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Abstract 

In this paper, we propose a novel method with the multi-view Bayesian network 

(MBN) model to detect pedestrians from multi-camera surveillance videos. In our 
method, the ground plane is discretized in a predefined set of locations and our aim is 

to estimate the occupancy probability of each location that can be then used to predict 

the occurrence of pedestrians. To reduce the possible phantoms, we use MBN to 

model the potential occlusion relationship of all locations in all views, and the “sub-

jective supposing” node states (SSNS) as a set of Boolean parameters of MBN to de-
note whether a pedestrian occurs at the corresponding location. Thus a learning algo-

rithm is proposed to estimate the SSNS parameters, by finding such a configuration 

that the final occupancy possibility  can best explain the image observations (i.e.,  

foreground masks) from different views. The experimental results on the APIDIS and 

PETS09 S2L1 benchmark datasets show that our method can obtain at least 10% per-
formance gain compared with several state-of-the-art algorithms. 

1 Introduction 

In recent years, more and more cameras are widely  deployed for video  surveillance in  a 

cooperative manner. In such scenarios, multip le-pedestrian detection has become an  essen-

tial technology for many applications such as  crowd behaviour analysis . Often, occlusions 

among pedestrians will complicate the detection process and make it d ifficult for the sys-

tem to accurately  detect the pedestrians after heavy occlusion. In this sense, the availability 

of multi-view information will make pedestrian detection easier and more accurate. 

To explo it mult i-v iew information for pedestrian detection in multi-camera surveillance 

video, we should estimate the occupancy possibility of each location in each view and in-

tegrate the possibilit ies of all views together to obtain the final occupancy possibility  on 

the ground plane, which could then be used to predict the occurrence of a pedestrian in this 

location. Towards this end, Sankaranarayanan et al. [2] p resented a general framework to 

utilize the geometric constraints  (e.g., intersecting the view lines from multi-cameras on 

the ground plane) for object detection and tracking. In  practice, their approach can y ield  

satisfying results when people are well-separated in multiple v iews. However, if there are 

heavy occlusions among people, it will generate many “phantom” phenomena in the multi-
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view pro jection due to the intersections of viewing rays at locations that are not occupied 

by any pedestrian (as shown in Figure 1(a)) [6]. 

To address this problem, we first classify the phantoms in a single view into two cate-

gories. The first-class phantoms are those who occlude some pedestrians (e.g., the left  one 

in Figure 1(b)). Often, the phantoms of this kind are generated due to the projection of in-

accurate foreground extraction results on the ground plane. In this case, if these phantoms 

are direct ly treated as detection results, the matching degree with the foreground masks 

should be much less than the pedestrians which are occluded by them. In order to reduce 

the first-class phantoms in the multi-view pro jection, the key point is to make the detection 

results best match the foreground masks using the occlusion relationship among phantoms 

and pedestrians. On the other hand, the second-class phantoms denote those that are oc-

cluded by pedestrians , despite they can also match the foreground masks well (e.g., the 

right one in Figure  1(b)). The reason for generating the phantoms of this kind is usually  

due to the non-invertible mapping from 3D world coordinates to 2D image coordinates. 

These phantoms always be occluded by pedestrians mostly. Thus to reduce the second-

class phantoms, we need to estimate the non-occluded parts for each phantom. 

By summarizing the two cases above, we can conclude that the key problem to reduce 

the possible phantoms in the multi-view project ion is to effectively model and utilize the 

occlusion relationship among potential pedestrians at different locations in all views. It is 

notable that a 1
st

 phantom in  one view may be the 2
nd

 phantom in another view and vice 

versa. Considering it, a mult i-v iew Bayesian network (MBN) is proposed in this paper. In 

general, a  MBN is constructed with the locations on the ground plane and several single 

Bayesian networks (SBNs), where each SBN is used to characterize the potential occlusion 

relationship of all locations  in a single view, while the locations on the ground plane is 

used to establish the correspondence among all SBNs through the geometric constraints 

among cameras (See Figure 2). Moreover, we also model the “subjective supposing” node 

states (SSNS) as a set of Boolean parameters of MBN, which are then used to denote 

whether a pedestrian occurs at the locations. To calculate the occupancy possibility of a 

location, we can estimate the part of the pedestrian at this location which are not occluded 

by other pedestrians using SSNS. A learning algorithm is then proposed to estimate the 

SSNS parameters of the MBN, by finding such a configuration that the final occupancy 

possibility can best explain the image observations (i.e., foreground masks) from different 

views. The overall framework of our method is shown in Figure 2. 

