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Abstract—Background subtraction is a fundamental prepro-
cessing step in many surveillance video analysis tasks. In spite of
significant efforts, however, background subtraction in crowded
scenes remains challenging, especially, when a large number of
foreground objects move slowly or just keep still. To address
the problem, this paper proposes a selective eigenbackground
method for background modeling and subtraction in crowded
scenes. The contributions of our method are three-fold: First,
instead of training eigenbackgrounds using the original video
frames that may contain more or less foregrounds, a virtual frame
construction algorithm is utilized to assemble clean background
pixels from different original frames so as to construct some
virtual frames as the training and update samples. This can
significantly improve the purity of the trained eigenbackgrounds.
Second, for a crowded scene with diversified environmental
conditions (e.g., illuminations), it is difficult to use only one
eigenbackground model to deal with all these variations, even
using some online update strategies. Thus given several models
trained offline, we utilize peak signal-to-noise ratio to adaptively
choose the optimal one to initialize the online eigenbackground
model. Third, to tackle the problem that not all pixels can obtain
the optimal results when the reconstruction is performed at once
for the whole frame, our method selects the best eigenbackground
for each pixel to obtain an improved quality of the reconstructed
background image. Extensive experiments on the TRECVID-
SED dataset and the Road video dataset show that our method
outperforms several state-of-the-art methods remarkably.

Index Terms—Background subtraction, selective eigenback-
ground, selective model initialization, selective reconstruction,
virtual frames.

I. Introduction

BACKGROUND subtraction is a fundamental preprocess-
ing step in many surveillance video analysis tasks. Its

basic idea is to detect the foreground objects by calculating the
difference between the current frame and a “background im-
age” (or background model), and then thresholding the result
to generate the objects of interest. The extracted foreground
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objects can then be used in the subsequent processing such as
object detection/tracking and event detection. For example, in
order to increase the processing efficiency, object detection
and tracking only needs to focalize the foregrounds. More
importantly, this is beneficial to the removal of false alarms
that may be caused by background regions, consequently,
resulting in an improved performance. Also, we can only
extract spatial-temporal features of foreground regions to infer
whether an abnormal event is happened. Obviously, more
accurate the background model is, more benefits the video
surveillance system will gain.

Background modeling and subtraction has been studied
about two decades. There are many methods in the literature,
e.g., frame differencing [1], temporal median filtering [2],
[3], Gaussian mixture models (GMMs or MoGs) [7]–[10],
Bayesian [12]–[14], kernel density estimation (KDE) [15],
[16], codebook methods [18]–[20], and nonparametric models
[32], [33]. In most of these methods, the background model
is updated with the recent frames so that it can capture
the scene’s change without delay. In this case, most moving
foregrounds can be easily detected. However, when used for
the crowded scenes where the object density is pretty high
and most of the objects move slowly or just keep still, the
background model might be updated with features possibly
extracted from foreground regions. As a consequence, some
foregrounds would be absorbed in the reconstructed back-
ground. Such crowded scenes can be found in many real-world
surveillance applications, such as airports and city crossroads.
Therefore, how to perform robust background subtraction in
crowded scenes poses a significant challenge.

Eigenbackground modeling [23], [24] is a frequently used
method for detecting static or slowly moving foregrounds in
a scene. In this method, the background is represented by
M principal eigenvectors (i.e., eigenbackgrounds), which are
obtained by singular value decomposition (SVD) or eigende-
composition on the covariance matrix of the training frames.
Since the eigenbackgrounds are generated with randomly-
selected training frames, slowly moving objects seldom appear
at the same locations in these training frames and thus do not
have a significant contribution to the background model. In this
way, the eigenbackground method can avoid the foreground
absorption effectively.

However, there are still some problems when the classic
eigenbackground method is applied to crowded scenes. The
first and most important one is the problem of dirty training

1051–8215 c© 2013 IEEE



1850 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 23, NO. 11, NOVEMBER 2013

Fig. 1. Problem of dirty training samples. (a) Some frames are randomly selected to train eigenbackgrounds, but most of them contain more or less
foregrounds. (b) “Noise” eigenbackgrounds are used for reconstruction, making the derived background full of some foregrounds.

Fig. 2. Example where the frame-level eigenbackground method is applied in a crowded scene. (a) Original frame. (b) Reconstructed background.
(c) Subtraction result.

samples. Consider Fig. 1 as an example. In a video where
foreground objects may occlude the background for a fairly
long time, it is difficult to find enough clean frames as the
training samples. That is, most of the training samples may
contain more or less foregrounds [as shown in Fig. 1(a)].
Accordingly, the eigenbackgrounds will be noise when trained
by these dirty training samples, making the reconstructed
background image also include some foregrounds [as shown
in Fig. 1(b)]. A related problem is mainly due to the fact
that the background reconstruction is often performed at once
for the whole frame. In this case, not all pixels could get
the best reconstruction results. This can be further illustrated
by Fig. 2, which shows an example of the results by frame-
level eigenbackground method. From Fig. 2(b), we can see that
there are obviously some foregrounds (the black blobs) in the
reconstructed background image, indicating that the pixels in
these blobs do not obtain the optimal results via frame-based
reconstruction. As a result, missing detections are occurred
at the corresponding positions in the background subtraction
results [as shown in Fig. 2(c)].

To address these problems, this paper proposes a selective
eigenbackground method for background modeling and sub-
traction in crowded scenes. To keep robust in crowded scenes,
our method extends the classic eigenbackground method by
introducing three selectivity mechanisms, namely, selective
training of eigenbackgrounds, selective model initialization,
and pixel-level selective reconstruction. Instead of training
eigenbackgrounds with the original video frames that may
contain more or less foreground objects, a virtual frame con-
struction algorithm is proposed to assemble clean background
pixels from different original frames so as to construct some
virtual frames as training and update samples. This selection
process is implemented by frame selection map (FSM), a
data structure with the same size to the video frame and
each element of which records the frame index, where the
corresponding location is a clean background pixel. In our
method, a GMM is trained for each pixel location to identify

whether a pixel at that location is clean or not. Using the
constructed virtual frames as training samples, fewer fore-
grounds would be absorbed into the trained eigenbackgrounds
and, consequently, their purity can be significantly improved.
Note that virtual frames are not only constructed offline for
eigenbackground training, but also updated online to refresh
the eigenbackgrounds so as to capture the dynamic changes
of the scene.

