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Abstract—In this paper, auto regressive (AR) model is applied
to error concealment for block-based packet video coding. In
the proposed error concealment scheme, the motion vector for
each corrupted block is first derived by any kind of recovery
algorithms. Then each pixel within the corrupted block is
replenished as the weighted summation of pixels within a square
centered at the pixel indicated by the derived motion vector in a
regression manner. Two block-dependent AR coefficient deriva-
tion algorithms under spatial and temporal continuity constraints
are proposed respectively. The first one derives the AR coefficients
via minimizing the summation of the weighted square errors
within all the available neighboring blocks under the spatial
continuity constraint. The confidence weight of each pixel sample
within the available neighboring blocks is inversely proportional
to the distance between the sample and the corrupted block.
The second one derives the AR coefficients by minimizing the
summation of the weighted square errors within an extended
block in the previous frame along the motion trajectory under
the temporal continuity constraint. The confidence weight of each
extended sample is inversely proportional to the distance toward
the corresponding motion aligned block whereas the confidence
weight of each sample within the motion aligned block is set to be
one. The regression results generated by the two algorithms are
then merged to form the ultimate restorations. Various experi-
mental results demonstrate that the proposed error concealment
strategy is able to improve both the objective and subjective
quality of the replenished blocks compared to other methods.

Index Terms—Auto regressive model, confidence weight, error
concealment, spatial continuity constraint, temporal continuity
constraint, video coding.

I. Introduction

STATE-OF-THE-ART video coding standard H.264/AVC
[1] significantly outperforms the previous coding stan-
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dards, such as MPEG-1 [2], H.262/MPEG-2 [3], and H.263
[4]. Although the highly efficient redundancy removing tech-
niques in spatial and temporal domains leads to the success of
H.264/AVC, the highly compressed bit stream is susceptible
to transmission errors for error-prone networks. Consequently,
packet errors are unavoidable, which will severely degrade the
display quality at the decoder side.

Error resilience [5] and error concealment [6] are two major
techniques to combat the visual quality degradation caused
by noisy channels during transmission. Error resilience is
used to combat the transmission errors by adding redundant
information at the encoder with the penalty of decreasing the
compression efficiency. On the contrary, error concealment is a
post-processing technique which conceals the errors utilizing
the correctly received information at the decoder side with-
out modifying source and channel coding schemes. In this
paper, we mainly study the techniques of error concealment.
According to the information utilized, error concealment al-
gorithms can be categorized into spatial approaches, temporal
approaches and hybrid approaches that combine the former
two ones.

Spatial approaches reconstruct the corrupted macroblock
by utilizing the correctly decoded surrounding pixels under
smoothness constraint. Wang et al. proposed a spatial error
concealment method by minimizing the first-order derivative-
based smoothness measure [7]. To suppress the induced blur-
ring artifacts, the second-order derivatives were considered
in [8]. Although such a smoothness constraint achieves good
results for the flat regions, it may not be satisfied in the areas
with high frequency edges. To tackle this shortcoming, an
edge-preserving algorithm [9] was proposed to interpolate the
missing pixels. In [10], smooth and edge areas were efficiently
recovered based on selective directional interpolation. In [11],
an orientation adaptive interpolation scheme derived from the
pixel wise statistical model was proposed. In addition, a spatial
error concealment method based on a Markov random field
(MRF) model was proposed in [12]. And in [13], a multiframe
spatial error concealment considering the error propagation
and incorporating the idea of least squares (LS) estimation
was proposed.

Spatial approaches may yield better performance than tem-
poral ones in scenes with high motion, or after a scene change
[14]. However, they may not restore the detail textures of
corrupted blocks [15]. In this case, the information from the
past frames (temporal approaches) may improve the quality of
corrupted blocks.
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Fig. 1. Proposed AR model based error concealment.

Temporal approaches restore the corrupted blocks by ex-
ploiting temporal correlation between successive frames. An
important issue in temporal approaches is to find the most
suitable substitute blocks from the previous frames, i.e., se-
lecting the optimal motion vectors (MVs) for the corrupted
blocks. If the MV of the corrupted block is available at the
decoder, it can be utilized directly to motion-compensate the
corrupted block. However, when the MV is also lost, it has
to be re-estimated. Many pioneering works have been done
on recovering the corrupted MVs. Haskell and Messerschmitt
[16] took zero MV, the MV of the collocated block in
the reference frame, and the average or the median of the
MVs from the spatially adjacent blocks as candidate MVs
for the lost blocks. Chen et al. [17] proposed a side match
criterion taking advantage of the spatial contiguity and inter-
pixel correlation of image to select the best-fit replacement
among the MVs of spatially contiguous candidate blocks. The
well known boundary matching algorithm (BMA) proposed
in [18] selected the MV that minimizes the total variation
between the internal boundary and the external boundary of the
reconstructed block as the optimal one to recover the corrupted
block. There are also some more sophisticated algorithms [12],
[13], [19]–[23] to obtain better replacements for the corrupted
blocks. For example, a means of estimating the missing MV
based on the use of MRF models [12], an algorithm using the
multiframe recovery principle and the boundary smoothness
property [13], a vector rational interpolation scheme [19], a
bilinear motion field interpolation algorithm [20], a Lagrange
interpolation algorithm [21], and a dynamic programming
algorithm [22], [23] were proposed for error concealment. In
addition, some model aided error concealment algorithms were
also proposed. For instance, a projection of convex set (POCS)
based error concealment for packet video was proposed in
[24]. And in [25], a mixture of principal components was
proposed for error concealment.

Besides spatial and temporal approaches, hybrid approaches
combining the former two methods have been proposed re-
cently to obtain better replenishment results. For instance, in
temporal error concealment, the compensated block can be
further improved by spatial smoothing at its edges to make it
conform to the neighbors. In [26], the coding mode and block
loss patterns are clustered into four groups, and the weighting
between spatial and temporal smoothness constraints depends
on the group. In [27], a priority-driven region matching
algorithm to exploit the spatial and temporal information was
proposed. And in [28], a spatio-temporal boundary matching
algorithm (STBMA) and partial differential equation (PDE)
were proposed.

Fig. 2. Auto-regressive model.

Fig. 3. Spatial continuity constraint.

The most aforementioned error concealment algorithms usu-
ally interpolate the previous frames into half or quarter-pel ac-
curacy before deriving the best MVs for the corrupted blocks,
due to the fact that the motion of objects between adjacent
frames may be of fractional-pel accuracy. The interpolation
filters used are usually separable and the coefficients are
fixed. Such methods achieve good performance for isotropic
regions; however, they may result in poor performance for
anisotropic local image structures. To inhibit the inferiority of
the separable and fixed interpolation filters, an auto-regressive
(AR) model based error concealment is proposed in this paper.
It is well known that AR has long been employed to model
regular stationary random process [29]. For such a process,
its statistical properties have been well studied. For example,
Kokaram et al. used AR to detect and interpolate “dirt”
areas [30], [31]. Efstratiadis and Katsaggelos employed AR
to perform motion estimation [32]. Li developed a backward
adaptive video encoder exploiting the prediction property of
AR model [33].

In our formulation, each pixel within the corrupted block
is replenished as the weighted summation of pixels within a
square, which is centered at the pixel indicated by the MV
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Fig. 4. Probabilistic confidence magnitude within neighboring blocks.

Fig. 5. Temporal continuity constraint.

Fig. 6. Probabilistic confidence magnitude within an extended 4 × 4 block.

with integer-pel accuracy in a regression manner. Two block-
dependent AR coefficient derivation algorithms are proposed
to achieve better performance. The first one is the coefficient
derivation algorithm under the spatial continuity constraint,
in which the summation of the weighted square errors within
the available neighboring blocks is minimized. The confidence
weight of each sample within the available neighboring blocks
is inversely proportional to the distance between the sample
and the corrupted block. The second coefficient derivation al-
gorithm is under the temporal continuity constraint, where the
summation of the weighted square errors within an extended
block in the previous frame along the motion trajectory is
minimized. The confidence weight of the extended sample is
inversely proportional to the distance toward the corresponding
motion aligned block whereas the confidence weight of each
sample within the motion aligned block is set to be one.
The interpolations generated by the weights derived under
these two constraints are then merged to form the ultimate
concealing results.

