state-of-the-art approaches for extensive comparison with the
proposed WeCoHash, including (1) the exhaustive linear search
on the whole database; (2) the LSH algorithm [12] with random
hash keys generation and “collision” mechanism () to
generate candidate images; (3) the Uniform LSH algorithm [16]
differing from LSH in uniformly generated random hash keys;
(4) the EWH algorithm [20] differing from LSH in weighted
-bit difference () search strategy; (5) the MIH algorithm
[41] originally designed for exact nearest neighbors search;
(6) the HKM [22] with depth 2 and branch 10 producing 100
visual words; (7) the PQ [40], each block consisting of 16
dimensions and 256 visual words setup for each block.
Note that we implemented LSH, Uniform LSH, EWH with

C++ as there is no publicly available source code release. For
MIH, we directly use the source code provided by the author.We
utilize the implementation of HKM and PQ in the open source
library VLFeat.3

D. Implementation Details

All images are converted to gray images. If at least one
of the dimensions of the original image is greater than 640
pixels then the original image shall be spatially resampled,
maintaining the aspect ratio, so that the largest of the vertical
and horizontal image dimensions is equal to 640 pixels. We
use a variant of SIFT descriptor, RootSIFT [42], which simply
applies square root to each component of SIFT extracted by
the VLFeat3 library. The dimension of RootSIFT is reduced to

, respectively, by applying different PCA
project matrixes. We employ the state-of-the-art approaches
FV and VLAD to aggregate the dim reduced RootSIFT local
feature descriptors, with the number of visual words .
k-means clustering or GMM model are applied to VLAD or
FV. As introduced before, sign binarization is employed to
compress the original FV (or VLAD) to binary aggregated
descriptors with bits. Except as expressly stated, a fixed
setting of is applied across all experiments.
All experiments are performed on a Dell Precision workstation

3[Online]. Available: http://www.vlfeat.org

Fig. 6. Impact of key parameters of the proposed WeCoHash algorithm, in-
cluding the number of selected components , the number of selected bits ,
and the search radius , in terms of average search time (us) and retrieval mAP
on the SMVS dataset. Note that the different numbers of selected components

(from left to right for each curve) are applied to different
configuration settings of selected bit and search radius.

7400-E5440 with 2.83 GHz Intel XEON CPU and 16G of
RAM in a mode of single core and single thread.

E. Impact of Parameters

We firstly evaluate the impact of key parameters of the pro-
posed WeCoHash algorithm, including the number of selected
components , the number of selected bits and the search ra-
dius , in terms of average search time and retrieval mAP on the
SMVS dataset, as shown in Fig. 6. Similar trends are obtained
on the INRIA Holidays and UKbench datasets.
Number of selected components . By fixing the number of

selected bits and the search radius , as shown in Fig. 6, in-
creasing the number of selected components has consistently
improved the retrieval mAP while more search time cost is in-
curred. For example, when , the retrieval mAP is
improved from 83% to 85.2% while the search time increases
from 49 us to 100 us, by increasing the number of selected com-
ponents from 50 to 80.
Number of selected bits . By fixing the number of selected

components and the search radius , decreasing the number
of selected bits significantly increases the search time. When
becomes smaller, the number of entries (database image IDs)

in each bucket is increased on average, which leads to a fast
growing number of candidates for linear search. The Hamming
distance computing ofmore candidates undoubtedly bring about
considerable computation cost. When becomes too large, the
conflict probability between the hash values of query and refer-
ence images would decrease dramatically and fewer entries in
each buckets result, which would seriously degenerate mAP. In
other words, it is meaningful to figure out a proper number of
selected bits.
Search radius . As shown in Fig. 6, by fixing the number

of selected component and the number of selected bits , one
can see that the retrieval mAP is consistently improved with the

838 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 6, JUNE 2015

TABLE I
EVALUATION OF “WHAT TO HASH” AND “HOW TO SEARCH” FOR BOTH

BINARIZED FV (BFV) AND BINARIZED VLAD (BVLAD) OVER
VARIOUS DATASETS. THE INRIA HOLIDAYS AND SMVS
DATASETS USE MAP, WHILE THE UKBENCH DATASET