For a crowded scene with diversified environmental con-
ditions (e.g., illuminations), it is difficult to use only one
eigenbackground model to deal with all these variations. So
we need to train several eigenbackground models offline for
such a crowded scene, which are in turn used to initialize
the online eigenbackground model (e.g., [24]) that will update
the eigenbackgrounds incrementally to capture the temporally
local changes in the input video. For any input video frame,
peak signal-to-noise ratio (PSNR), which is originally used
to evaluate the quality of the reconstructed image in visual
compression, is utilized to choose the optimal one for ini-
tialization. This selective model initialization can make our
method quickly adaptive to both the global and local variations
of the scene. Moreover, instead of performing background
reconstruction at once for the whole frame, our method
selects the best eigenbackground for each pixel. Similarly, an
eigenbackground selection map (ESM) is used to record the
respective indices of the best eigenbackgrounds for all pixels.
This can further improve the quality of the reconstructed back-
ground image. In addition, an adaptive threshold is calculated
to binarize the difference between the background image and
the input frame so as to generate the foreground objects.

Extensive experiments were performed on the TRECVID
surveillance event detection (SED) corpus [5] and the Road
video dataset that was collected from a city crossroad surveil-
lance system. Experimental results show that on both indoor
and outdoor crowded videos, the proposed method outper-
formed several state-of-the-art eigenbackground methods (e.g.,
the classic and block-based eigenbackground methods) and
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noneigenbackground methods (e.g., GMM [9], Bayes [12],
CodeBook [18], PBAS [32], and ViBe [33]) remarkably.

The remainder of this paper is organized as follows.
Section II briefly reviews the eigenbackground methods. The
proposed method is presented in Section III. Experimental
results are shown in Section IV. Section V concludes this
paper.

A preliminary version of this paper has been published in
[30]. The main extensions include selective model initializa-
tion, where PSNR is utilized to choose the optimal model
trained offline to initialize the online eigenbackgrounds, an
improved background reconstruction algorithm by introducing
the influence of neighboring pixels, an adaptive thresholding
for background subtraction, and more extensive experiments
on the TRECVID-SED and Road video datasets.

II. Eigenbackground

In general, eigenbackground methods have two typical
background modeling strategies, namely, offline and online.
The offline strategy (e.g., Batch PCA [23]) tries to learn the
globally optimal eigenbackgrounds from the training set and
keep them fixed during the detection procedure, while the
online one (e.g., CCIPCA [24]) mainly focuses on how to
incrementally update the eigenbackgrounds. Typically, the two
modeling strategies can be used in different scenarios in real-
world surveillance applications.

Batch PCA [23] requires that all the training images are
available before the principal components can be estimated.
Let X = [x1, x2, . . . , xN ] denote N training samples, where
xn is the column vector representation of the nth sample.
That is, each sample is treated as one vector, simply by
concatenating the rows of pixels in the original image. Then,
the principal components, also known as eigenbackgrounds,
U = [u1, u2, . . . , uM], can be obtained by SVD on the
covariance matrix C = 1

N

∑N
n=1[xn− x̄][xn− x̄]T, where x̄ is the

mean vector of {xn}n=1,... ,N . Let the SVD of C be C = W�WT,
then U is defined as the M eigenvectors in W that correspond
to the M largest eigenvalues. Once a new image, x, is available,
the reconstructed background can be calculated as

b = UUT(x − x̄) + x̄. (1)

The batch PCA looks like fairly simple, but in real-
world applications this approach rarely works alone since
the offline trained eigenbackgrounds are not able to capture
any changes of a scene such as lighting changes, moving
background objects and nonstationary scenes. To capture such
dynamic changes, incremental PCA (IPCA) was proposed to
compute the principal components for observations arriving
sequentially, and then update the eigenbackground model
online. Researchers have proposed many different variations
of IPCA. Some variations try to obtain principal components
with the original training samples and a newly added sam-
ple [21], [27]–[29], while some others avoid computing the
covariance matrix as an intermediate result [24]–[26]. This
is important since when the dimension of a video frame
is high, both the computation and storage complexity of

such a matrix grow dramatically. For example, the covari-
ance matrix amounts to 8.5997e+10 elements for a standard-
definition video frame of 720 × 576. To tackle this problem,
Weng et al. [24] proposed the candid covariance-free IPCA
(CCIPCA) algorithm that is fast in convergence rate and low
in the computational complexity.

The basic idea of CCIPCA is to compute the eigenback-
grounds of a sequence of samples incrementally without
estimating the covariance matrix (thus, covariance-free). Let
xn denote the nth sample vector that is acquired sequentially,
then the mean vector x̄(n) can be computed incrementally

x̄(n) =
n − 1

n
x̄(n−1) +

1

n
xn (2)

where x̄(n−1) is the corresponding mean vector before xn is
available. Accordingly, the zero-mean form of xn can be easily
derived as zn = xn−x̄(n). In this case, the ith dominant principal
component u(n)

i can be obtained as follows [24]: Let z(n)
1 = zn

u(n)
i =

n − 1 − ζ

n
u(n−1)

i +
1 + ζ

n
z(n)
i (z(n)

i )T
u(n−1)

i

‖u(n−1)
i ‖ (3)

z(n)
i+1 = z(n)

i − (z(n)
i )T

u(n)
i

‖u(n)
i ‖

u(n)
i

‖u(n)
i ‖ (4)

where ζ is the updating rate. After normalization, the final

eigenvector and eigenvalue are respectively given by ui = u(n)
i

‖u(n)
i ‖

and λi = ‖u(n)
i ‖. Note that (3) and (4) represent an iterative

computation procedure, where the higher order eigenvectors
are obtained in the complementary space of the lower order
eigenvectors. The algorithm can run in real-time because
it avoids the computation of covariance matrix and each
eigenvector updates in only one step.

However, when applied in a video with crowded scenes,
the trained eigenbackgrounds in CCIPCA may contain more
or less foregrounds since samples available incrementally are
likely to be dirty. Therefore, it is preferable to combine the two
kinds of eigenbackground methods in a unified framework.
In other words, a batch PCA is utilized to train several
eigenbackground models offline using clean training samples
that are selected or constructed from the training set, while
CCIPCA is used to online update the current eigenbackground
model. When initialized by one of the offline trained models,
CCIPCA can even achieve higher performance by capturing
the sharply changes of the scene.

In our previous work [17], we proposed a block-level
eigenbackground algorithm, where the original video frame
is divided into blocks and the eigenbackground training and
background subtraction are performed for each block indepen-
dently. This paper further extends the algorithm by performing
the selection of the best eigenbackground for each pixel.
This can further reduce the foreground information in the
reconstructed background, consequently, leading to a superior
performance when applied in video with crowded scenes.