The proposed AR model based error concealment scheme
is the extension of our previous works [34], [35]. In [34],

only the spatial continuity constraint is applied and equal
confidence weight is assigned for each training pixel sample.
In [35], both spatial and temporal continuity constraints are
applied; however, the experimental results and discussions are
not enough. For example, in [35], the experimental result is
only compared with BMA and our previous work in [34], and
the probability confidence effects are not fully discussed. In
addition, the merging operation is just simply averaging the
results obtained by spatial and temporal continuity constraints
in [35], whereas the merging depends on the estimated MV
in this paper. Actually, the proposed AR model based error
concealment scheme can be considered as a post-processing
for any MV recovery scheme (e.g., BMA, the methods in
[12] and [13] and STBMA) by adaptively adjusting the AR
coefficients according to the local image properties. Our goal
is to obtain appropriate AR coefficients, whereas other inter
frame error concealments (e.g., BMA, the methods in [12] and
[13] and STBMA) are aimed at generating more accurate MVs
by certain criterions. Various experimental results demonstrate
that the proposed error concealment strategy is able to not
only increase the peak signal-to-noise ratio (PSNR) but also
improve the visual quality of concealing blocks compared to
other methods.

The remainder of this paper is organized as follows.
Section II describes the AR model based error concealment
scheme. Sections III and IV present the coefficient derivations
under the spatial and temporal continuity constraints respec-
tively. Experimental results and analysis conducted on various
sequences are given in Section V. Finally, a brief conclusion
is provided in Section VI.

II. Auto-Regressive Model-Based Error

Concealment

The proposed AR model based error concealment scheme is
illustrated in Fig. 1. For each corrupted block, the correspond-
ing MV is first derived by any kind of recovery algorithms
(such as BMA and STBMA). The AR model is then applied
to the corrupted block along the derived motion trajectory. To
improve the quality of concealed frames, two AR coefficient
derivation algorithms under the spatial continuity and temporal
continuity constraints are performed respectively, utilizing the
weighted LS algorithm. The interpolation results generated
by the two sets of coefficients are then merged to form the
ultimate restorations.

Fig. 2 illustrates the AR model employed by the proposed
error concealment. It is noted that the AR model is applied
along the motion trajectory. For each corrupted pixel, the
corresponding pixel along the motion trajectory with integer-
pel accuracy in the previous reconstructed frame is first
found, and then all the pixels within a square centered at
the corresponding motion aligned pixel are combined in a
linear regression form. The linear regression can be expressed
as

x̂t (i, j) =
R∑

k=−R

R∑
l=−R

α (k, l) xt−1 (i + dy + k, j + dx + l) (1)
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where x̂t (i, j) represents the corrupted pixel located at (i, j)
within the current frame Xt , R represents the range of the AR
model, (dx, dy) represents the estimated MV with the integer-
pel accuracy, xt−1 (i, j) represents the pixel within the previous
reconstructed frame Xt−1, and α (k, l) represents the desired
coefficients.

The main merit of the proposed AR model based error con-
cealment, compared with other motion compensated schemes,
is that it is able to adapt spatially to local orientation structure.
In traditional motion compensated error concealment algo-
rithms, the corrupted block is replaced by the corresponding
block indicated by the estimated MV in the previous frames.
The best MV is usually found by minimizing the matching
errors between the neighboring blocks and the candidate
ones in the fractional interpolated version of the previous
frames. Such methods achieve good performance for isotropic
local regions; however, inferior results may be perceived for
anisotropic local image structures, since interpolation filters
are separable and fixed along vertical and horizontal directions.
In contrast, in the proposed AR model, the interpolation is
non-separable and can be along arbitrary direction. Besides the
interpolation coefficients can be varied from one local region
to the others. This results in strong preservation of details in
the restored image and greatly improves the performance of
error concealment.

Define �k,l,R as an operator that extracts a patch of a
fixed size (centered at (k, l) and with (2R + 1) × (2R + 1)
pixels) from an image, the expression �k,l,RXt−1 (Xt−1 is
represented as a vector by lexicographic ordering) results
with a vector of length (2R + 1)2 being the extracted patch.
Consequently, the linear regression in (1) can also be expressed
as

x̂t (i, j) = �i+dy,j+dx,RXt−1α
T (2)

where α represents the coefficient vector of the AR model
and (dy, dx) represents the MV with integer-pel accuracy. The
summed square error between the corrupted and the actual
pixels is

ε2 =
N−1∑
i=0

N−1∑
j=0

(xt (i, j) − x̂t (i, j))2

=
N−1∑
i=0

N−1∑
j=0

(
xt (i, j) − �i+dy,j+dx,RXt−1α

T
)2

(3)

where N represents the width and height of the corrupted
block. To minimize ε2, the first derivative of ε2 to α should
be zero according to the LS algorithm, that is

∂ε2

∂α
=

N−1∑
i=0

N−1∑
j=0

((
�i+dy,j+dx,RXt−1

)T (
�i+dy,j+dx,RXt−1

))
αT

−
N−1∑
i=0

N−1∑
j=0

xt (i, j)
(
�i+dy,j+dx,RXt−1

)T
= 0.

(4)

By solving the above equation, we get the optimal coeffi-
cients as

αT =

[
N−1∑
i=0

N−1∑
j=0

((
�i+dy,j+dx,RXt−1

)T (
�i+dy,j+dx,RXt−1

))]−1

[
N−1∑
i=0

N−1∑
j=0

xt (i, j)
(
�i+dy,j+dx,RXt−1

)T

]
.

(5)
However, since the actual pixel xt (i, j) is not available at the
decoder side, we cannot directly obtain the AR coefficients
according to (5). Instead, we have to estimate the AR co-
efficients by exploring the spatial and temporal correlations
of the corrupted block with its available spatial and temporal
neighboring pixels.

III. AR Coefficient Derivation Under Spatial

Continuity Constraint

Pixels within adjacent blocks have a high possibility of
belonging to the same object, which can be reflected by
the phenomenon that adjacent blocks possess similar motion
trends. Such a property is termed as spatial continuity con-
straint in this paper, based on which a set of AR coefficients
for the corrupted block can be derived. It is stated that
AR coefficients can reflect the MV of each block to some
extent [33] and due to the piecewise stationary characteristics
of natural image [36], we assume all the pixels within the
corrupted block possess the same AR coefficients, just like all
the pixels within the corrupted block have the same MV in the
traditional motion compensated error concealment method. If
we use AR model to represent the motion between successive
frames, spatial continuity constraint can be interpreted as that
all the pixels within the available neighboring blocks have the
same AR coefficients as those within the corrupted block in
this paper.

As shown in Fig. 3, under spatial continuity constraint each
pixel within the corrupted block and its neighboring blocks can
be regressed by the corresponding pixels within the previous
reconstructed frame utilizing the same AR coefficients. Let Bt

be a neighboring block of the current block within the current
frame, i.e., Bt ⊂ Xt . In addition, let bt (m, n) be an arbitrary
pixel in Bt , i.e., bt (m, n) ∈ Bt . bt (m, n) can be represented
by the regression function of Xt−1 and α as

b̂t (m, n) = �m+dy,n+dx,RXt−1α
T (6)

where α represents the AR coefficients. According to (5), the
solution of α can be computed by the LS method.