USES

search radius from to . When increasing from
2 to 3, the retrieval perform gain (mAP) is very minor, while
search efficiency has decreased significantly due to the dramatic
increase of buckets to visit, whereas more candidates still cannot
be recalled.
Note that we observed a few cases of slight speed up when

increasing search radius (except). As we know, search
consists of two stages: hashing based recall and exhaustive
linear search over candidates. When is very small, the time
cost on buckets visiting (the first stage) is ignorable, while the
time cost on exhaustive linear search (the second stage) would
be effected by the number of candidate images for exhaustive
search by setting a threshold . The setup of different empirical
thresholds may bring about some variance, which may lead to
a few exceptional cases.
Referring to Fig. 6, we apply the optimal setting of

and in the subsequent experiments, which yields desir-
able performance in terms of both search accuracy and search
efficiency.

F. Evaluation of “What to Hash” and “How to Search”

In this section, we evaluate the performance of WeCoHash
from the perspectives of “What to hash”, “How to search”, and
the combination. Table I summarizes extensive comparison re-
sults of different combinations of empirical settings of “What
to hash” and “How to search”, for the state-of-the-art binary ag-
gregated descriptors: binarized FV [5] and VLAD [2], [30].
What to hash. Referring to the listed results in Table I, the

combination of component selection and bit selection signifi-
cantly outperforms solely bit selection approaches and

without component selection. For ,
and , different component selectionmethods are ap-
plied while the same bit selection mechanism is applied.
From Table I, yields the best retrieval accuracy, e.g.,
mAP 80% for vs 78.1% for vs. 75.8%

Fig. 7. Comparison in terms of mAP between different hashing methods on
the INRIA Holidays dataset, with the binary aggregated descriptor bFV (a) and
bVLAD (b), respectively.

for on the SMVS dataset with bFV. This has veri-
fied that the effectiveness of our image-specific component se-
lection. In addition, for , and ,
different bit selection methods are applied while the same com-
ponent selection mechanism is applied. As listed in Table I,

has significantly outperformed the rest, which has
shown the effectiveness of our globally optimized bit selection.
How to search. From Table I, ,
and outperform without using

weighting, which means the weighting mechanism in online
search can consistently improve the retrieval accuracy. In addi-
tion, (i.e., the proposed WeCoHash) signifi-
cantly outperforms and , e.g.,
mAP 62.3% for vs 59% for
and 60.5% for on the INRIA Holidays dataset
with bVLAD.
Finally, we add an important comparison between the pro-

posed WeCoHash (with the binary aggregated descriptor)
and the exhaustive linear search with Euclidean distance
(with uncompressed aggregated descriptor). From Table I, the
WeCoHash obtains comparable search accuracy with the un-
compressed FV or VLAD. This demonstrates the effectiveness
of WeCoHash.

G. Comparison With the State of the Art

In this section, we firstly compare the proposed WeCoHash
approach with the state-of-the-art hashing techniques over the
aggregated descriptors of binarized FV and binarized VLAD
which encode the high-order statistics of local feature distribu-
tion in a probabilistic and non-probabilistic way, respectively.
Secondly, regarding the state-of-the-art hashing techniques, we
further study the effects of dimensionality of binary aggregated
descriptors and image database size on search speedup, when re-
trieval accuracy is maintained comparable as exhaustive linear
search. Finally, we extend the experiments to a large scale set-
ting with the 1 million FLICKR1M dataset and analyze search
speedup as well as memory footprint.
Performance comparison. Fig. 7, Fig. 8 and Fig. 9 show the

retrieval mAP vs search time on the datasets of INRIA Holi-
days, SMVS and UKbench, respectively. For fair comparison
with LSH, Uniform LSH, and EWH, we apply the same number
of hash tables as well as the same length of hash value for
all hashing algorithms. Optimal parameters tuning is allowed

DUAN et al.: WEIGHTED COMPONENT HASHING OF BINARY AGGREGATED DESCRIPTORS FOR FAST VISUAL SEARCH 839

Fig. 8. Comparison in terms of mAP between different hashing methods on the
SMVS dataset, with the binary aggregated descriptor bFV (a) and bVLAD (b),
respectively.