III. Selective Eigenbackground Method

The main objective of this paper is to present an effective
eigenbackground method that can keep robust in crowded
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Fig. 3. Framework of the proposed method, which consists of two modules,
i.e., the offline training module and the subtraction module. Note that the
subtraction module involves online update of the background model with
virtual frames.

scenes. Our method exploits three “selectivity” mechanisms
for background modeling and subtraction, including automat-
ically constructing virtual frames as the training and update
samples of eigenbackgrounds (called selective training), adap-
tively choosing the optimal background model for initialization
(called selective model initialization) and selecting the best
eigenbackground for each pixel to reconstruct its background
pixel (called pixel-level selective reconstruction). Using these
mechanisms, our method can significantly increase the purity
of the trained eigenbackgrounds and, consequently, obtain an
improved quality of the reconstructed background image.

As shown in Fig. 3, our method mainly consists of two mod-
ules, namely, the offline training module and the subtraction
module. In the offline training module, a GMM is first trained
for each pixel through the Expectation Maximization (EM)
algorithm [6]. In each GMM, some components represent the
background in the scene (hereafter, referred to as “background
Gaussians”), while the others characterize the foreground.
Thus, for a given pixel, we can identify whether it is a
clean background pixel by comparing its pixel value with the
background Gaussians. Then a data structure with the same
size to the video frame, FSM, is used to record the frame
index of a training sample in which the corresponding location
is a clean background pixel. When a FSM is crammed with
the frame indices, all the corresponding pixels are assembled
to construct a virtual frame. As such, the virtual frame does
not contain any foreground pixels. Therefore, if these virtual
frames are utilized by batch PCA to train the eigenbackground
models, fewer foregrounds would be absorbed into the trained
eigenbackgrounds and thus their purity can be significantly
improved.

In the subtraction module, when a video frame is given,
the optimal background model trained offline is first selected
to initialize the GMMs and eigenbackgrounds using a
PSNR-based algorithm. Then, we update the GMM for each
pixel, and then use the updated GMM to identify whether

Fig. 4. Comparison of background modeling and subtraction results given
different training samples. (a) Randomly selected frames. (b) Clean frames.
(c) Background reconstruction and subtraction using the two kinds of training
samples, where (c1) an original video frame, (c2) and (c3) the reconstructed
background and the corresponding subtraction result with training frames
shown in (a), and (c4) and (c5) those with training frames shown in (b).

the corresponding pixel is a clean background pixel. If so,
the corresponding frame index will be used to update the
FSM. After that, all the corresponding pixels in the updated
FSM are assembled to construct a virtual frame, which
is in turn used to online update the eigenbackgrounds by
CCIPCA. Given the updated eigenbackgrounds, the next
step is to reconstruct a background image for the input
video frame. In our method, an ESM is used to record the
respective index of the best eigenbackground for each pixel.
Using the best eigenbackgrounds for all pixels indicated by
the ESM, a background image with the improved quality
can be reconstructed for the input video frame. Finally, the
difference between the background image and the input frame
is calculated and an adaptive threshold is used to binarize the
difference so as to generate the foreground objects.

Note that our method employs two kinds of background
models, namely, GMM and eigenbackground model. GMM
is used in the virtual frame construction to identify a pixel
as background or foreground. However, since it ignores the
correlation of neighboring pixels, some random noises will be
inevitably included into the constructed virtual frames. On the
contrary, the eigenbackground model exploits the correlation
of pixels to reduce the influence of random noises. Therefore,
by using GMMs to generate the training and update samples
for eigenbackgrounds, our method can make use of the com-
plementarity of the two background modeling techniques.

A. Selective Training With Virtual Frames

Intuitively, the background model would be better when
trained by clean samples than trained by randomly-selected
samples, and accordingly the background subtraction results
would have higher recall and precision. Note that here clean
means that there are no foregrounds in the training sample.
This conjecture can be validated by the example shown in
Fig. 4, which illustrates a comparison of background modeling
and subtraction results given the two kinds of training samples.
We can see that the background subtraction result with clean
training frames is much better than that with randomly selected
frames.

In a real-world crowded video, however, it is often dif-
ficult to find enough clean frames as the training samples
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Fig. 5. Crowded scene and five images that depict the means of different
Gaussian components for all its pixels.

[e.g., Fig. 1(a)]. Therefore, a feasible solution is to automati-
cally construct some images by assembling background pixels
from different original frames. Since these images are not
directly selected from the original video, they are referred to
as “virtual frames” in this paper. To construct such a virtual
frame, there are two problems to be solved, i.e., how to
determine whether a pixel is clean, and how to organize these
clean pixels to form the virtual frame.

1) Detection of Clean Pixels: The key problem in detecting
clean pixels is to derive a statistical model that can effectively
characterize the background property of a pixel. Following the
methods in [7], we employ the GMM model to describe which
kind of pixel is really a background pixel

P(x) =
K∑
i=1

ωiη(x, μi, σi) (5)

η(x, μi, σi) =
1√

2πσi

exp

{
− (x − μi)2

2σ2
i

}
(6)

where K is the number of Gaussians (K = 5 in this paper),
ωi, μi, and σi are the weight, mean, and variance of the
ith Gaussian, respectively. In each GMM, some components
represent the background in the scene (i.e., “background
Gaussians”), while the others characterize the foreground. This
can be further illustrated by Fig. 5, which contains five images
that depict the means of different Gaussian components for
all pixels in a crowded scene. We can see that the first two
components are likely to be background Gaussians, while
the remaining components tend to contain more foreground
information.

Statistically, the duration of the background occurred at a
pixel location is often longer than that of the foreground.
Moreover, the background usually remains unchanged in a
short period while the foreground objects, whether they shade
the background or not, may vary by time. As a result, the
visual appearance of that pixel should be more stable if it is a
background pixel. In a GMM, the occurrence duration of the
ith Gaussian may influence its weight ωi, while its stability
can be characterized by the corresponding variance σi. As
discussed above, compared with a foreground Gaussian, the
ω for a background Gaussian should be bigger while its σ

should be smaller. In this case, if we sort the Gaussians in a
pixel’s GMM by the ratio ω/σ in a descending order, then the

top B Gaussians can be classified as background Gaussians,
namely

arg maxB

{
B∑

i=1

ωi < T⊥

}
(7)

where T⊥ is an experimental threshold that denotes the upper
bound of the duration proportion of a background pixel in the
whole video (T⊥ = 0.6 in this paper). The statistical results on
the TRECVID-SED dataset show that about 90% pixels take
the first two Gaussians as background Gaussians.