It is noted that during the coefficient derivation process,
different training samples should be assigned different prob-
abilistic confidences so as to achieve better performance. For
example, pixels that are closer to the corrupted block or
with similar texture should be assigned larger probabilistic
confidences. Define the corresponding probabilistic confidence
of bt (m, n) under the spatial continuity constraint is wα (m, n),
with 0 ≤ wα (m, n) ≤ 1 and

∑
(m,n)∈Bt

wα (m, n) = 1, the
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optimal α under probabilistic confidences should be

α̂ = arg min
α

∑
(m,n)∈Bt

∥∥(
bt (m, n) − b̂t (m, n)

)
wα (m, n)

∥∥2
. (7)

Since the correlation between pixels decreases with the in-
crease of their distance, wα (m, n) is set to be inversely pro-
portional to the distance between bt (m, n) and the corrupted
block, that is

wα (m, n) =
1

S

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
N−m

, if bt (m, n) ∈ upper block
1

N−n
, if bt (m, n) ∈ left block

1
m+1 , if bt (m, n) ∈ lower block

1
n+1 , if bt (m, n) ∈ right block

0, otherwise

(8)

with S = SL + SR + SA + SB, where

SL =

{ ∑N−1
n=0

1
N−n

, if left block is available
0, otherwise

SR =

{∑N−1
n=0

1
n+1 , if right block is available

0, otherwise

SA =

{∑N−1
m=0

1
N−m

, if upper block is available
0, otherwise

SB =

{∑N−1
m=0

1
m+1 , if lower block is available

0, otherwise.

Here N represents the width and height of the corrupted
block.

Fig. 4 graphically shows the probabilistic confidence mag-
nitudes within a 4 × 4 block given by (8) as an example.
The white block represents the corrupted block, which is
surrounded by its four neighboring blocks. Each neighboring
block is composed of 15 pixels whose gray value is inverse
proportional to the magnitude wα (i, j) of the sixteen samples.
It can be observed that much larger probabilistic confidence
values are assigned for the pixels closer to the corrupted block
than those for the pixels farther toward the corrupted block.

It is noted that Figs. 3 and 4 exhibit a universal case,
where the four neighboring blocks are all available to train
AR coefficients. Actually, there are two cases. In the first
case, if any of the neighboring blocks are correctly received,
the correctly received neighboring blocks are utilized to train
AR coefficients of the corrupted block. In the second case,
if all the neighboring blocks are lost, the already concealed
neighboring blocks are utilized to train AR coefficients of the
corrupted block.

By setting the first derivative of the weighted errors in (7)
to zero, the AR coefficients under spatial continuity constraint
are computed as

αT =
[
CL

P + CR
P + CA

P + CB
P

]−1 [
DL

P + DR
P + DA

P + DB
P

]
(9)

where

CL
P =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N−1∑
m=0

N−1∑
n=0

(
⇀

Pα (m, n) ∗ C
)T

C,

if left block is available
0, otherwise

CR
P =

⎧⎪⎨
⎪⎩

∑N−1
m=0

∑N−1
n=0

(
⇀

Pα (m, n) ∗ C
)T

C,

if right block is available
0, otherwise

CA
P =

⎧⎪⎨
⎪⎩

∑N−1
m=0

∑N−1
n=0

(
⇀

Pα (m, n) ∗ C
)T

C,

if upper block is available
0, otherwise

CB
P =

⎧⎪⎨
⎪⎩

∑N−1
m=0

∑N−1
n=0

(
⇀

Pα (m, n) ∗ C
)T

C,

if lower block is available
0, otherwise

DL
P =

⎧⎨
⎩

∑N−1
m=0

∑N−1
n=0 wα (m, n) xt (m, n) CT ,

if left block is available
0, otherwise

DR
P =

⎧⎪⎪⎨
⎪⎪⎩

∑N−1
m=0

∑N−1
n=0 wα (m, n) xt (m, n) CT ,

if right block is available
0, otherwise

DA
P =

⎧⎨
⎩

∑N−1
m=0

∑N−1
n=0 wα (m, n) xt (m, n) CT ,

if upper block is available
0, otherwise

DB
P =

⎧⎨
⎩

∑N−1
m=0

∑N−1
n=0 wα (m, n) xt (m, n) CT ,

if lower block is available
0, otherwise

with
⇀

Pα (m, n) = [wα (m, n) , wα (m, n) , .., wα (m, n)]︸ ︷︷ ︸
(2R+1)2

and C =

(
�m+dy,n+dx,RXt−1

)
.

The operator “∗” represents element by element multiplica-
tion of two vectors. With the obtained AR coefficient α, the
corrupted block is restored according to (2).

IV. AR Coefficient Derivation Under Temporal

Continuity

Besides spatial continuity constraint, video sequence also
has temporal continuity constraint, which can be proved by
the observation that the same object among adjacent frames
is usually threaded by the same motion trajectory. Similar to
spatial continuity constraint, we assume all the pixels within
the corrupted block possess the same AR coefficients. The
temporal continuity constraint in this paper can be interpreted
as that all the pixels within the corrupted block have the
same AR coefficients as those within the corresponding motion
aligned block in the previous frame. Utilizing temporal conti-
nuity constraint, we can derive another set of AR coefficients,
which is shown as Fig. 5. It is noted that we extend the
motion aligned block, shown as the gray pixels as well as the
pixels surrounding them in the previous frame Xt−1 in Fig. 5,
to find sufficient training samples for the derivation of AR
coefficients. Define Et−1 to be the extended motion aligned
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TABLE I

Average PSNR Results of Each Test Sequence With and Without the Proposed Probabilistic Confidence (PLR = 10%)

PSNR (dB)
BMA+AR

Sequence QP Spatial Temporal Combined

Uniform Weight Proposed Weight Uniform Weight Proposed Weight Uniform Weight Proposed Weight
Mobile 24 30.86 30.96 31.17 31.46 31.55 31.62

28 29.54 29.56 30.04 29.99 30.04 29.95
QCIF Paris 24 29.84 30.00 30.59 30.72 30.85 31.04

28 29.56 29.74 30.21 30.27 30.54 30.72
Suzie 24 35.29 35.65 35.48 35.51 35.83 36.01

28 34.06 34.19 34.03 34.07 34.38 34.51
Average 31.53 31.68 31.92 32.00 32.20 32.31
Foreman 24 31.49 31.63 31.66 31.70 32.24 32.33

28 30.86 30.99 30.86 30.86 31.47 31.58
CIF Mobile 24 28.37 28.48 28.51 28.63 28.86 29.05

28 27.74 27.76 27.98 28.02 28.26 28.28
Flower 24 28.37 28.43 27.97 28.08 28.57 28.69

28 27.59 27.60 27.33 27.47 27.84 27.94
Average 29.07 29.15 29.05 29.13 29.54 29.65

STBMA+AR
Sequence QP Spatial Temporal Combined

Uniform Weight Proposed Weight Uniform Weight Proposed Weight Uniform Weight Proposed Weight
Mobile 24 30.62 30.78 31.53 31.56 31.25 31.39

28 29.36 29.44 29.67 29.64 29.67 29.75
QCIF Paris 24 30.77 31.00 31.73 31.89 31.68 31.90

28 29.90 30.05 30.80 30.98 30.71 30.83
Suzie 24 35.34 35.53 35.39 35.44 35.83 36.04

28 34.04 34.19 34.11 34.10 34.34 34.47
Average 31.67 31.83 32.21 32.27 32.25 32.40
Foreman 24 31.12 31.30 31.37 31.39 31.73 31.83

28 30.63 30.89 30.90 30.91 31.19 31.30
CIF Mobile 24 28.48 28.59 28.97 29.06 28.88 29.07

28 27.85 27.91 28.35 28.46 28.28 28.41
Flower 24 29.13 29.25 28.56 28.73 29.21 29.30

28 28.09 28.18 27.57 27.76 28.07 28.24
Average 29.22 29.35 29.29 29.39 29.56 29.69

Fig. 7. PSNR performance comparison versus the frame number while the PLR is 10% (each slice contains one row of MBs). (a) Mobile (CIF). (b) Flower
(CIF).
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TABLE II

Average PSNR Results of Each QCIF Test Sequence Using Different Methods

PLR = 5%, PSNR (dB)
Sequence QP BMA [12] STBMA STBMA +OBMC STBMA+PDE BMA+AR STBMA+AR

Spatial Temporal Combined Spatial Temporal Combined
16 35.85 34.92 36.06 36.15 36.08 36.01 36.52 36.42 36.13 36.48 36.51