Fig. 9. Comparison in terms of between different hashing
methods on the UKbench dataset, with the binary aggregated descriptor bFV
(a) and bVLAD (b), respectively.

for each baseline. As shown in Fig. 7, on the INRIA Holidays
dataset, at comparable retrieval mAP, our WeCoHash approach
is up to times faster than LSH and Uniform LSH, and

times faster than EWH. At comparable search time,
our WeCoHash approach achieves much better retrieval mAP
than LSH and Uniform LSH (+20.0%) and EWH (+10%). Sim-
ilar performance gains and search speedup can be observed on
SMVS and UKBench in Fig. 8 and 9 as well.
Effects of the dimensionality of binary aggregated descrip-

tors on search efficiency. Fig. 10(a) presents the search time vs
descriptor dimensionality of WeCoHash, LSH, Uniform LSH,
EWH and Linear Search over the UKbench dataset combined
with 1 million FLICKR1M. We apply a fixed number of com-
ponents (visual words) , and different dimensionality
of binary aggregated descriptors . The op-
timal parameters are setup for all hashing algorithms to obtain
comparable retrieval mAP (mAP drop 1%)with linear search.
As shown in Fig. 10(a), the time cost of linear search increases
linearly with the dimensionality of binary aggregated descrip-
tors, while the time cost of hashing algorithms increases slowly
(sub-linearly) with the dimensionality of binary aggregated de-
scriptors, especially for WeCoHash. For instance, when the di-
mension increases from to , the search speed
decreases by 2.2 times (from 0.04s to 0.09s) for WeCoHash vs
2.7 times (from 0.37s to 0.98s) for LSH.
Effects of database size on search efficiency. Fig. 10(b) shows

the growth of search time with the database size when applying
WeCoHash, LSH, Uniform LSH, EWH and linear search on the
UKbench dataset combined with different number of distractors
randomly selected from FLICKR1M, in which the parameter

Fig. 10. (a) Effects of the dimensionality of binary aggregated descriptors on
search time cost when the visual words size and the dimension varies
from 16 to 64. (b) Effects of database size on search time cost. The experiments
are evaluated over the UKbench dataset combined with different number of dis-
tractors from FLICKR1M.

tuning of each hashing algorithm are allowed to yield com-
parable retrieval mAP (mAP drop) with linear search.
As shown in Fig. 10(b), the search time cost of linear search
increases linearly with the size of database. Different from
linear search, the search speed of hashing algorithms decreases
slower as the size of database becoming large, especially for
WeCoHash. For example, when the database size increases
from 100 K to 500 K, the search speed decreases by 1.6 times
(from 0.04s to 0.065s) for WeCoHash vs 3.1 times (from 0.12s
to 0.37s) for EWH.
Performance evaluation over large-scale experiments.

Table II compares the retrieval accuracy in terms of mAP (or
), Top Match (STM) as well as search time (in

seconds) of the proposed WeCoHash approach against LSH,
Uniform LSH, EWH, MIH, HKM, PQ and Linear Search over
various types of datasets combined with 1 million FLICKR1M.
Both binarized VLAD (bVLAD) and binarized FV (bFV) are
evaluated.
Firstly, WeCoHash is significantly faster than linear search

over all datasets, with comparable retrieval accuracy. For in-
stance, WeCoHash obtains over 20 times speedup than linear
search at the cost of a minor STM drop on SMVS
dataset for bVLAD. Secondly, WeCoHash outperforms LSH,
Uniform LSH and EWH in terms of mAP(or),
respectively. For example, compared to LSH, WeCoHash im-
proves the measure of from 3.06 to 3.20 on UK-
bench dataset for bFV. More importantly, WeCoHash is up to
10 times faster than LSH and Uniform LSH, and up to 5 times
faster with EWH. Finally, compared to clustering algorithms
such as HKM and PQ, WeCoHash performs significantly better
than HKM (e.g., +18% mAP on Holidays dataset) with com-
parable search time, and obtains over 20 times speedup than
PQ (e.g., 0.09s for WeCoHash vs. 3.08s for PQ on UKbench
dataset) with comparable search accuracy. This demonstrates
that the proposed WeCoHash is more suitable for ANN search
with binary descriptors.
Memory cost. Table III shows the memory cost of hash tables

for indexing 1 million FLICKR1M dataset with WeCoHash,
LSH, Uniform LSH, EWH and MIH. As shown in Table III,
thanks to the component selection, the memory use of WeCo-
Hash is much less than the baselines, which is less than
LSH, Uniform LSH and EWH, and 30% less than MIH.