After distinguishing the two kinds of Gaussian components,
it is easy to identify whether a pixel in a frame is clean by
comparing its pixel value with the background Gaussians. That
is given by

|x − μi| < 2.5σi, ∃ i, 1 ≤ i ≤ B (8)

where x is the value of a pixel to be determined, μi and σi

are the mean and variance of the ith Gaussian component at
the corresponding location. That is, if the absolute difference
between the x’s pixel value and the mean μi of the ith
Gaussian component is less than 2.5 times the variance σi,
then x is considered as a match with this Gaussian component.
In this way, all background pixels in the training frames can
be picked out to construct virtual frames.

2) Construction of Virtual Frames: Given the selected
background pixels, the next problem is how to organize these
pixels to form virtual frames. In our method, a matrix with
the same size to the video frame, referred to as FSM, is used
to record the latest frame index of a training sample, wherein
the corresponding location is a clean background pixel.

Fig. 6 presents an example to visualize the virtual frame
construction. For simplicity, here we suppose the frame size
is 3 × 3. All elements of the FSM are initialized as “−1”
and will be updated when a new background pixel is found
from the original frames. For example, the (0, 0) element in
the FSM is crammed with the frame index “34” after scanning
the 34th frame and if no clean background pixel is found at
the (0, 0) location in the following frames; similarly, the (1, 0)
element in the FSM is first crammed with the frame index
“27,” and then updated with the frame index “43,” if the (1, 0)
pixels in both frames are identified as a clean background
pixel. In the process, the elements in the FSM always remain
fresh so as to capture the recent changes in the video. When
all elements in the FSM are assigned, the corresponding pixels
are then assembled to construct a virtual frame (e.g., the (0, 0)
pixel of the 34th frame, the (1, 0) pixel of the 43th frame, and
so on). After that, the FSM is reset to “−1” and the above
process will be repeated. Algorithm 1 describes this virtual
frame construction process.

Fig. 7 shows some examples of virtual frames constructed
on the TRECVID-SED dataset. Obviously, these virtual frames
are much cleaner than those frames in Fig. 1. Nevertheless,
there are still some fragmentary foregrounds in some virtual
frames (as shown in the second row of Fig. 7). This is
because some foreground pixels really exist in all the training
samples, and consequently these foregrounds are modeled as
backgrounds by GMMs.
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Fig. 6. Visualization of virtual frame construction. In this example, the (1, 0) element in the FSM is first crammed with the frame index “27”, and then
updated with the frame index “43,” if the (1, 0) pixels in both frames are identified as a clean background pixel. When all elements in the FSM are assigned,
the corresponding pixels are then assembled to construct a virtual frame (e.g., the (0, 0) pixel of the 34th frame).

Algorithm 1: Virtual frames construction with FSM.
Input: The training frame set I = [I1, . . . , It , . . . , IN ], where It

is a m × n video frame; and the GMM models
	 = {	i,j}m×n for all locations in a frame, where
	i,j = {ωk

i,j, μ
k
i,j, σ

k
i,j}k∈[1,K], K is the number of

Gaussians and B is the number of background
Gaussians.

Output: A set of virtual frames V = [V1, . . . , Vl, . . . , VL].

begin
l = 1; t = 1;
while l <= L do

Initialize the FSM F = [−1]m×n ;
while ∃(i, j), F(i, j) == −1 do

if ∃ k, |It(i, j) − μk
i,j| < 2.5σk

i,j, 1 ≤ k ≤ B,
F(i, j) = t;

else
t = t + 1;

if t > N return;
end
for all (i, j) do

Vl(i, j) = IF(i,j)(i, j) ;
end
l = l + 1;

end
end

3) Discussion: Although the constructed virtual frames are
visually similar to the background images for the given scenes,
they cannot be directly used for background subtraction. This
is due to the following two reasons. First, since a virtual frame
is constructed by independently assembling clean pixels from
different original frames, the correlation of neighboring pixels
is ignored in this process. As a result, there are some random
noises in the constructed virtual frames (e.g., the first row
in Fig. 7). In this case, if these virtual frames are directly
used for background subtraction, a large amount of random
noises will also exist in the subtraction results. Instead, our
method exploits these virtual frames as the training samples
for eigenbackgrounds so that these low-frequency random

Fig. 7. Some examples of virtual frames constructed on the TRECVID-SED
dataset for (a) Camera 1, (b) Camera 2, (c) Camera 3, and (d) Camera 5.

noises can be removed. Second, a virtual frame may contain
pixels from different training samples with diversified scene
variations (e.g., illuminations). So if these virtual frames are
directly used for background subtraction, it is impossible to
find out the optimal one as the background image for any video
frame. Instead, our method trains several eigenbackgrounds,
each of which may capture one of the variations, from these
virtual frames. Then they can be used to selectively reconstruct
a more accurate background for a given input frame.

B. Selective Model Initialization and Update

Besides selective training, how to initialize and update the
background models is another important issue. In our method,
this issue is related to two kinds of background models,
namely GMMs and eigenbackground models.

1) Initialization of Background Models: Given a set of
training samples, we can use the EM algorithm described
in [6] to train GMMs, and the Batch PCA [23] to train
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the eigenbackground models. As discussed above, a set of
background models should be trained offline for a crowded
scene, each of which is used to characterize the background
properties of the scene in a specific environmental condition.
Then, one of the offline trained models can be used to initialize
the online eigenbackground model, which is, in turn, devoted
to capture some local changes in the same environmental
condition. Thus, the problem becomes how to select the
optimal background model trained offline for initialization.

Similar to the concept “groups of pictures” (GOPs) in video
coding, we first divide each video sequence into different
supergroups of pictures (S-GOPs). Each S-GOP contains
a large amount of successive frames such that they can
be initialized by the same offline trained model. In each
S-GOP, we select a small number of initial frames (e.g., 30
frames) as the validate set to determine the optimal model for
initialization. Let 
 denote a set of offline trained models,
our objective here is to select the best ψk ∈ 
 such that
for each frame It in the validate set, G, the background Bk,t

reconstructed by ψk is closest to the ideal background B∗
t .