V5

V6V5 V5

V6 V6

 
(a) 

 
(b) 

Figure 1: (a) An example of phantoms: locations (red circles) are occupied by phan-

toms and locations (green circles) are occupied by pedestrians; (b) The first-class 

(left) and second-class (right) phantoms, where the red ones denote phantoms. 

In our method, two classes of phantoms can be effectively handled: For a first-class 

phantom, the real locations occluded by it will have a small occupancy possibility during 

the inference of MBN, consequently making the final occupancy possibility not explain the 
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foreground mask well. While for a second-class phantom, since its most parts are occluded 

by real locations (which can be judged through SSNS), its final occupancy possibility will 

also be small during the inference of MBN. In both cases, the phantom will not be treated 

as a pedestrian after the SSNS learning process. 

We evaluate our method on two challenging benchmark datasets for multi-v iew pedes-

trian detection, namely, the APIDIS and PETS09 S2L1 datasets. The experimental results 

show that our method can obtain at least 10% performance improvement compared with 

several state-of-the-art algorithms. 

Our contributions can be summarised as follows: 

1. A MBN model, together with SSNS, is proposed to characterize the occlusion rela-

tionship among pedestrians at different locations in all views. Using this model, two clas-

ses of phantoms can be effectively processed. 

      2. A learning algorithm is developed to estimate the SSNS parameters  by finding such 

a configuration that the final occupancy possibility can best explain the image observations 

(i.e., foreground masks) from different views. 

The rest of the paper is organized as follows: Some related works are simply reviewed  

in section 2. Sect ion 3 presents the MBN model. Section 4 describes the learning method 

for MBN. Section 5 shows our experiment results in PETS2009 S2L1 and APIDIS datasets. 

Finally, Section 6 concludes the paper.  

2 Related work 

Pedestrian detection plays an important role in many computer vision applications. In last 

decades, monocular approaches for detection and tracking have made a great progress. An 

extensive review of state-of-the-art single camera methods  has been given in [1]. However, 

monocular approaches often suffer poor performance in the occlusion scenes, main ly due 

to insufficient information available from a single camera . In such scenes, multi-views 

approaches have a great advantage, since some geometric  constraints of real world, such as 

the presence of the ground plane and the mapping between the 3D real-world with camera 

views, can provide some useful information for multi-view approaches [2].  
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Figure 2. The framework of our method 

In [3], Eshel and Moses placed the cameras at a  high  elevation and synthetized head 

informat ion through multi-view fusion to avoid occlusion. It was capable of tracking up  to 
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twenty people walking in  a s mall area. However, their method seems inadequate for 

handling the field views near a low elevation. Using the holography map, Khan and Shah 

[4], and Arsíc et al. [5] utilized multi-view foreground fusion to localize pedestrians on 

multip le parallel p lanes. Among them, Khan and Shah [4] removed some phantoms by 

some prior geometry assumption, while Arsíc et  al. [5] utilized temporary informat ion to 

omit the phantoms. Nevertheless, the two methods are both sensitive to some foreground 

informat ion in  some cases. For example, if the fo reground informat ion doesn’t include 

pedestrians’ feet, pedestrian localization will be failed.  

The MPP model [7], which was originally  developed to detect and count crowds in a 

single view, has been promoted from 2D individual camera views to 3D real-world space 

[6][8]. A mong them, Ge and Collins [6] handled phantoms through “sliding” the detection 

results in depth along a viewing ray. Fleuret. et al. p roposed a probabilistic occupancy map  

to detect target from multi-view video in [9][10]. Alah i [11] formulated mult i-view 

pedestrian detection as an inverse problem of deducing an occupancy vector from the noisy 

binary silhouettes observed as foreground pixels in each camera. These methods both aim 

to use the different optimization models to best explain the foreground. Compared with 

them, our method focuses on modelling and utilizing the potential occlusion relationship in  

the optimization process. This makes our model d iscriminate the phantoms and the 

pedestrians more effectively.  