840 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 6, JUNE 2015

TABLE II
COMPARISON OF THE PROPOSED WECOHASH, LSH, UNIFORM LSH, EWH, MIH, HKM, PQ AND LINEAR SEARCH IN TERMS
OF MAP (OR) AS WELL AS TOP MATCH (STM) AND SEARCH TIME IN SECONDS OVER VARIOUS TYPES OF
DATASETS COMBINED WITH FLICKR1M. BOTH BINARIZED VLAD (BVLAD) AND BINARIZED FV (BFV) ARE EVALUATED

TABLE III
MEMORY COST OF CONSTRUCTING HASH TABLES TO INDEX 1 MILLION

FLICKR1M DATASET WITH HASHING METHODS

TABLE IV
PERFORMANCE OF STATE-OF-THE-ART VISUAL SEARCH METHODS ON INRIA
HOLIDAY DATASET. IN THIS TABLE, MA INDICATES IF A METHOD APPLIES
WITH MULTIPLE ASSIGNMENT AND INDICATES THE VOCABULARY SIZE

Accuracy versus efficiency. Our WeCohash mainly focuses
on the search efficiency which aims to accelerate the search
speed of the aggregated descriptors. As accuracy is always
important for visual search, we further study the results of
WeCohash from the perspectives of both search accuracy and
search efficiency by comparison with state-of-the-art visual
search methods. Table IV shows the results of state-of-the-art
visual search methods on INRIA Holiday dataset. From
Table IV, we find that the raw VLAD and Fisher Vector (FV)
cost much time due to the nature of high dimensionality. By
utilizing the inverted list for indexing image features, BoW
and its varieties (such as HE [26], BURST [57] and Fine
Vocabulary [58]) are much more efficient on search speed.
Recently, researchers have imposed kernal technologies on
VLAD and FV to further improve retrieval performance. Two
typical kernal methods ASMK [27] and TE+DA [46] have
shown their advantages to improve search accuracy. As shown
in Table IV, ASMK(ASMK{\ast}) [27] with multiple assign-
ment achieves 82.2%(81.0%) mAP and TE+DA [46] achieves
77.1% mAP on INRIA Holiday dataset. Compared with Bow
and its varieties, kernal technologies bring about better search

accuracy. Unfortunately, both of ASMK(ASMK{\ast}) and
TE+DA would introduce much more additional computational
complexity. In a single query, ASMK costs about 2.5 seconds
and TE+DA even costs up to 18.9 seconds, which are much
more time consuming than other methods. Our WeCohash
algorithm achieves a promising search accuracy of 80.5% mAP
on INRIA Holidays at vocabulary size 100 K. This is just
slightly worse than ASMK(ASMK{\ast}), but better than other
methods. What’s more, WeCohash doesn’t incur noticeable
complexity which may maximize the joint strength in terms of
search efficiency and accuracy. In WeCoHash, a query can be
finished within just 1 ms on average. Considering the joint ben-
efits of high accuracy and more efficiency, WeCoHash deserves
one of the most promising and practically useful algorithms in
dealing with large scale visual search.

V. CONCLUSIONS

Aggregating the statistics of local feature distribution is the
state-of-the-art approach to scalable visual search. In this paper,
we have proposed an emerging problem of approximate nearest
neighbor search with a long binary aggregated descriptor. We
have proposed a novel WeCoHash algorithm to address the
ANN problem with the long binary aggregated descriptor from
two aspects of “What to hash” and “How to search”. Accord-
ingly, the efficient and effective WeCoHash solution has been
developed for binary FV and VLAD descriptors. The proposed
WeCoHash implementation has been rigorously validated in the
evaluation framework of the emerging MPEG CDVS standard.
The CDVS adopted WeCoHash technique is meant to address
the scalability issue of compact binary aggregated descriptors
towards fast visual search. In particular, more extensive com-
parison experiments have studied the impact of key elements,
including discriminative components, bits de-correlation, hash
value adaptive weighting, etc., with a high-dimensional binary
aggregated descriptor in accomplishing high performance and
low complexity visual search.

APPENDIX

Let denotes a binary vector, and denotes the -th
and -th bit element respectively. The entropy , mutual

DUAN et al.: WEIGHTED COMPONENT HASHING OF BINARY AGGREGATED DESCRIPTORS FOR FAST VISUAL SEARCH 841

information and joint entropy are defined as
follows:

where denotes the probability of element .