According to [31], the observation of a video frame It can
be modeled as the sum of the ideal background B∗

t , the system
noise N(Sys)

t , moving objects M(Obj)
t , and moving background

M(Bg)
t , that is

It = B∗
t + N(Sys)

t + M(Obj)
t + M(Bg)

t . (9)

Since the local background changes in each S-GOP will be
captured by the online eigenbackground algorithm, we assume
M(Bg)

t = 0 in G. Without considering the system noise for
simplicity, we have

B∗
t = It − M(Obj)

t . (10)

Thus, given a set of offline trained models 
 = {ψk}, the
selection algorithm can be expressed as follows:

k∗ = arg maxk

{∑
It∈G

J(Bk,t, B∗
t ) | ψk ∈ 


}

= arg maxk

{∑
It∈G

J(Bk,t, It − M(Obj)
t ) | ψk ∈ 


} (11)

where J(·, ·) is a monotonic function to evaluate the similarity
between two images, Bk,t is the reconstructed background for
It with ψk. Due to its monotonicity, we have J(Bk,t, It −
M(Obj)

t ) ∝ J(Bk,t, It) − J(Bk,t, M(Obj)
t ). Then, (11) can be

rewritten as follows:

k∗ = arg maxk

{∑
It∈G

J(Bk,t, It) − J(Bk,t, M(Obj)
t ) | ψk ∈ 


}

(12)
If M(Obj)

t for each It is known, namely all frames in G
are manually labeled with the ground truth of foreground
objects, we can directly apply (12) to choose the optimal
initializing background model. However, manually labeling
such a validation set for every S-GOP is very time-consuming,
and thus impossible to be widely applied on large datasets or
real-world surveillance systems.

We observe that for each It ∈ G, J(Bk,t, M(Obj)
t ) ≥ 0,

where the equality is satisfied if It is a clean frame. This
enlightens us that we can only evaluate the similarity between
the background regions of It (denoted by Ît) and the corre-
sponding parts in Bk,t (denoted by B̂k,t). This is reasonable
since according to our assumption, each model ψk ∈ 
 is
trained to characterize the background properties of the scene
in a specific environmental condition, and thus B̂k,t are enough
to evaluate whether the model ψk can well fit the background
properties of It . Following this idea, let İt denote a reference
frame for It (e.g., a clean frame or an initial frame in G), thus
Ît = |It − İt|� where � is the subtraction threshold. Then, (12)
can be approximated by

k∗ ≈ arg maxk

{∑
It∈G

J(B̂k,t, Ît) | ψk ∈ 


}
(13)

Thus, the remaining problem is how to design J(·, ·) that
can accurately measure the similarity between B̂k,t and Ît .
In image processing, PSNR is exactly such an evaluation
function, which is originally used to evaluate the quality of the
reconstructed image compared with the original image. In this
paper, we introduce the PSNR to the task of background model
selection. For each It ∈ G, the optimal initializing background
model should be the one with the highest PSNR when it is
used to reconstruct the background image for each It . That is
given by

k∗ ≈ arg maxk

∑
It∈G

PSNR(B̂k,t, Ît)

= arg maxk

⎧⎨
⎩

∑
It∈G

20 log10
255√

MSE(B̂k,t, Ît)

⎫⎬
⎭

(14)

where

MSE(B̂k,t, Ît) =
1

m × n

∑
(i,j)

[Ît(i, j) − B̂k,t(i, j)]2. (15)

A simple experiment was performed to verify the effective-
ness of the PSNR-based model selection. From the TRECVID-
SED corpus, we randomly selected 12 video sequences for
training, and the other 12 sequences for testing. Note that
each pair of training and testing sequences were captured
with similar illumination conditions (e.g., respectively from
the same time in two days). We trained 12 background models
on these training sequences, and randomly extracted 30 frames
as the validation set from each testing sequence. Given one of
the models, PSNR scores were calculated for all frames in
each validate set. The experimental results show that all test
sequences could correctly find the most suitable initializing
background models. As an example, Fig. 8 shows the selection
results of the second and fifth test sequences. We can see
that although some wrong decisions are made due to the
approximation by (13) [e.g., the 21st, 22nd, and 26th frames in
Fig. 8(a)], most of the frames can find the correct initializing
background model.
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Fig. 8. Visualizing the result of PSNR-based model selection for (a) second and (b) fifth test sequences. In each figure, the left subfigure shows PSNR(B̂k,t , Ît),
wherein the pink circle denotes the one with the maximal PSNR for the frame, while the right one shows the model index corresponding to the maximal
PSNR for each testing frame.

2) Update of Background Models: The purpose of the
model update is to make the background models capable to
capture the temporally local changes in the video. In our
method, it involves the update of a GMM and M eigenback-
grounds for each pixel location.

A selective update strategy is used in our method for
GMMs. That is, when a video frame is input, the first
thing is to determine whether each pixel is a clean back-
ground pixel; if so, a running average method can be used
to update the parameters of its corresponding GMM. Let
	t

i,j = {ωk
i,j, μ

k
i,j, σ

k
i,j}(t)

k∈[1,K] be the parameters of the GMM
for the (i, j) location when It is given, then the mean and
variance of the kth Gaussian component can be updated as
follows:

μ
k,t
i,j = (1 − α)μk,t−1

i,j + αIt(i, j) (16)

(σk,t
i,j )

2
= (1 − α)(σk,t−1

i,j )
2

+ α[It(i, j) − μ
k,t
i,j ]2 (17)

where α is the learning rate (α = 0.01 in this paper). For
simplicity, the weight ωk

i,j dose not change in this process.
On the other hand, the FSM F will be updated syn-

chronously when It is input. Similarly, when all elements
in F are assigned, the corresponding pixels are assembled to
construct a virtual frame. This virtual frame is then used to
online update the eigenbackgrounds by CCIPCA [24]. Unlike
the offline training case where all elements in F will be reset
to “−1” after a virtual frame is constructed, here only the
following elements will be reset to “−1”:

F(i, j) ← −1, only if (t − F(i, j)) > ε

where ε is a predefined decay threshold (ε = 1000 in this
paper).

C. Pixel-Level Selective Background Reconstruction

As shown in Fig. 2, when the background reconstruction is
performed at once for the whole frame, not all pixels could get
the optimal results. Instead, by selecting the best eigenback-
ground for each block in the reconstruction, the block-based
method can effectively reduce the foreground information in
the reconstructed background image. However, this is still

not the optimal solution since the remarkable mosaic effects
inevitably occur in the boundary regions between different
blocks.

We note that eigenbackgrounds are in essence the main
eigenvectors of the covariance matrix of the training frames;
while in the covariance matrix, each element represents the
variance of the pixel values at the corresponding position in
the training frames or the covariance between two different
pixel positions. Therefore, each eigenbackground represents a
direction in which the frames differ from the mean image,
and the absolute value of each element in an eigenbackground
thus represents the scatter degree of the pixel values in that
direction. That is, the eigenbackground element with a smaller
absolute value can better represent the “background” property
of the corresponding pixel location since the variance of a
background pixel is often less than that of a foreground pixel.