Football 24 33.67 33.45 33.82 33.88 33.89 33.96 33.85 33.94 34.00 33.85 34.02
28 32.27 32.35 32.57 32.64 32.60 32.32 32.59 32.42 32.54 32.64 32.69
40 27.06 26.72 26.92 26.95 26.93 27.11 27.07 27.14 26.99 26.97 26.99
16 38.33 38.52 39.51 39.54 39.53 39.96 39.59 40.12 40.35 40.54 40.57

Mobile 24 34.92 35.05 35.46 35.48 35.49 35.69 35.67 35.85 35.67 35.85 35.84
28 32.41 32.37 32.68 32.70 32.69 32.74 32.78 32.79 32.76 32.83 32.82
40 24.26 24.23 24.27 24.27 24.27 24.28 24.28 24.28 24.28 24.28 24.29
16 38.29 38.39 38.95 38.99 38.95 39.01 39.86 40.72 39.48 41.46 41.42

Paris 24 35.27 35.74 36.05 36.10 36.06 36.17 36.65 36.63 36.25 36.66 36.75
28 33.31 32.84 33.33 33.36 33.33 33.64 34.00 34.16 33.62 34.04 34.12
40 25.36 25.45 25.36 25.37 25.36 25.38 25.60 25.59 25.39 25.60 25.60
16 43.26 43.28 44.07 44.11 44.08 44.20 44.03 44.17 44.24 44.10 44.26

Suzie 24 38.99 38.81 39.16 39.18 39.17 39.23 39.15 39.27 39.36 39.25 39.28
28 36.72 36.81 36.94 36.96 36.95 37.00 37.04 37.07 37.02 37.07 37.06
40 30.58 30.53 30.57 30.58 30.59 30.58 30.60 30.61 30.59 30.61 30.61

Average 33.78 33.72 34.11 34.14 34.12 34.21 34.33 34.45 34.29 34.51 34.55
PLR = 10%, PSNR (dB)

Sequence QP BMA [12] STBMA STBMA +OBMC STBMA +PDE BMA+AR STBMA+AR
Spatial Temporal Combined Spatial Temporal Combined

16 25.45 24.95 25.62 25.78 25.65 26.03 25.74 26.15 26.02 25.57 26.14
Football 24 24.88 24.66 25.20 25.16 25.20 25.46 24.80 25.47 25.43 24.66 25.53

28 24.28 23.82 23.97 24.40 23.97 24.94 24.36 25.04 24.49 24.23 24.54
40 22.91 22.59 23.37 23.53 23.36 23.60 23.06 23.74 23.59 22.62 23.62
16 30.25 30.82 32.14 32.21 32.18 32.48 33.00 33.32 32.23 33.03 33.05

Mobile 24 29.18 29.69 30.65 30.67 30.69 30.96 31.46 31.62 30.78 31.56 31.39
28 28.44 28.72 29.46 29.47 29.47 29.56 29.99 29.95 29.44 29.64 29.75
40 23.27 23.33 23.47 23.50 23.48 23.55 23.56 23.57 23.53 23.53 23.54

Paris 16 30.43 31.16 32.31 32.36 32.32 31.77 32.87 32.93 32.17 33.53 33.56
24 28.95 29.71 30.76 30.85 30.78 30.00 30.72 31.04 31.00 31.89 31.90
28 28.53 29.16 29.98 30.03 29.99 29.74 30.27 30.72 30.05 30.98 30.83
40 23.91 24.17 24.55 24.62 24.57 24.44 24.67 24.71 24.52 24.80 24.78
16 36.68 36.30 37.51 37.62 37.54 37.66 37.28 37.95 37.91 37.56 37.99

Suzie 24 35.25 34.57 35.53 35.56 35.54 35.65 35.51 36.01 35.53 35.44 36.04
28 33.75 33.38 34.16 34.21 34.18 34.19 34.07 34.51 34.19 34.10 34.47
40 29.66 29.49 29.62 29.64 29.63 29.53 29.45 29.63 29.50 29.42 29.59

Average 28.49 28.53 29.27 29.35 29.28 29.35 29.43 29.78 29.40 29.54 29.80
PLR = 20%, PSNR (dB)

Sequence QP BMA [12] STBMA STBMA +OBMC STBMA +PDE BMA+AR STBMA+AR
Spatial Temporal Combined Spatial Temporal Combined

16 23.22 22.90 23.07 23.11 23.10 23.96 23.46 23.90 23.90 23.70 23.92
Football 24 23.13 22.81 23.00 23.13 23.03 23.71 23.27 23.73 23.45 23.17 23.61

28 22.60 21.92 22.35 22.46 22.36 23.14 22.91 23.14 22.75 22.75 22.81
40 22.16 21.73 21.98 22.12 21.99 22.24 22.25 22.63 22.00 22.10 22.32
16 27.19 27.72 29.27 29.27 29.28 29.58 29.61 30.34 29.80 30.06 30.28

Mobile 24 26.54 27.24 28.28 28.40 28.35 28.66 28.58 29.06 28.83 28.91 29.23
28 26.09 26.63 27.35 27.52 27.46 27.76 27.60 28.21 27.73 27.79 28.01
40 22.37 22.37 22.82 22.88 22.83 22.98 22.81 22.91 22.99 22.82 22.94
16 29.36 29.71 30.76 30.91 30.77 30.78 31.81 32.26 31.18 32.15 32.31

Paris 24 28.11 28.30 29.53 29.61 29.47 29.50 30.40 30.60 29.91 30.98 31.04
28 27.49 27.83 28.51 28.61 28.52 28.58 29.30 29.72 28.80 29.77 29.81
40 23.37 23.52 23.83 23.92 23.85 23.31 24.19 23.92 23.37 24.36 23.92
16 34.99 34.98 36.14 36.17 36.16 36.57 34.86 36.31 36.64 35.14 36.41

Suzie 24 33.78 33.70 34.53 34.74 34.54 34.82 33.73 34.80 34.86 33.72 34.79
28 33.05 32.81 33.42 33.48 33.44 33.67 32.61 33.59 33.71 32.60 33.57
40 29.05 28.74 29.02 29.09 29.04 29.00 28.73 28.89 28.98 28.64 28.80

Average 27.03 27.06 27.74 27.84 27.76 28.02 27.88 28.38 28.06 28.04 28.36
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TABLE III

Average PSNR Results of Each CIF Test Sequence Using Different Methods

PLR = 5%, PSNR (dB)
Sequence QP BMA [12] STBMA STBMA +OBMC STBMA+PDE BMA+AR STBMA+AR

Spatial Temporal Combined Spatial Temporal Combined
16 38.40 38.59 39.89 39.99 40.11 40.21 39.97 40.24 40.24 40.25 40.29

Foreman 24 36.40 36.33 37.05 37.04 37.10 37.17 37.13 37.15 37.17 37.26 37.30
28 34.95 34.79 35.38 35.39 35.40 35.50 35.31 35.56 35.50 35.25 35.45
40 29.74 29.73 29.93 29.93 29.95 29.95 29.99 30.07 29.95 30.00 30.08
16 34.93 34.70 38.04 38.10 38.11 38.39 38.04 38.79 38.65 38.57 38.97

Mobile 24 32.69 32.93 34.48 34.52 34.59 34.81 34.78 34.99 35.04 35.01 35.25
28 31.30 31.35 32.62 32.58 32.65 32.81 32.78 32.98 32.92 32.96 32.97
40 24.71 24.72 25.06 25.06 25.06 25.07 25.04 25.10 25.09 25.11 25.13
16 36.46 35.88 37.46 37.61 37.49 38.71 38.24 38.69 39.11 38.75 39.11

Flower 24 34.34 33.95 35.10 35.21 25.15 35.84 35.43 25.86 36.13 35.82 36.13
28 32.58 32.12 32.98 33.06 33.01 33.57 33.37 33.62 33.55 33.49 33.60
40 24.88 24.82 24.92 24.94 24.93 25.00 25.01 25.03 24.97 25.00 24.98

Average 32.62 32.49 33.58 33.62 32.80 33.92 33.76 33.18 34.03 33.96 34.11
PLR = 10%, PSNR (dB)