REFERENCES
[1] F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies

for image categorization,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., Jun. 2007, pp. 1–8.

[2] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local de-
scriptors into a compact image representation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2010, pp. 3304–3311.

[3] D. G. Lowe, “Distinctive image features from scale invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[4] H. Bay et al., “SURF: Speeded up robust features,” in Proc. ECCV,
2006, pp. 404–417.

[5] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier, “Large-scale image re-
trieval with compressed Fisher vectors,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., Jun. 2010, pp. 3384–3391.

[6] D. Chen et al., “Residual enhanced visual vector as a compact sig-
nature for mobile visual search,” Signal Process., vol. 93, no. 8, pp.
2316–2327, 2013.

[7] J. Lin et al., “Rate-adaptive compact fisher codes for mobile visual
search,” IEEE Signal Process. Lett., vol. 21, no. 2, pp. 195–198, Feb.
2014.

[8] Evaluation Framework for Compact Descriptors for Visual Search,
ISO/IEC JTC1/SC29/WG11/N12202, 2011.

[9] Text of ISO/IEC DIS 15938-13 Compact Descriptors for Visual Search,
ISO/IEC JTC1/SC29/WG11/W14392, 2014.

[10] B. Girod et al., “Mobile visual search,” IEEE Signal Process. Mag.,
vol. 28, no. 4, pp. 61–76, Jul. 2011.

[11] W. Zhou et al., “Towards codebook-free: Scalable cascaded hashing
for mobile image search,” IEEE Trans. Multimedia, vol. 28, no. 4, pp.
61–76, Jul. 2014.

[12] A. A. and P. I. , “Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions,” in Proc. FOCS, 2006, pp.
459–468.

[13] M. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proc. STOC, 2002, pp. 380–388.

[14] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast image de-
scriptor matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Jun. 2008, 2008, pp. 1–8.

[15] L.-Y. Duan, J. Lin, J. Chen, T. Huang, and W. Gao, “Compact de-
scriptors for visual search,” IEEE Multimedia Mag., vol. 21, no. 3, pp.
30–40, Jul.–Sep. 2014.

[16] T. Trzcinski et al., “Thick boundaries in binary space and their influ-
ence on nearest-neighbor search,” Pattern Recog. Lett., vol. 33, no. 16,
pp. 2173–2180, Dec. 2012.

[17] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An effi-
cient alternative to SIFT or SURF,” in Proc. IEEE Int. Conf. Comput.
Vis., Nov. 2011, pp. 2564–2571.

[18] S. Zhang, Q. Tian, Q. Huang, W. Gao, and Y. Rui, “USB: Ultrashort
binary descriptor for fast visual matching and retrieval,” IEEE Trans.
Image Process., vol. 23, no. 8, pp. 3671–3683, Aug. 2014.

[19] M. Calonder et al., “Brief: Binary robust independent elementary fea-
tures,” in Proc. Eur. Conf. Comput. Vis., 2010, pp. 778–792.

[20] M. M. Esmaeili, R. K. Ward, and M. Fatourechi, “A fast approximate
nearest neighbor search algorithm in the hamming space,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 2, pp. 2481–2488, Dec. 2012.

[21] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to
object matching in videos,” in Proc. IEEE Int. Conf. Comput. Vis., Oct.
2003, vol. 2, pp. 1470–1477.

[22] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2006, vol.
2, pp. 2161–2168.

[23] J. Philbin, O. Chum, and M. Isard et al., “Object retrieval with large
vocabularies and fast spatial matching,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., Jun. 2007, pp. 1–8.

[24] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, “Total recall:
Automatic query expansion with a generative feature model for object
retrieval,” in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2007, pp. 1–8.

[25] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost in
quantization: Improving particular object retrieval in large scale image
databases,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun.
2008, pp. 1–8.

[26] H. Jégou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in Proc. ECCV,
2008, pp. 304–317.

[27] G. Tolias, Y. Avrithis, and H. Jégou, “To aggregate or not to aggregate:
Selective match kernels for image search,” in Proc. IEEE Int. Conf.
Comput. Vis., Dec. 2013, pp. 1401–1408.

[28] H. Jégou, M. Douze, and C. Schmid, “Improving bag-of-features for
large scale image search,” Int. J. Comput. Vis., vol. 87, no. 3, pp.
316–336, May 2010.