Fig. 9 illustrates an intuitive interpretation of this conjunc-
ture. To simplify the discussion, we suppose the samples
are video frames with only two pixels, and then generate
some samples using a 2-D Gaussian functions [as shown
in Fig. 9(a)]. Samples inside the 2.5σ circle can be treated
as background frames, while samples outside the circle are
“outliers,” where σ is the variance of all the samples. These
outliers are used to simulate the video frames in which some
foreground objects may occlude the background. Thus the task
is to reconstruct the background images for these outliers
with two eigenbackgrounds u1 = [−0.9350, 0.3546]T and
u2 = [0.3546, 0.9350]T . Fig. 9(b) and (c) depicts the results by
utilizing the two eigenbackgrounds to reconstruct their back-
ground images from x-dimension or y-dimension, respectively.
From Fig. 9(b), we can see that the x-dim reconstructed results
using u2 are much better than those using u1, since most of
u2’s results are inside the circle while most of u1’s results are
not. This is due to the x-dim absolute value of u2 is much
smaller than that of u1. The similar reason also results in
that the y-dim reconstructed results using u1 are much better
than those using u2, as shown in Fig. 9(c). Thus, to obtain
the desirable reconstructed results for all outliers in both x

and y dimensions, we should use u2 to calculate the x-dim
pixel values and u1 to calculate the y-dim pixel values in
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Fig. 9. Intuitive interpretation of selective background reconstruction. (a) Samples distribution, wherein the solid points denote the simulated samples,
straight lines represent two eigenbackgrounds, and the circle is the outlier boundary of 2.5σ. (b) and (c) Reconstruction results for the outliers in x-
dimension or y-dimension, respectively, wherein the circle marks represent the reconstructed results using u1, and the triangle marks represent those using u2.
(d) Reconstruction results for all outliers in both x-dimension and y-dimension.

Fig. 10. Some visualized examples of background subtraction with a fixed
or adaptive threshold. (a) Input frames. (b) Subtraction results with a fixed
threshold. (c) Subtraction results with an adaptive threshold.

the construction. As shown in Fig. 9(d), all the reconstructed
results are inside the circle, indicating that their background
images can be correctly reconstructed using this method.

Motivated by this example, we propose a pixel-level selec-
tive background reconstruction algorithm to select an optimal
eigenbackground for each pixel. Like the FSM, a matrix with

the same dimensionality as the frame, called ESM, is intro-
duced to record the indices of the optimal eigenbackgrounds
for the corresponding pixel locations

E(i, j) = arg mink|uk(i, j)| (18)

where uk(i, j) is the (i, j) element of the kth eigenbackground.
However, (18) ignores the correlation of neighboring pix-
els in the selection process. As a result, the reconstructed
background might have some singularities that significantly
distinguish them from all their neighboring pixels. This will
lead to the occurrence of isolated noises in the subtraction
result. To avoid this problem, we rewrite (18) by introducing
the influence of neighboring pixels, as follows:

E(i, j) =

arg mink

{
α|uk(i, j)| +

1 − α

‖Ni,j‖
∑

(i′,j′)∈Ni,j

|uk(i′, j′)|
}

(19)

where Ni,j is the neighborhood of the (i, j) pixel, ‖ · ‖ is
the size of a set, α is a weight that reflects the influence of
neighborhood pixels (α = 0.8 in this paper).
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Given the crammed ESM, the background Bt for It can be
reconstructed by

Bt(i, j) = ψk(i, j) (20)

ψk = ukuT
k (It − Ī) + Ī (21)

where k = E(i, j) and Ī is the average image for the training
samples.

D. Adaptive Thresholding for Background Subtraction

For background subtraction, a direct method is to threshold
the difference between the current frame and its background
image. However, it is very difficult to find an appropriate
threshold that can be used to derive the best background
subtraction results for all frames. Thus, motivated by the idea
from [22], an adaptive threshold �t is calculated for each
frame It in this paper, namely

�t = maxk

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√√√√√√
R∑

r=k

r2 × bt(r)∑R
r=k bt(r)

−
[∑R

r=kr × bt(r)∑R
r=kbt(r)

]2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (22)

where

bt(r) =
m∑
i=1

n∑
j=1

st,r(i, j) (23)

st,r(i, j) =

{
1,|It(i, j) − Bt(i, j)| = r

0,otherwise
(24)

where R is the maximal pixel value (e.g., 255).
Fig. 10 visualizes some examples of background subtraction

with a fixed or adaptive threshold. We can see that compared
with the results with a fixed threshold, the results with an
adaptive threshold have much less noises and false alarms.
That is to say, the adaptive thresholding method can effectively
improve the performance of background subtraction. It also
should be noted that this adaptive thresholding strategy is
not only used in the proposed method, but also all other
background subtraction methods.

IV. Experiments

Extensive experiments were conducted to verify the effec-
tiveness of the proposed method. Some experimental results
have been described in the previous section, mainly on evalu-
ating the performance of different components in our method.
Thus this section presents the experiments and results on its
overall performance, with several state-of-the-art methods as
baselines.

A. Experimental Settings

Two crowded datasets were used in our experiments. One
is from the TRECVID-SED corpus [5] and the other is the
Road video dataset. The TRECVID-SED dataset contains 145
h indoor surveillance video data collected by the U.K. Home
Office from five camera views at a busy airport. We used

the video from four cameras in our experiments and left the
data from camera 4 out since this view is on the elevator
closeup and not a crowded scene. The Road video dataset is
2 hour video corpus collected from a real-world city crossroad
surveillance system. In our experiments, this dataset can be
used to evaluate the performance of our method in outdoor,
busy traffic surveillance videos.

Three eigenbackground algorithms were included in our
experiments as the baselines for the proposed method (denoted
as PS-EigenBg).

- C-EigenBg: The classic eigenbackground method that is
trained on the whole frame with Batch PCA [23] and
updated incrementally with CCIPCA [24]. It reconstructs
the background image using all eigenbackgrounds.

- BS-EigenBg: The block-level selective eigenbackground
algorithm [17] that divides each original frame into blocks
and trains the eigenbackgrounds for each block indepen-
dently. It selects the best eigenbackground for each block
to reconstruct its corresponding background block.

- PS-EigenBg
NVF

: One simplified version of PS-EigenBg
without utilizing the offline constructed virtual frames for
eigenbackground training.

Five noneigenbackground algorithms were also included in
our experiments.

- GMM: Among different variants of GMMs (e.g., [7]–
[10]), the model proposed in [9], which exploits the online
EM to update the GMMs and has been implemented in
OpenCV, was used as a baseline in our experiments.

- Bayes: A Bayesian framework that utilizes the most fre-
quent features to characterize the background appearance
and then uses a Bayes decision rule for background and
foreground classification (e.g., [12]–[14]).

- Codebook: In Codebook [18]–[20], sample background
values at each pixel are quantized into codebooks, a
compressed form of the background model. In our ex-
periments, totally 150 frames were randomly selected to
train the codebooks for each video sequence.