Sequence QP BMA [12] STBMA STBMA +OBMC STBMA+PDE BMA+AR STBMA+AR
Spatial Temporal Combined Spatial Temporal Combined

16 31.33 30.94 31.80 31.82 31.90 32.70 32.53 33.44 32.44 31.51 32.45
Foreman 24 30.45 29.90 31.03 31.05 31.14 31.63 31.70 32.33 31.30 31.39 31.83

28 29.70 29.47 30.56 30.59 30.67 30.99 30.86 31.58 30.89 30.91 31.30
40 26.64 26.57 27.36 27.38 27.42 27.44 27.56 27.89 27.44 27.55 27.83
16 26.59 26.34 28.84 28.98 28.96 29.22 29.45 29.85 29.50 29.93 29.89

Mobile 24 25.95 25.63 28.03 28.15 28.13 28.48 28.63 29.05 28.59 29.06 29.07
28 25.46 25.19 27.53 27.65 27.59 27.76 28.02 28.28 27.91 28.46 28.41
40 22.11 22.28 23.29 23.36 23.31 23.48 23.47 23.63 23.47 23.52 23.58
16 26.66 26.14 28.10 28.35 28.21 29.04 28.73 29.22 29.83 29.12 29.90

Flower 24 26.33 25.85 28.02 28.06 28.05 28.43 28.08 28.69 29.25 28.73 29.30
28 25.78 25.27 26.89 27.13 27.04 27.60 27.47 27.94 28.18 27.76 28.24
40 22.86 22.19 23.14 23.22 23.24 23.54 23.47 23.62 23.54 23.38 23.53

Average 26.66 26.31 27.88 27.98 27.97 28.36 28.33 28.79 28.53 28.44 28.78
PLR = 20%, PSNR (dB)

Sequence QP BMA [12] STBMA STBMA +OBMC STBMA+PDE BMA+AR STBMA+AR
Spatial Temporal Combined Spatial Temporal Combined

16 29.13 28.90 30.21 30.22 30.25 30.60 29.63 30.91 30.48 29.64 30.66
Foreman 24 28.79 28.38 29.57 29.60 29.63 29.83 29.28 30.27 29.91 29.04 29.92

28 28.44 27.87 29.27 29.26 29.32 29.25 29.14 29.76 29.43 29.02 29.79
40 25.83 25.72 26.55 26.62 26.64 26.61 26.39 26.96 26.63 26.18 26.86
16 24.39 24.22 26.84 26.95 26.87 27.13 27.11 27.72 27.51 27.65 27.93

Mobile 24 23.88 23.67 26.28 26.35 26.33 26.34 26.32 26.81 26.78 26.91 27.18
28 23.44 23.28 25.65 25.73 25.68 25.70 25.70 26.32 26.01 26.30 26.50
40 20.93 21.24 22.40 22.49 22.44 22.24 22.25 22.55 22.35 22.42 22.52
16 24.66 23.88 26.03 26.28 26.13 26.76 26.26 26.81 27.40 26.70 27.46

Flower 24 24.30 23.64 25.70 25.91 25.79 26.19 25.71 26.30 26.97 26.19 27.05
28 23.84 23.25 24.91 25.18 24.94 25.64 25.28 25.85 26.12 25.65 26.27
40 21.82 21.14 22.27 22.57 22.29 22.64 22.46 22.65 22.92 22.59 22.97

Average 24.95 24.60 26.31 26.43 26.36 26.58 26.29 26.91 26.88 26.52 27.09

block in the closest previous frame Xt−1, i.e., Et−1 ⊂ Xt−1.
And define et−1 (k, l) to be an arbitrary pixel within Et−1, i.e.,
et−1 (k, l) ∈ Et−1. As shown in Fig. 5, for each corrupted pixel
xt (k, l), the corresponding motion aligned pixel et−1 (k, l) in
the extended block is first found, and then the corresponding
pixel xt−2 (k, l) in the second closest reconstructed frame is
also found by the same MV. Apparently, et−1 (k, l) can be
regressed by the pixels within a square neighborhood which
is centered at xt−2 (k, l) as

êt−1 (k, l) = �k+dy,l+dx,RXt−2β
T (10)

where β represents the AR coefficients derived under the
temporal continuity constraint. The derived coefficient β is
then utilized to restore the corrupted pixel xt (k, l). Apparently,
the solution of β should be the one that satisfy

β̂ = arg min
β

∑
(k,l)∈Et−1

‖(et−1 (k, l) − êt−1 (k, l))‖2 . (11)

However, this imposes the same probabilistic confidence on
each training sample, which will limit the accuracy of the
derived AR coefficients. To tackle such a problem, we assigned



20 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2012

Fig. 8. Error concealment results of the eighth frame over Foreman (CIF) at the PLR of 10%. (a) Original image. (b) Corrupted image. (c) Concealed
image using BMA (34.221 dB). (d) Concealed image using STBMA (35.560 dB). (e) Concealed image using STBMA+PDE (35.568 dB). (f) Concealed image
using STBMA+OBMC (35.569 dB). (g) Concealed image using the proposed AR model under spatial continuity constraint (35.929 dB). (h) Concealed image
using the proposed AR model under temporal continuity constraint (36.292 dB). (i) Concealed image using the proposed AR model by combining spatial and
temporal continuity constraints (36.308 dB).

appropriate probabilistic confidence for each sample within the
extended block. That is to say, the optimal β should be

β̂ = arg min
β

∑
(k,l)∈Et−1

∥∥(et−1 (k, l) − êt−1 (k, l)) wβ (k, l)
∥∥2

(12)

where wβ (k, l) represents the probabilistic confidence of each
training sample et−1 (k, l). For the samples located within
the corresponding motion aligned block, the probabilistic
confidence is set to be one; and for the samples located at
the extended regions, the probabilistic confidence is defined
to be inversely proportional to the distance toward the center
of the extended block. To be more specific, the probabilistic
confidence of each sample can be formulated as (13) at the
bottom of the next page.

Here M represents the extended range and N represents the
width and height of the corrupted block, respectively.

Fig. 6 depicts the probabilistic confidence magnitudes
within an extended 4 × 4 block as an example. It is noted
that M = 3, and N = 4 in Fig. 6. The sixteen black pixels

correspond to the motion aligned block, and all the remaining
gray pixels correspond to the extended region. The gray value
is inverse proportional to the probabilistic confidence of the
corresponding sample.

According to the weighted LS, the closed-form solution of
β should be

βT =

⎡
⎣ ∑

(k,l)∈Et−1

((
⇀

Pβ (k, l) ∗ (
�k+dy,l+dx,RXt−2

))T

(
�k+dy,l+dx,RXt−2

))]−1⎡
⎣ ∑

(k,l)∈Et−1

et−1 (k, l)
(
�k+dy,l+dx,RXt−2

)T
wβ (k, l)

⎤
⎦ (14)

where
⇀

Pβ (k, l) =
[
wβ (k, l) , wβ (k, l) , .., wβ (k, l)

]︸ ︷︷ ︸
(2R+1)2

, and the

operator “∗” represents element by element multiplication of
two vectors.
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Fig. 9. Error concealment results of the 50th frame over Mobile (CIF) at the PLR of 20%. (a) Original image. (b) Corrupted image. (c) Concealed image
using BMA (29.627 dB). (d) Concealed image using STBMA (29.985 dB). (e) Concealed image using STBMA+PDE (29.997 dB). (f) Concealed image using
STBMA+OBMC (30.066 dB). (g) Concealed image using the proposed AR model under spatial continuity constraint (31.475 dB). (h) Concealed image using
the proposed AR model under temporal continuity constraint (32.516 dB). (i) Concealed image using the proposed AR model by combining spatial and
temporal continuity constraints (32.610 dB).
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1
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with

S = N2 +
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TABLE IV

Average PSNR Results of Each Test Sequence Excluding Error Propagation

Sequence QP
PSNR (dB)

BMA [12] STBMA STBMA+OBMC STBMA+PDE BMA+AR STBMA+AR
Spatial Temporal Combined Spatial Temporal Combined