In [14], Mittal and Davis modelled the appearance (colour) and locations of pedestrians 

for segmentation from multip le camera views. These features are indeed helpful for the 

separation of foreground regions belonging to different objects. The similar assumption is 

also used in this paper. However, d ifferent with [14], our method does not utilize any prior 

knowledge such as the number of pedestrians and the occlusion relationships among 

pedestrians from temporary informat ion. This makes our method generalizab le to a wide 

range of surveillance applications where the number of pedestrians  is unknown in advance. 

3 The MBN Model 

Our system focuses on the surveillance video in which multip le calibrated and fixed  

cameras monitor the same area simultaneously. Specifically, the monitored area is divided 

as a grid of n locations. For a given location i on the ground plane, we generate a rectangle 

of roughly the same size and aspect ratio as the motion blob that a pedestrian standing at 

location i in v iew k  (denoted by   
 ). Our goal here is to estimate the occupancy probability 

of each location, which can then be used to predict the occurrence of a pedestrian at this 

location. Before modelling, we use the RSS project ion method proposed in [11] to omit  

some locations where are occupied by pedestrians impossibly. It  is a  useful pre-processing 

step to reduce much computation cost, though this method will also choose some locations 

which are actually  occupied by pedestrians or phantoms. Some symbols in our method are 

listed in Table 1. 

            The locations on the ground plane  

n The number of locations on the ground plane  

   The Boolean  random variable standing for the presence of an  

pedestrian at location i. 

  
  The rectangle corresponding to location i in camera k  

  
  The Boolean  random variable standing for the presence of an  

pedestrian at   
  from view k  
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   The set of ancestor nodes of   

  in SBN k . 

            The set of cameras used in our system 

K The number of cameras in our system 

            The set of SSNS for all locations  

            The set of images from background subtraction in all cameras 

     The number of pixels in    . 

       The pixel whose image coordinate is (w, h) in camera k . 

Table 1. Some symbols used in our method 

3.1 Bayesian network in a single camera (SBN) 

On the ground plane,          are independent from each other. However, in a single 

camera v iew, a pedestrian may be occluded by others. Here, we built a  single camera 

Bayesian network (SBN) for each camera  to ind icate the potential occlusion relationship in  

a single view. Then a SBN is constructed, where   
  is the i

th
 node in SBN k , and   

  is a  

parent node of   
  in SBN k  if   

  occludes   
  in camera k  (including the part occlusion  

case). Figure 3(a) show an example of SBN. Based on the SBN, we have 
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where   
        and                  . An typical example of Eq. (2) is shown in 

Figure 3(b), the occupancy possibility of    
  is influenced by the state of    

 . If    
  is 

treated as a real person, the occupancy possibility of    
  is 0, otherwise, it will be 1.
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Figure 3. (a) The left  is the foreground information from a single view with four candidate 

locations, and the right is its corresponding SBN. (b)  A typical example of Eq. (2) where  
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3.2 The Multi-view Bayesian network (MBN) 

In order to estimate the occupancy possibility        , we integrate all SBNs together as a 

multi-view Bayesian network (MBN). In fact,   
  corresponds to     in camera k , that is, 

       
      

  . Hence, we have 

         
1 1

|
K K

i

k k

k

k i k k iX P PP P C X C P C R
 

   ,                     (3) 

where       is the weight value of camera k  (    
      in our experiments).   

Considering       terms in the summation formula Eq. (1), Eq. (3) is a NP-hard problem, 

if there is no prior knowledge about the presentence of pedestrians. In order to cope with 

this difficulty, we further introduce a set of independent Boolean variable              , 
which is called “subjective supposing” nodes state for MBN, where      indicates whether 

the location     is occupied by a pedestrian.  

Based on MBN with SSNS, the total probability is calculated by 
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Then we can easily derive some Bayesian properties on MBN: 

1)    and   
                 are independent with each other; 

2)    is the stationary state of     and   
 , thus 
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Hence, Eq. (4) is equal to 
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This can be further simplified as 

      
1
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Combin ing Eq. (7) and Eq. (2), we can estimate the occupancy possibility for each location 

on the ground plane if SSNS have been known.  