- PBAS: A pixel-based nonparametric background model
[32] that is constructed by recently observed pixel and
magnitude values. In addition, two controllers with feed-
back loops are used for both the decision threshold as well
as for the learning parameter, making the model adapting
to the current video properties.

- Vibe: A pixel-based nonparametric background modeling
method [33] that models the background with a set of
randomly selected samples for each pixel. Note that
some postprocessing operations such as the inhibition
of propagation around internal borders or the distinction
between the updating and segmentation masks are also
used in Vibe.

For a fair comparison, the subtraction results were output
by different algorithms without suffering any postprocessing
except Vibe.

In most of the related literatures (e.g., [11]), the evaluation
of background models is usually performed by visualizing
some of the subtraction results and subjectively comparing the
advantages and disadvantages of various algorithms. However,
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Fig. 11. ROC curves of different eigenbackground methods on the TRECVID-SED corpus. (a) Camera 1. (b) Camera 2. (c) Camera 3. (d) Camera 5.

such a subjective evaluation is argued sometimes as unfair
and incomplete, since it cannot quantitatively compare the
competing algorithms on a large dataset. Instead, the objective
evaluation is performed by comparing the similarity between
the subtraction results and the ground truth. Often, the ground
truth should be manually labeled in the form of accurate
contours of all foreground objects. However, labeling such
ground truth on a large video dataset is too labor-intensive. A
simplified method is proposed in [4], in which some random
frames are extracted from the test data, and the ground truth
of these frames are generate by labeling the bounding boxes
of foreground objects. When at least 30% pixels in an object’s
bounding box (note that 25% was used in [4]) are determined
as foregrounds by an algorithm, that object is considered as a
correct detection. Then, the true positive TP is defined as the
ratio of the number of correctly detecting objects versus the
number of labeled objects in the ground truth, and the negative
positive FP is measured as the percentage of pixels outside
the bounding box that are incorrectly classified as foreground
[4]. Thus, under an adaptive threshold or the optimal model
parameter, we can quantitatively compare the performance of
various methods using the F-measure, as follows:

F-Measure =
TP

TP + γFN + (1 − γ)FP
(25)

where γ is a weight factor (γ = 0.5 in our experiments), FN

denotes the false negative that is measured as the percentage
of pixels inside the bounding box that are incorrectly classified

TABLE I

AUCs of Eigenbackground Methods on the TRECVID-SED and

Road Video Datasets

Algorithm Camera 1 Camera 2 Camera 3 Camera 5 Road
C-EigenBg 0.820 0.599 0.755 0.677 0.851

BS-EigenBg 0.820 0.647 0.788 0.717 0.949
PS-EigenBg

NVF
0.923 0.623 0.831 0.740 0.954

PS-EigenBg 0.944 0.658 0.855 0.781 0.958

as background. For eigenbackground methods, moreover, we
can also plot the ROC curve for each method under different
subtraction thresholds, and then calculate the area under the
ROC curve (AUC). Different with F-measure, AUC measures
the performance from different subtraction thresholds and then
calculates a single overall score. It should be noted that in our
experiments, 400 frames sampled from the TRECVID-SED
dataset (100 frames per view) and 100 frames from the Road
video dataset were manually labeled with the bounding boxes
of foreground objects.

B. Experimental Results

1) Experiment on the TRECVID-SED Data: The
TRECVID-SED corpus is recognized as one of the most
difficult indoor crowded video datasets, mainly due to heavy
occlusions and significant illumination changes in the clutter
scenes. Therefore, this experiment is to verify the performance
of the proposed method in this complex dataset.
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Fig. 12. Visualizing several backgrounds and subtraction results of different eigenbackground methods on the TRECVID-SED corpus. (a) Original frames.
(b) and (c) C-EigenBg. (d) and (e) BS-EigenBg. (f) and (g) PS-EigenBg

NVF
. (h) and (i) PS-EigenBg. Note that in this figure (and the following several

figures), the decimal below each subtraction result is the corresponding F-Measure.

We first compare the performance of different eigenback-
ground methods. Fig. 11 depicts their ROC curves, and the cor-
responding AUCs can be found in Table I. Moreover, Table II
also lists their F-measures under the adaptive subtraction
threshold. Not surprisingly, PS-EigenBg outperforms all other
eigenbackground methods remarkably, and even its simplified
version PS-EigenBg

NVF
can achieve higher AUCs and F-

measures than BS-EigenBg and C-EigenBg in most cases.
This indicates that the proposed three selective eigenback-
ground mechanisms, in particular selective training, can effec-
tively improve the performance of eigenbackground methods.
We also notice that AUCs of different eigenbackground meth-
ods in Camera 2 are much lower that those in other cameras.
This is because heavy occlusions exist almost in all training
frames of this camera, and even many foreground objects
remain nearly stationary in some areas (e.g., the seating area).
This makes the trained eigenbackgrounds full of foregrounds.
In particular, we find that AUC of PS-EigenBg

NVF
in this

camera is even lower than that of BS-EigenBg, despite their
F-Measures under the adaptive threshold are comparable.
This means that in a crowded scene with heavy occlusions,
we should explore more sophisticated methods to take into
account the correlation of neighboring pixels in the recon-
struction [e.g., using a scene-adaptive neighborhood in (18)].

Fig. 12 also visualizes some examples of their backgrounds
and subtraction results on this dataset. We first note that in
Camera 2, the quality of all these reconstructed backgrounds

TABLE II

F-Measures of Different Methods on the TRECVID-SED and

Road Video Datasets Using the Adaptive Subtraction

Threshold or the Optimal Parameter

Camera 1 Camera 2 Camera 3 Camera 5 Road
GMM 0.417 0.394 0.505 0.659 0.858

CodeBook 0.838 0.590 0.715 0.685 0.648
Bayes 0.638 0.166 0.492 0.637 0.669
PBAS 0.636 0.116 0.493 0.606 0.690
ViBe 0.790 0.282 0.590 0.599 0.792

C-EigenBg 0.769 0.681 0.711 0.686 0.802
BS-EigenBg 0.841 0.717 0.728 0.744 0.932

PS-EigenBg
NVF

0.852 0.715 0.779 0.733 0.943
PS-EigenBg 0.898 0.719 0.829 0.808 0.953

is totally low. This is consistent with the AUC and F-measure
results listed in Tables I and II. Without considering re-
sults in Camera 2, it is obvious that the backgrounds of
PS-EigenBg are much cleaner that those of the other methods,
consequently, leading to higher F-measures of its subtraction
results. For example, some obvious ghost can be found in Fig.
12(b), (d), and (f1), (f2). Although worse than PS-EigenBg,
the reconstructed backgrounds of PS-EigenBg

NVF
are still

slightly better than BS-EigenBg and much cleaner than
C-EigenBg. Accordingly, most of its subtraction results are
slightly better than those with BS-EigenBg [e.g., (e1) versus
(g1), (e2) versus (g2), (e5) versus (g5)], while some results
are worse [e.g., (e7) versus (g7)].
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Fig. 13. Visualizing several subtraction results of noneigenbackground methods on the TRECVID-SED corpus, together with PS-EigenBg and
PS-EigenBg

NVF
. (a) Original frames, (b) GMM, (c) Bayes, (d) Codebook, (e) PBAS, (f) ViBe, (g) PS-EigenBg

NVF
, and (h) PS-EigenBg.