16 38.15 37.50 38.29 38.39 38.33 38.49 38.20 38.54 38.49 38.25 38.56
Football 24 34.49 34.02 34.64 34.72 34.71 34.69 34.59 34.76 34.80 34.67 34.89

28 32.59 32.25 32.78 32.84 32.81 32.82 32.76 32.88 32.93 32.87 33.00
QCIF 40 27.06 26.94 27.11 27.13 27.13 27.12 27.11 27.14 27.16 27.15 27.18

16 40.29 40.08 40.94 40.98 40.97 41.08 41.37 41.33 41.30 41.60 41.61
Mobile 24 35.27 34.99 35.67 35.71 35.70 35.73 35.88 35.87 35.81 35.97 35.96

28 32.58 32.41 32.78 32.79 32.79 32.84 32.91 32.91 32.87 32.96 32.95
40 24.50 24.50 24.53 24.53 24.53 24.54 24.54 24.55 24.54 24.54 24.55
16 41.01 41.32 41.85 41.92 41.87 41.70 42.29 42.20 42.12 42.66 42.58

Paris 24 36.40 36.50 36.95 36.99 36.98 36.76 37.02 36.98 37.05 37.32 37.29
28 33.88 33.99 34.19 34.22 34.20 34.07 34.29 34.26 34.27 34.46 34.43
40 25.69 25.70 25.74 25.75 25.75 25.74 25.79 25.77 25.74 25.79 25.79
16 43.68 43.60 44.11 44.15 44.13 44.22 44.27 44.42 44.38 44.28 44.46

Suzie 24 39.21 39.22 39.52 39.55 39.53 39.49 39.46 39.57 39.62 39.54 39.66
28 37.10 37.07 37.28 37.29 37.28 37.30 37.28 37.37 37.35 37.31 37.40
40 31.00 30.93 31.02 31.02 31.03 31.00 31.01 31.02 31.01 31.01 31.02

Average 34.56 34.44 34.84 34.87 34.86 34.85 34.92 34.97 34.97 35.02 35.08
16 43.53 43.38 43.92 43.92 43.92 44.01 43.86 44.03 44.03 43.86 44.05

Foreman 24 38.69 38.51 38.90 38.91 38.96 38.96 38.90 38.99 38.95 38.89 38.95
28 36.61 36.52 36.76 36.77 36.77 36.78 36.78 36.83 36.80 36.76 36.83
40 30.31 30.29 30.33 30.33 30.33 30.34 30.36 30.37 30.34 30.36 30.37
16 41.70 41.56 42.61 42.63 42.63 42.74 42.72 42.73 42.77 42.98 42.99

CIF Mobile 24 36.32 36.12 36.91 36.93 36.92 36.89 37.05 37.06 37.02 37.15 37.16
28 33.59 33.46 33.99 34.00 34.00 34.02 34.12 34.14 34.07 34.16 34.17
40 25.22 25.22 25.29 25.30 25.30 25.30 25.32 25.34 25.30 25.32 25.32
16 42.86 42.73 43.54 43.59 43.57 43.56 43.60 43.64 43.86 43.85 43.91

Flower 24 37.34 37.22 37.86 37.89 37.88 37.86 37.89 37.92 38.06 38.05 38.10
28 34.54 34.38 34.89 34.91 34.90 34.92 34.92 34.96 35.02 35.02 35.05
40 25.64 25.61 25.72 25.72 25.72 25.72 25.73 25.74 25.74 25.74 25.75

Average 35.53 35.42 35.89 35.91 35.91 35.93 35.94 35.98 36.00 36.01 36.05

After having obtained the AR coefficients α and β, we
merge the two regression results as

x̂t (i, j) = τ • �i+dy,j+dx,RXt−1α
T + (1 − τ) • �i+dy,j+dx,RXt−1β

T

(15)
where τ is the merging factor, and it is computed as

τ =

⎧⎪⎪⎨
⎪⎪⎩

1, if max (abs (mv[0]) , abs (mv[1])) ≥ 16

0.5, if max (abs (mv[0]) , abs (mv[1])) = 0

max (abs (mv[0]) , abs (mv[1]))
/

16, otherwise.
(16)

Here mv[0] and mv[1] represent the horizontal and vertical
components of the MV for the corrupted block selected by
BMA or STBMA with quarter-pel accuracy.

It is noted that we will pad the corresponding pixels outside
the boundary when the training area (in the current and/or
reference frame) is close to the boundary of the frame. The
padded pixels (if it is necessary) as well as those pixels close
to the boundary can be simultaneously utilized during the
coefficient derivation of the AR model. If there are no solutions
in (9) or (14), we will use the traditional methods (BMA,
method in [12], or STBMA) to restore the missing blocks
accordingly.

V. Experimental Results and Analysis

In this section, various experiments were conducted to
verify the performance of the proposed AR model based
error concealment scheme. H.264/AVC reference software JM
10.0 is utilized to evaluate the proposed algorithm; however,
it should be noted that the proposed algorithm can be ex-
tended to any block-based video compression scheme. We
compare the performance of the proposed algorithm with the
inter-frame error concealment schemes implemented in the
reference software, which are based on the classical BMA
[18], the method in [12], and STBMA [28]. We test the
performance on seven video sequences: QCIF: Mobile, Paris,
Suzie, Football and CIF: Foreman, Mobile, Flower. All the
test sequences are encoded at 30 Hz. The first 120 frames
of each test sequence are encoded, where no B frames are
utilized. Slice mode is enabled and no intra mode is used
in P frames. Each row of MBs composes a slice and is
transmitted in a separate packet. The packet loss rates (PLR)
at 5%, 10% and 20% [37] are tested in the experiments.
Quantization parameters (QP) are set to be 16, 24, 28 and
40, respectively.

In all the following experiments, parameter R is set to be
1, and parameter M is set to be 4 and 8 for QCIF and CIF
sequences respectively.
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In the experiments, we will show the effect of the proba-
bilistic confidence first, and then we will give the comparisons
of the proposed algorithm in terms of objective and subjective
criteria, and finally we will present the computational com-
plexity analysis.

A. Probability Confidence Effects

In this subsection, we provide comparisons of regression
results under spatial and temporal continuity constraints as
well as the merged results with and without probabilistic
confidence, respectively. The encoding group of picture (GOP)
is set to be IPPP. . . , where I frames are encoded every 16
frames. The transmission errors are assumed to only occur in P
frames and the PLR is 10%. The MV is estimated by BMA and
STBMA. The average PSNR results of the first 120 restored
frames within each test sequence are provided in Table I. It is
noted that BMA+AR and STBMA+AR represent that BMA
and STBMA are utilized to obtain the MV of the corrupted
block before AR model is applied, respectively. “Spatial”
and “temporal” represent that AR coefficients are derived
under spatial continuity constraint and temporal continuity
constraint, respectively. And “combined” represents the com-
bined results of “spatial” and “temporal.” “Uniform weight”
represents that equal probabilistic confidence is assigned to
all the training samples. “Proposed weight” represents that
the proposed probabilistic confidence scheme is applied to
all the training samples. It can be observed that for all the
test sequences, the PSNR results get improved when the
proposed probabilistic confidence scheme is applied except
that there is a about 0.09 dB loss for Mobile (QCIF) when
QP is 28. Especially for Mobile (CIF), when QP is set to
be 24 and under BMA+AR, the PSNR gains are 0.11 dB,
0.12 dB and 0.19 dB for the spatial, temporal and combined
methods, respectively. And for Paris (QCIF), when QP is set
to be 24 and under BMA+AR, the PSNR gains are 0.16 dB,
0.13 dB and 0.19 dB for the spatial, temporal and combined
methods, respectively. This mainly benefits from the fact
that by assigning proper probabilistic confidence to different
training samples, the accuracy of the derived AR coefficients
can be improved.

B. Objective and Subjective Evaluation

In this subsection, we will give the subjective and objec-
tive comparison results. BMA, the passive error concealment
in [12], STBMA+PDE, STBMA+ overlapped block motion
compensation (OBMC) [38] and the proposed AR model with
BMA and STBMA are utilized to restore the corrupted frames
within each test sequence.