4 MBN Learning  

This section introduces  our learn ing method of SSNS to best exp lain  the image observa-

tions (i.e., foreground masks) from different views. Without loss of generality, suppose 

pixel        belongs to {  
 }. In  the ideal situation, foreground pixels all come from the 

pedestrians and pedestrians only appear in the foreground area in each view. With this as-

sumption, we define the loss function        to each foreground pixel        in camera 

k , which quantifies the difference between the final result s estimated from Eq . (7) and the 

ideal situation to pixel       . 
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Given the occupancy probability of all locations on the ground plane estimated from Eq. 

(7), we model the conditional probability     
      of the image observations in camera k  

with the loss function: 
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              is the weight value of pixel       . Note that          are different for 

foreground and background pixels in our experiments. We suppose various background 

subtraction images from different v iews are independent from each other, so the likelihood 

function is defined as follow 

         

      1

1

, ln | , ln( | , ) ,   

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K

k

k

F P D X P D X   (10) 

where            . In order to make         
  generalizable well to the view observa-

tion, we have the following optimization problem  

 1 1
, argmax ( , ),     

n n
F                   (11) 

                 . Eq. (11) gives the exact discrete formulation of the optimizat ion of 

the likelihood function. It is a NP-hard problem because     has a discrete constraint 

         . As in the combinatorial optimization, we relax this discrete formulation to the 

continuous domain. Typically, here  a set of auxiliary, real-valued, and continuous variable  

                are used to replace the original discrete variable               with 

the sigmoid function 

  
1

, 
1 exp( )

, . 



 

  
i i

i
  

              (12) 

Thus, from Eq. (12), we obtain the following continuous formulation  

 
1 1
, ( ,= argm )ax    

n n
F .   (13) 

It is obvious that            is a derivable function. But it is difficult to derive its 

gradient formulation. Fortunately, we can get the value of gradient from Eq. (14) approxi-

mately  

          

   Δ

Δ

i i i

i i

F FF   

 

 



.                                 (14) 

In the following, we use     to denote the gradient vector. Then our algorithm for Eq. (13)  

is summarized in Alg.1. 

Alg.1 

1. Given          , initialize       
   ,t=0; 

3. while |
     

  

|    do 
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t=t+1 

end  

4 return          
  

Finally, putting   into Eq. (2) and Eq. (7) to replace  , we can get the final result       
    .  

Figure 4 illustrates an example of the learn ing process. In our experiments, Alg.1 will 

terminate mostly after 15~25 iterations . The processing time of our method is about 3s per 

frame on a PC with 3.1 GHz CPU and 4 GB memory. 

   
(a)                                                                  (b) 

Figure 4. An example o f the iterative process of Alg. 1 on a single frame. (a). From the top 

row to the end row, there are detection results after 1, 6, 11, 16 iterations of Alg. 1. The 

locations with a higher probability have a darker rectangle to correspond.  At the 1
st

 itera-

tion, every location has a similar occupancy possibility. In the fo llowing iterations, the 

results can be distinguished clearly. The white rectangles stand for phantoms, and the black 

ones stands for pedestrians.  (b). The curve of the likelihood function      under the itera-

tions. The horizontal axis stands for the number of iterations of Alg.1. 

5 Experiments 

5.1 implementation  

We generated foreground masks using an adaptive background subtraction algorithm [18]. 

For Eq. (9), the weight values of foreground and background pixels are equal to 2 and 1, 

respectively. When calculating the gradient using Eq. (14), the step size     is set to      . 

For Alg.1, we assign the terminate threshold as         

5.2 Experiments results 

We evaluated our method on the PETS2009 S2L1 and APIDIS datasets  and used MODA 

and MODP [16] as the evaluation metrics. Usually, MODP measures the localizat ion 

quality of the correct detections, while MODA measures the detection accuracy by taking 

into account both false and true correspondence. For comparison with state-of-the-art re-

sults in recent literature, we also uses the precision and recall measures calculated by the 
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ratios TP/(TP + FP) and TP/(TP +FN), where TP, FP and FN are the numbers of True 

Positive, False Positive and False Negative, respectively. Note that a true positive is count-

ed only when a  person is correctly located on the ground plane [11]. For all metrics, the 

larger their values, the better the performance. Several sample detection results for both 

datasets are shown in Figure 5(a) and (c). 