[29] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42, no.
3, pp. 145–175, 2001.

[30] H. Jégou et al., “Aggregating local images descriptors into compact
codes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp.
1704–1716, Sep. 2012.

[31] F. Perronnin and H. Jégou, “CVPR tutorial: Large-scale visual recog-
nition,” presented at the IEEE Conf. Comput. Vis. Pattern Recog. Tut.,
Jun. 2012.

[32] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc.
NIPS, 2008, pp. 1753–1760.

[33] A. Torralba, R. Fergus, and Y.Weiss, “Small codes and large databases
for recognition,” inProc. IEEEConf. Comput. Vis. Pattern Recog., Jun.
2008, pp. 1–8.

[34] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean ap-
proach to learning binary codes,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., Jun. 2011, pp. 817–824.

[35] M. Norouzi and D. Fleet, “Minimal loss hashing for compact binary
codes,” in Proc. ICML, 2011, pp. 353–360.

[36] R. Ji et al., “Location discriminative vocabulary coding for mobile
landmark search,” Int. J. Comput. Vis., vol. 96, no. 3, pp. 290–314,
Feb. 2012.

[37] Y.-G. Jiang, J. Wang, X. Xue, and S.-F. Chang, “Query-adaptive image
search with hash codes,” IEEE Trans. Multimedia, vol. 15, no. 2, pp.
442–453, Feb. 2013.

[38] T. Jaakkola and D. Haussler, “Exploiting generative models in discrim-
inative classifier,” in Proc. NIPS, 1999, pp. 487–493.

[39] Y. Gong, S. Kumar, H. Rowley, and S. Lazebnik, “Learning binary
codes for high-dimensional data using bilinear projections,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2013, pp. 484–491.

[40] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no.
1, pp. 117–128, Jan. 2011.

[41] M. Norouzi, A. Punjani, and D. Fleet, “Fast search in hamming space
with multi-index hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., Jun. 2012, pp. 3108–3115.

[42] R. Arandjelovic and A. Zisserman, “Three things everyone should
know to improve object retrieval,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., Jun. 2012, pp. 2911–2918.

[43] R. Arandjelovic and A. Zisserman, “All About VLAD,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., Jun. 2013, pp. 1578–1585.

[44] M. Douze, A. Ramisa, and C. Schmid, “Combining attributes and
Fisher vectors for efficient image retrieval,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2011, pp. 745–752.

[45] J. Delhumeau et al., “Revisiting the VLAD image representation,” in
Proc. ACM Multimedia, 2013, pp. 653–656.

[46] H. Jégou and A. Zisserman, “Triangulation embedding and democratic
aggregation for image search,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recog., Jun. 2014, pp. 3310–3317.

[47] T. Cover and J. Thomas, Elements of Information Theory. New York,
NY, USA: Wiley, 1991.

[48] F. Fleuret, “Fast binary feature selection with conditional mutual infor-
mation,” J. Mach. Learn. Res., vol. 5, pp. 1531–1555, Dec. 2004.

[49] G. Tolias, T. Furon, and H. Jégou, “Orientation covariant aggrega-
tion of local descriptors with embeddings,” in Proc. ECCV, 2014, pp.
382–397.

[50] V. Chandrasekhar et al., “The Stanford mobile visual search dataset,”
in Proc. ACM Multimedia Syst. Conf., 2011, pp. 117–122.

842 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 6, JUNE 2015

[51] J. Friedman, J. Bentley, and R. Finkel, “An algorithm for finding best
matches in logarithmic expected time,” ACM Trans. Math. Softw., vol.
3, no. 3, pp. 1977209–226.

[52] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast image de-
scriptor matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Jun. 2008, pp. 1–8.

[53] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization for
approximate nearest neighbor search,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., Jun. 2013, pp. 2946–2953.

[54] Y. Kalantidis and Y. Avrithis, “Locally optimized product quantiza-
tion for approximate nearest neighbor search,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2014, pp. 2329–2336.

[55] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., Jun. 2013, pp. 2938–2945.

[56] J.-P. Heo, Z. Lin, and S.-E. Yoon, “Distance encoded product quanti-
zation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2014,
pp. 2139–2146.