Fig. 14. Processing frames per second of various eigenbackground methods
given different numbers of training frames.

We also compare the performance of PS-EigenBg and
PS-EigenBg

NVF
with five noneigenbackground methods, in-

cluding GMM [9], Bayes [12], Codebook [18], PBAS [32],
and ViBe [33]. We can find their F-measures in Table II under
the corresponding optimal parameters, and some subtraction
results in Fig. 13. Among them, Codebook shows a superior
performance on this dataset (in particular on Camera 2),
mainly due to the introduction of offline codebook training;
Bayes and PBAS have very poor performance on all cameras
in this dataset, exhibiting their inability to deal with the
background modeling task in complex crowded scenes; in
contrast, Vibe shows the medium performance on Cameras
1 and 3, while GMM also achieves the medium performance
on Cameras 2 and 5. Totally speaking, although seems slightly
unfair since PS-EigenBg is built on one of them (i.e., GMM),
this comparison can validate a definite conclusion that these
noneigenbackground methods do not work well on the com-
plex crowded scenes.

In addition, Fig. 14 shows the processing frames per sec-
ond Fps for different eigenbackground methods when given
different numbers of training frames, on a four-core PC with
3.1 GHz CPU and 3 GB RAM. From the figure, we can see

that the Fps of C-EigenBg, PS-EigenBg
NVF

, and PS-EigenBg
all decrease to zero when the number of training frames is
more than 300. In this case, the calculation is out of memory
since they all perform eigendecomposition (i.e., Batch PCA)
on the whole frame. When given less than 300 training frames,
the training efficiency of PS-EigenBg is slightly lower than
C-EigenBg and PS-EigenBg

NVF
, mainly due to the additional

computation of virtual frame construction. We also notice that
BS-EigenBg can be trained efficiently even with 500 training
frames. This is because partitioning a whole frame into several
blocks can effectively reduce the computational complexity
during the computation of co-covariance matrix and eigen-
decomposition. Moreover, if these blocks are processed in
parallel, the training efficiency of BS-EigenBg should go
up by several times. The experimental results show that our
algorithm does not increase the computational complexity
significantly in the training stage.

For subtraction, the average processing efficiency of
PS-EigenBg and PS-EigenBgNVF is 3–4 Fps, slightly lower
than that of C-EigenBg (4–5 Fps). The most time-consuming
part of these eigenbackground methods is the online com-
putation of CCIPCA; in contrast, online virtual frame con-
struction and pixel-level optimal eigenbackground selection
only takes less than 10% computation of PS-EigenBg. If
without performing online update with CCIPCA, the average
processing efficiency of PS-EigenBg will be up to 9–10 Fps.
Thus, in order to deal with the real-time applications, some
optimization techniques such as multithread or multiprocess
programming should be used.

2) Experiment on the Road Data: Different with the
TRECVID-SED corpus, the Road video dataset represents
another typical scene from an outdoor, high-traffic crossroad
surveillance system. Thus, this experiment is to evaluate the
performance of the proposed method in this outdoor scene
with crowded vehicles.

AUCs and F-measures of different methods on this
dataset can be found in Tables I and II, respectively. For
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Fig. 15. Visualizing several backgrounds and subtraction results of different eigenbackground methods on the Road video corpus. (a) Original frames.
(b) and (c) C-EigenBg. (d) and (e) BS-EigenBg. (f) and (g) PS-EigenBg

NVF
. (h) and (i) PS-EigenBg.

Fig. 17. Visualizing several subtraction results of noneigenbackground methods, together with PS-EigenBg and PS-EigenBg
NVF

on the Road video corpus.
(a) Original frames. (b) GMM. (c) Bayes. (d) Codebook. (e) PBAS. (f) ViBe. (g) PS-EigenBg

NVF
. (h) PS-EigenBg.

Fig. 16. ROC curves of different eigenbackground methods on the Road
video dataset.

eigenbackground methods, Fig. 15 shows several examples of
backgrounds and subtraction results, and Fig. 16 illustrates the
corresponding ROC curves. From these results, we can see
that PS-EigenBg, PS-EigenBg

NVF
, and BS-EigenBg all can

achieve very good performance. In addition, the performance
gap among them becomes less insignificant since more clean
frames can be found in this dataset. In Fig. 15, despite there

still exist some nonsalient ghost effects, the reconstructed
backgrounds of PS-EigenBg

NVF
and BS-EigenBg, even some

backgrounds of C-EigenBg, are visually very close to those
of PS-EigenBg.

Fig. 17 also shows several subtraction results of noneigen-
background methods. We can see that GMM shows very
good performance on this dataset, with F-measure of 0.858;
Vibe also exhibits a comparable performance, with F-measure
of 0.792. In some cases [e.g., Fig. 17 (b1) and (b3)], the
background subtraction results of GMM are even better
than those of PS-EigenBg. This is because there are some
holes near the windows of the cars in the detection results
of PS-EigenBg

NVF
or PS-EigenBg (also by C-EigenBg or

BS-EigenBg). Thus, we should utilize a postprocessing step
to address this “window hole” problem for eigenbackground
methods.

V. Conclusion

This paper proposed a selective eigenbackground mod-
eling and subtraction method that could keep robust in
crowded scenes. Three selectivity mechanisms were integrated
in our methods, including selective training, selective model
initialization, and pixel-level selective reconstruction. Using
these mechanisms, our method could significantly increase the
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purity of the trained eigenbackgrounds and could obtain an
improved quality of the reconstructed background image, con-
sequently, lead to a better subtraction performance in crowded
scenes. Extensive experiments on the TRECVID-SED and
Road video datasets showed that our method outperformed
several eigenbackground and noneigenbackground methods
remarkably. Nevertheless, there are still much room to im-
proving the proposed method on the very crowded scenes such
as Camera 2 of the TRECVID-SED dataset. Meanwhile, the
residual shadows and window holes should also be addressed
in the future work.
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