PETS2009 S2L1 dataset. PETS2009 S2L1 dataset contains seven outdoor sequences 

from seven cameras, with 795 frames per every sequence. It is widely recognized that this 

dataset is a popular yet challenging benchmark dataset for multi-view pedestrian detection. 

In our experiments, we used four camera v iews (view 1,5,6,8) and compared our detection 

results with POM [10], which is one of the top-performers in W inter-PETS2009 [15] (the 

evaluation results of POM on the PETS09 S2L1 dataset come from [6]). We also compare 

our method with the method in [6], one of the latest results on this dataset. These experi-

mental results show that our method obtains a much better performance both in  terms of 

MODA and MODP. In addition, the Recall and Precision of our method are equal to 91% 

and 92%, respectively. 

 

 Camera 1 Camera 5 Camera 6 Camera 8 

MODA MODP MODA MODP MODA MODP MODA MODP 

Ours 0.7931 0.7404 0.8183 0.7026 0.8392 0.7054 0.7812 0.6989 

Wu.G[6] 0.7532 0.6805 0.6998 0.6872 0.8162 0.6953 0.6941 0.7004 

POM [10] -0.1037 0.5806 0.2630 0.6071 0.3354 0.6467 0.2188 0.6344 

Table 2:  MODP and MODA in each view of PETS2009 S2L1, at an overlap threshold of 

0.5  

APIDIS dataset. APIDIS dataset contains seven cameras monitoring a basketball 

game. Compared with PETS09 S2L1 dataset, APIDIS dataset is more complex, such as 

more frequent severe collusions, non-standard standing gesture, the reflect ion of the 

players on the floor and strong shadows. Like [11], we tested our algorithm in camera 

1,2,4,7 on the left-half of the basketball court. In this settings, we compared our method 

with POM [10] and Alah i [11], where the evaluation results of POM on the APIDIS 

dataset come from [11]. As far as our knowledge, Alahi [11] is the latest results on the 

APIDIS dataset. Note that since the work [11] does not provide the evaluation results  in  

terms of MODA  and MODP, we only compare their results in terms of Precision and 

Recall. Our method also performs very well on the APIDIS dataset, although there many 

noises present in the foreground (as shown in Figure 5(b)). 

 Camera 1 Camera 2 Camera 4 Camera 7 

MODA MODP MODA MODP MODA MODP MODA MODP 

Ours 0.77 0.67 0.75 0.66 0.78 0.67 0.74 0.75 

(a) 
 Recall  Precision  

Ours 0.84 0.90 

Alahi A [11] 0.69 0.90 

POM [10] 0.63 0.51 

(b) 

Table 3: (a) MODP and MODA in each view of APIDIS, at an overlap threshold of 0.5. (b) 

Recall and Precision evaluation results.  

It is interesting to note that our method can obtain the best performance even though 

we do not use any temporal information or post-processing on a single view. This is 

because by using MBN with SSNS, we can reduce the influence of phantoms effectively. 
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Note that the parameters in the experiments keep constantly on two different datasets . This 

makes our method applicable in different surveillance scenes. 

However, it  is notable that the performances of our method in PETS view 1 and 8 are 

not as good as view 5 and 6. The reason is main ly because the presence of a slope in the 

scene makes homograph mapping not work well. Some examples of failure detection 

results are shown in  Figure 5(d). In fact, the MODA of our method in  camera 1 will be up 

to 0.84 if the slope area is ignored.  

6 Conclusion 

In this paper, we present a novel method that utilizes the multi-view Bayesian network 

(MBN) model to detect pedestrians from multi-view surveillance videos. Using MBN, our 

method can discriminate phantoms and pedestrian well. The experimental results on two 

challenging benchmark datasets demonstrate the effectiveness of our method compared  

with three state-of-the-art methods.  
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Figure 5. Some detection results on PETS09 S2L1 and APIDIS datasets. (a) Sample detec-

tion result on the PETS09 S2L1 dataset. (b) and (c) An example for the foreground infor-

mat ion and detection results on the APIDIS dataset. (d) A failure case due to the presence 

of the slope (black circle in view 1 and view 8).  
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