Tables II and III present the average PSNR results of each
test sequence using different methods. The encoding GOP is
set to be IPPP. . . , where I frames are encoded every 16 frames.
The transmission errors are assumed to only occur in P frames.
It is observed that [12] and BMA achieve similar performance
for QCIF sequences, but [12] has some degradation for CIF
sequences. STBMA outperforms BMA in most cases. This is
because more spatial and temporal information is utilized in
STBMA during block matching. Applying PDE and OBMC to

STBMA, the performance can be further improved; however
the performance gain is not too much.

When applying the proposed AR model (BMA+AR or
STBMA+AR), the error concealment performance is able to
get a significant improvement. This is due to the fact that
the AR model is able to adaptively adjust the coefficients ac-
cording to the spatio-temporal coherence information. Another
observation is that under BMA+AR combination, the proposed
AR model is able to outperform STBMA. It strongly confirms
that the proposed AR model is able to remedy the inference of
BMA results brought by the inaccurate MVs. This is because
although STBMA is able to achieve more accurate MVs, it
does not guarantee better replenishing results for anisotropic
regions, due to the fixed interpolation taps along horizontal
and vertical directions. In contrast, the proposed AR model can
perform the interpolation along arbitrary directions by properly
tuning the coefficients. In addition, we also found that the com-
bined results achieve better performance than those just under
spatial or temporal continuity constraint. This is mainly at-
tributed to the fact that combination operation is of higher abil-
ity to capture the variation properties of local image structure.

Fig. 7 shows the PSNR performance of Mobile (CIF)
and Flower (CIF) versus the frame number. It is noted
that both BMA+AR and STBMA+AR represent the com-
bined results. We can see that STBMA has better perfor-
mance than BMA and [12], while with the AR model (both
BMA+AR and STBMA+AR), the performance can be further
improved. Especially for the frames around the tenth frame
in Fig. 7(a), the PSNR gains achieved by the proposed AR
model (BMA+AR and STBMA+AR) are more than 2 dB
compared with other competing methods (e.g., the BMA, [12],
STBMA, STBMA+OBMC and STBMA+PDE). In addition,
for the frames around the 105th frame in Fig. 7(b), the
PSNR gains achieved by the proposed AR model (BMA+AR
and STBMA+AR) are more than 1 dB compared with other
competing methods.

To better represent the superior performance of the proposed
AR model, we give the subjective quality comparisons for
Foreman (CIF) and Mobile (CIF) in Figs. 8 and 9, respectively.
Here the AR model is applied after the MV is found via
STBMA. It is noted that there are consecutive slice errors in
Fig. 8. For the corrupted MBs in the upper row, only the MVs
of their upper neighboring MBs and the zero MVs are utilized
to generate the optimal MVs in BMA or STBMA. Similarly,
for the corrupted MBs in the lower row in the consecutive
slice errors in Fig. 8, only the MVs of their lower neighboring
MBs and the zero MVs are utilized to generate the optimal
MVs in BMA or STBMA. In Fig. 8, for BMA, STBMA,
STBMA+PDE, and STBMA+OBMC methods, we can easily
observe the blocking artifacts caused by motion, as shown
the regions surrounded by the red ellipse. In the replenished
image using the proposed AR model under spatial continuity
constraint, the blocking artifact is weakened, although it can
still be observed. And in the replenished images using the
proposed AR model under temporal continuity constraint
and combining spatial and temporal continuity constraints,
the blocking artifacts are completely removed. In Fig. 9,
for the BMA, STBMA, STBMA+PDE, and STBMA+OBMC
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TABLE V

Average PSNR Results of Each Test Sequence When Both I and P Frames Suffer Loss During Transmission

Sequence QP
PSNR (dB)

BMA [12] STBMA STBMA+OBMC STBMA+PDE BMA+AR STBMA+AR
Spatial Temporal Combined Spatial Temporal Combined

16 23.40 22.17 23.45 23.58 23.54 23.21 22.96 23.55 23.24 23.09 23.60
Football 24 23.30 22.09 23.40 23.42 23.41 22.79 22.70 23.43 22.84 22.85 23.45

28 22.89 21.76 22.37 22.72 22.73 22.67 22.57 22.84 22.63 22.61 22.88
40 21.93 21.84 22.67 22.71 22.79 22.38 22.31 22.81 22.63 22.63 22.84
16 22.31 22.40 22.99 22.97 22.99 22.94 23.15 23.18 23.03 23.20 23.25

Mobile 24 22.10 22.37 22.72 22.74 22.75 22.66 22.80 22.81 22.64 22.73 22.83
28 22.01 22.22 22.51 22.52 22.51 22.44 22.52 22.57 22.45 22.49 22.53

QCIF 40 19.67 19.70 19.81 19.83 19.85 19.77 19.74 19.91 19.78 19.75 19.98
16 23.01 23.17 23.39 23.43 23.41 23.44 23.44 23.68 23.46 23.46 23.68

Paris 24 22.35 22.76 23.09 23.13 23.15 22.89 23.04 23.19 23.14 23.41 23.43
28 22.44 22.49 22.82 22.85 22.84 22.85 23.02 23.07 22.88 23.02 23.07
40 20.48 20.47 20.67 20.66 20.66 20.62 20.52 20.67 20.63 20.56 20.69
16 30.04 30.20 30.43 30.50 30.47 30.21 30.27 30.62 30.27 30.35 30.71

Suzie 24 29.41 29.31 29.45 29.49 29.50 29.35 29.19 29.52 29.42 29.16 29.56
28 28.78 29.04 28.96 29.00 28.99 28.96 28.91 29.14 28.98 28.90 29.19
40 26.22 26.09 26.24 26.25 26.25 26.11 26.06 26.24 26.14 26.09 26.28

Average 23.77 23.63 24.06 24.11 24.12 23.96 23.95 24.20 24.01 24.02 24.25
16 27.74 27.84 27.70 27.71 27.71 27.74 27.80 27.98 27.70 27.56 27.77

Foreman 24 27.37 27.46 27.01 27.01 27.01 27.37 27.58 27.69 27.01 27.34 27.28
28 26.89 26.90 26.95 26.95 26.96 26.89 27.10 27.17 26.95 27.09 27.08
40 25.35 25.36 25.27 25.28 25.28 25.35 25.50 25.60 25.27 25.50 25.53
16 23.69 23.64 23.82 23.82 23.83 23.69 23.95 23.95 23.82 24.06 24.00

CIF Mobile 24 23.42 23.23 23.43 23.43 23.44 23.42 23.63 23.66 23.43 23.65 23.62
28 23.21 23.13 23.30 23.30 23.30 23.21 23.49 23.48 23.30 23.53 23.48
40 21.14 21.13 21.10 21.11 21.11 21.14 21.24 21.26 21.10 21.17 21.19
16 29.04 28.76 29.83 29.84 29.84 29.04 28.98 29.09 29.83 29.39 29.88

Flower 24 28.43 28.25 29.25 29.26 29.15 28.43 28.42 28.69 29.25 28.91 29.30
28 27.60 27.52 28.18 28.19 28.19 27.60 27.67 27.94 28.18 27.88 28.24
40 23.54 23.21 23.54 23.55 23.54 23.54 23.53 23.67 23.54 23.37 23.53

Average 25.62 25.54 25.78 25.79 25.78 25.62 25.74 25.85 25.78 25.79 25.91

methods, we cannot observe the figures “1” in “31,” as shown
the regions surrounded by the red circle. However, in the
replenished images by the proposed AR model, figures “1”
in “31” can be clearly observed.

We also conducted another experiment excluding error prop-
agation effects. The encoding GOP is set to be IPPIPPI. . . , and
we assume the error only occurs at the second P of each GOP
with the PLR being 10%. The experimental result is provided
in Table IV, from which we can observe that the proposed AR
model still outperforms other comparing methods in average.