[57] M. Jain et al., “Asymmetric hamming embedding: Taking the best of
our bits for large scale image search,” in Proc. ACMMultimedia, 2011,
pp. 1441–1444.

[58] A. Mikulik et al., “Learning a fine vocabulary,” in Proc. ECCV, 2010,
pp. 1–14.

Ling-Yu Duan (M’09) received the M.Sc. degree in
automation from the University of Science and Tech-
nology of China, Hefei, China, in 1999, the M.Sc. de-
gree in computer science from the National Univer-
sity of Singapore, Singapore, in 2002, and the Ph.D.
degree in information technology from The Univer-
sity of Newcastle, Callaghan, N.S.W., Australia, in
2007.
From 2003 to 2008, he was a Research Scientist

with the Institute for Infocomm Research, Singapore.
Since 2008, he has been with Peking University, Bei-

jing, China, where he is currently an Associate Professor with the School of
Electrical Engineering and Computer Science. He is the leader of the Visual
Search Group with the Institute of Digital Media, Peking University. Since
2012, he has been Deputy Director with the Rapid-Rich Object Search (ROSE)
Laboratory, a joint laboratory between Nanyang Technological University, Sin-
gapore, and Peking University, Beijing, China. He has authored or coauthored
more than 100 publications. His research interests include visual search and aug-
mented reality, multimedia content analysis, and mobile media computing.
Dr. Duan is a member of the Association for Computing Machinery.

Jie Lin received the Ph.D. degree from the School of
Computer Science and Technology, Beijing Jiaotong
University, Beijing, China, in 2014.
He was a visiting Ph.D. student with the School of

EEE, Nanyang Technological University, Singapore,
in 2010, and the Institute of Digital Media, Peking
University, Beijing, China, from 2011 to 2013.
He was a Research Engineer with the Rapid-Rich
Object Search Laboratory, Nanyang Technological
University, Singapore, in 2014. He is currently a
Research Scientist with the Institute of Infocomm

Research, Singapore. His research interests include mobile visual search, large
scale image/video retrieval, and deep learning.

Zhe Wang received the Bachelor degree in software
engineering from Beijing Jiaotong University,
Beijing, China, in 2012, and is currently working
towards the M.S. degree at the School of Electrical
Engineering and Computer Science, Peking Univer-
sity, Beijing, China.
His current research interests include large-scale

image retrieval and fast approximate nearest
neighbor search.

Tiejun Huang (M’01–SM’12) received the B.S. and
M.S. degrees in automation from Wuhan University
of Technology, Wuhan, China, in 1992, and the Ph.D.
degree from the School of Information Technology
and Engineering, Huazhong University of Science
and Technology, Wuhan, China, in 1999.
He was a Postdoctoral Researcher and a Research

Faculty Member with the Institute of Computing
Technology, Chinese Academy of Sciences, Bei-
jing, China, from 1999 to 2001. He was also the
Associated Director (from 2001 to 2003) and the

Director (from 2003 to 2006) of the Research Center for Digital Media, Chinese
Academy of Sciences. He is currently a Professor with the National Engineering
Laboratory for Video Technology, School of Electronics Engineering and
Computer Science, Peking University, Beijing, China. His research interests
include digital media technology, digital library, and digital rights management.
Dr. Huang is a member of the Association for Computing Machinery.

Wen Gao (S’87–M’88–SM’05–F’09) received the
Ph.D. degree in electronics engineering from the
University of Tokyo, Tokyo, Japan, in 1991.
He was a Professor of Computer Science with

the Harbin Institute of Technology, Harbin, China,
from 1991 to 1995, and a Professor with the Institute
of Computing Technology, Chinese Academy of
Sciences, Beijing, China. He is currently a Professor
of Computer Science with the Institute of Digital
Media, School of Electronic Engineering and Com-
puter Science, Peking University, Beijing, China.

Dr. Gao has served on the Editorial Boards for several journals, such as the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,
the IEEE TRANSACTIONS ON MULTIMEDIA, the IEEE TRANSACTIONS ON
AUTONOMOUS MENTAL DEVELOPMENT, the Eurasip Journal of Image Commu-
nications, and the Journal of Visual Communication and Image Representation.
He has chaired a number of prestigious international conferences on multimedia
and video signal processing, such as IEEE ICME and ACM Multimedia, and
also served on the advisory and technical committees of numerous professional
organizations.