Table V further tabulates the PSNR results of each test
sequence when both I and P frames suffer loss during trans-
mission. The PLR is 10% and the encoding GOP is IPPP. . . ,
where I frames are inserted every 16 frames. The first I frame
is assumed to be error free. To give a fair comparison of
different inter frame concealment methods, the errors in I
frames are replenished using the weighted pixel averaging
method in the reference software JM10.0, and the errors in
P frames are restored utilizing the proposed AR models and
other competing methods. From the experimental results we
can observe that the performance of all the inter frame error
concealment methods drop dramatically. This is due to the
reason that the badly concealed MBs in I frames would greatly
degrade the quality of the following P frames. However, the

proposed AR model still has a little better performance than
other competing methods, although the performance gain is
rather small compared to the case when I frames are error free.

C. Computational Complexity Analysis

Most computational complexity of the proposed AR model
based error concealment scheme is concentrated on the calcu-
lation of AR coefficients. Take (9) for example, the AR co-
efficient derivation involves matrix multiplication and inverse
matrix operations. It should be noted that the dimension of
matrix in (9) depends on the range of the AR model. The
smaller the range of the AR model, the lower computational
complexity it would be of.

Besides, there are many fast algorithms, e.g., [29] to speed
up the calculation of AR coefficients. In Table VI, we examine
the consumed time of decoding the first 120 frames of each
test sequence using different error concealment methods (the
encoding GOP is IPPP..., with I frames being inserted every
sixteen frames) on a typical computer (2.5 GHz Intel Dual
Core, 2 GB Memory). Except for BMA, which owns the
lowest computational complexity, [12] consumes fewer time
than other comparing methods. STBMA and STBMA+OBMC
have similar computational complexity. STBMA+PDE takes
longer time than the former four due to the iteration
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TABLE VI

Average System Time Using Different Methods

Sequence QP PLR
Time (s)

BMA [12] STBMA STBMA+PDE STBMA+OBMC BMA+AR STBMA+AR
Spatial Temporal Combined Spatial Temporal Combined

5% 0.953 1.028 0.982 1.077 0.984 0.999 1.029 1.105 1.045 1.076 1.087
24 10% 0.967 1.040 1.122 1.764 1.171 1.270 1.273 1.514 1.404 1.450 1.748

Football 20% 0.983 1.084 1.326 2.480 1.388 1.435 1.544 1.997 1.779 1.905 2.355
5% 0.874 0.942 0.904 1.045 0.915 0.921 0.983 1.014 0.999 0.998 1.028

28 10% 0.890 0.981 1.107 1.686 1.124 1.170 1.179 1.388 1.356 1.389 1.622
QCIF 20% 0.843 1.032 1.279 2.401 1.288 1.420 1.481 1.902 1.764 1.842 2.278

5% 1.029 1.146 1.061 1.170 1.092 1.114 1.193 1.255 1.119 1.078 1.155
24 10% 1.013 1.093 1.216 1.763 1.223 1.289 1.310 1.468 1.498 1.452 1.717

Mobile 20% 1.013 1.130 1.357 2.404 1.419 1.476 1.529 1.933 1.857 1.826 2.232
5% 0.889 0.994 0.982 1.108 0.984 1.015 0.998 1.088 1.046 0.998 1.062

28 10% 0.920 1.036 1.138 1.670 1.154 1.184 1.217 1.467 1.419 1.388 1.621
20% 0.967 1.070 1.296 2.310 1.357 1.487 1.489 1.841 1.794 1.749 2.201
5% 0.764 0.817 0.764 0.874 0.780 0.785 0.795 0.874 0.795 0.827 0.890

24 10% 0.654 0.816 0.843 1.372 0.847 0.998 1.031 1.311 1.092 1.169 1.405
Paris 20% 0.733 0.836 0.921 1.825 0.951 1.141 1.279 1.778 1.356 1.482 1.951

5% 0.671 0.756 0.702 0.827 0.716 0.774 0.699 0.843 0.778 0.796 0.857
28 10% 0.655 0.779 0.795 1.279 0.810 0.921 1.014 1.249 0.998 1.077 1.372

20% 0.686 0.798 0.797 1.731 0.905 1.269 1.279 1.652 1.297 1.467 1.918
5% 0.704 0.800 0.764 0.842 0.766 0.783 0.781 0.798 0.794 0.827 0.859

24 10% 0.749 0.827 0.889 1.311 0.894 0.999 1.046 1.279 1.092 1.202 1.436
Suzie 20% 0.749 0.848 0.936 1.793 1.014 1.198 1.310 1.778 1.435 1.530 1.981

5% 0.655 0.739 0.703 0.796 0.704 0.781 0.779 0.794 0.758 0.765 0.842
28 10% 0.670 0.764 0.733 1.232 0.795 0.889 0.999 1.201 1.061 1.077 1.373

20% 0.671 0.787 0.874 1.653 0.920 1.155 1.201 1.687 1.357 1.435 1.902
Average 0.821 0.923 0.979 1.517 1.008 1.103 1.143 1.384 1.246 1.284 1.537

CIF 5% 2.838 3.211 3.043 3.448 3.012 3.151 3.292 3.510 3.308 3.400 3.558
24 10% 2.979 3.306 3.697 5.695 3.681 4.167 4.991 5.990 4.804 5.600 6.520

Foreman 20% 2.978 3.457 4.133 8.004 4.306 4.976 6.677 8.394 6.243 7.597 9.281
5% 2.714 2.960 2.731 3.212 2.855 2.917 3.056 3.275 3.027 3.261 3.400

28 10% 2.745 3.190 3.369 5.273 3.400 3.933 4.883 5.804 4.462 5.211 6.396
20% 2.776 3.200 3.729 7.346 3.947 4.741 6.490 8.220 5.708 7.286 9.031
5% 3.821 4.654 3.916 4.415 3.916 4.055 4.071 4.276 4.181 4.228 4.461

24 10% 3.808 4.233 4.632 6.973 4.647 4.977 5.631 6.724 5.757 6.350 7.362
Mobile 20% 3.807 4.203 5.228 9.296 5.398 5.711 7.082 8.939 7.224 8.330 10.063

5% 3.480 3.667 3.681 4.121 3.618 3.728 3.840 3.977 3.821 3.964 4.103
28 10% 3.541 3.832 4.305 6.645 4.371 4.742 5.368 6.443 5.476 5.975 7.051

20% 3.634 3.950 4.993 9.019 5.102 4.554 6.863 8.675 6.865 7.925 9.812
5% 3.244 3.525 3.353 3.681 3.339 3.448 3.558 3.759 3.541 3.651 3.899

24 10% 3.229 3.498 3.743 5.522 3.821 4.338 5.272 6.209 4.881 5.773 6.833
Flower 20% 3.215 3.570 4.212 7.503 4.307 5.148 6.897 8.566 6.038 7.862 9.610

5% 3.025 3.221 3.043 3.448 3.089 3.260 3.336 3.542 3.290 3.541 3.667
28 10% 3.057 3.308 3.590 5.319 3.603 4.180 5.148 6.039 4.711 5.615 6.647

20% 3.104 3.397 3.993 7.036 4.072 4.945 6.726 8.456 5.804 7.706 9.392
Average 3.222 3.577 3.855 5.886 3.916 4.276 5.177 6.155 4.952 5.738 6.727

operation in PDE. The computational complexity of the pro-
posed AR model is higher than the comparing methods,
but still acceptable, especially when only spatial continuity
constraint or temporal continuity constraint is applied.

VI. Conclusion

In this paper, we developed an AR model based error
concealment scheme for block-based packet video coding. For
each corrupted block, we first derived the motion vector and
then replenished each corrupted pixel as the weighted summa-
tion of pixels within a square centered at the pixel indicated
by the derived motion vector with integer-PEL accuracy in

a regression manner. To obtain better concealment results,
we proposed two block-dependent AR coefficient derivation
algorithms under spatial and temporal continuity constraints.
We then combined the regression results generated by the
two algorithms to form the ultimate concealment results. The
simulation results demonstrate the superiority of the proposed
scheme over other inter-frame concealments with acceptable
computational complexity.
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