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Abstract—Speech emotion recognition is challenging because
of the affective gap between the subjective emotions and
low-level features. Integrating multilevel feature learning and
model training, deep convolutional neural networks (DCNN) has
exhibited remarkable success in bridging the semantic gap in
visual tasks like image classification, object detection. This paper
explores how to utilize a DCNN to bridge the affective gap in
speech signals. To this end, we first extract three channels of log
Mel-spectrograms (static, delta, and delta delta) similar to the
red, green, blue (RGB) image representation as the DCNN input.
Then, the AlexNet DCNN model pretrained on the large ImageNet
dataset is employed to learn high-level feature representations on
each segment divided from an utterance. The learned segment-
level features are aggregated by a discriminant temporal pyramid
matching (DTPM) strategy. DTPM combines temporal pyramid
matching and optimal Lp-norm pooling to form a global utterance-
level feature representation, followed by the linear support vector
machines for emotion classification. Experimental results on four
public datasets, that is, EMO-DB, RML, eNTERFACE05, and
BAUM-1s, show the promising performance of our DCNN model
and the DTPM strategy. Another interesting finding is that
the DCNN model pretrained for image applications performs
reasonably good in affective speech feature extraction. Further
fine tuning on the target emotional speech datasets substantially
promotes recognition performance.

Index Terms—Speech emotion recognition, feature learning,
deep convolutional neural network, discriminant temporal
pyramid matching, Lp-norm pooling.
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I. INTRODUCTION

S PEECH signals, as one of the most natural media of hu-
man communication, not only carry the explicit linguistic

contents but also contain the implicit paralinguistic informa-
tion about the speakers. During the last two decades, enormous
efforts have been devoted to developing methods for automat-
ically identifying human emotions from speech signals, which
is called speech emotion recognition. At present, speech emo-
tion recognition has become an attractive research topic in signal
processing, pattern recognition, artificial intelligence, and so on,
due to its importance in human-machine interactions [1], [2].

Feature extraction is a critical step to bridge the affective
gap between speech signals and the subjective emotions. So far,
a variety of hand-designed features have been used for speech
emotion recognition [3]–[5]. However, these hand-designed fea-
tures are usually low-level, they may hence not be discriminative
enough to depict the subjective emotions. It is needed to develop
automatic feature learning algorithms to extract high-level af-
fective feature representations for speech emotion recognition.

To address this issue, the newly-emerged deep learning tech-
niques [6] provide a possible solution. Among them, two typical
deep leaning methods are Deep Neural Networks (DNN) [6],
and Deep Convolutional Neural Networks (DCNN) [7]. Here,
a DCNN is taken as a deep extension of the conventional Con-
volutional Neural Networks (CNN) [8]. Recently, deep learning
techniques have been employed to automatically learn high-
level feature representations from low-level data in tasks like
speech recognition [9], image classification and understanding
[7], [10], object detection [11]. As far as speech emotion recog-
nition is concerned, one of the early-used deep learning methods
is the DNN method. For instance, in [12], [13] a DNN is used
to learn high-level feature representations from the extracted
low-level acoustic features for emotion classification.

In recent years, several works [14]–[17] have successfully em-
ployed CNNs for feature learning in speech signal processing. In
[14], a 1-layer CNN is adopted to obtain promising performance
for speech recognition. In [15], [16], the authors also employ
a 1-layer CNN trained with a Sparse Auto-encoder (SAE) to
extract affective features for speech emotion recognition. Re-
cently, Trigeorgis et al., [17] presents an end-to-end speech
emotion recognition system by combining a 2-layer CNN with
a Long Short-Term Memory (LSTM) [18]. Note that they em-
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Fig. 1. An overview of the proposed speech emotion recognition framework using DCNNs and DTPM: (1) Three channels of log Mel-spectrograms (static, delta
and delta-delta) are extracted and divided into N overlapping segments as the DCNN input. (2) A DCNN model is employed for automatic feature learning on each
segment to generate segment-level features. (3) A DTPM scheme is designed to concatenate the learned segment-level features to form a global utterance-level
feature representation. (4) With utterance-level features, a linear SVM classifier is employed to predict utterance-level emotions.

ploy 1-D convolution, such as frequency convolution [14]–[16]
or time convolution [17], rather than 2-D convolution widely
used in DCNN models [7], [10]. Additionally, these used 1-
layer or 2-layer CNNs are much shallower compared with the
deep structures in DCNN models [7], [10]. Accordingly, they
may could not effectively learn affective features discriminative
enough to distinguish the subjective emotions.

It has been recently found that, with deep multi-level convo-
lutional and pooling layers, DCNNs usually exhibit much better
performance than the shallow CNNs in computer vision [19],
[20]. This is reasonable because the deep structures of DCNNs
can effectively model the hierarchical architecture of informa-
tion processing in the primate visual perception system [7], [10].
Motivated by the promising performance of deep models, this
work aims to employ DCNNs to develop an effective speech
emotion recognition system.

The success of DCNNs in visual tasks motivates us to test
DCNNs in speech emotion recognition. To achieve this, three
issues need to be addressed. First, a proper speech representa-
tion should be designed as the DCNN input. Previous works
[14]–[17] have employed 1-D speech signals as the CNN in-
puts, and 1-D convolution is adopted for CNNs. Compared with
1-D convolution, 2-D convolution involves more parameters
to capture more detailed temporal-frequency correlations, thus
is potential to present stronger feature learning ability. There-
fore, it is important to convert 1-D speech signals into suitable
2-D representations as the DCNN input. Second, most existing
emotional speech datasets [3]–[5] contain limited numbers of
samples. They are not sufficient enough to train deep models
having a large amount of parameters. Finally, speech signals
may have variant time of duration but the DCNN models re-
quire fixed input size. It is hence easier to design the DCNN
models for speech segments with a fixed length, rather than for
the global utterance. Therefore, proper pooling strategies are
needed to generate a global utterance-level feature representa-
tion based on the segment-level features learned by DCNNs.

In this paper, we use deep features learned by DCNNs [7] and
propose a Discriminant Temporal Pyramid Matching (DTPM)
algorithm to pool deep features for speech emotion recognition.
As illustrated in Fig. 1, three channels of log Mel-spectrograms
(static, delta and delta-delta) are extracted as the DCNN input.
The DCNN models are trained to produce deep features for each
segment. The DTPM pools the learned segment-level features
into a global utterance-level feature representation, followed
by the linear SVM emotion classifier. Extensive experiments on
four public datasets, i.e., the Berlin dataset of German emotional
speech (EMO-DB) [21], the RML audio-visual dataset [22], the
eNTERFACE05 audio-visual dataset [23], and the BAUM-1s
dataset [24], demonstrate the promising performance of our
proposed method.

The main contributions of this paper can be summarized as:
1) We propose to use three channels of log Mel-spectrograms

generated from the original 1-D utterances as the DCNN
input. This input is similar to the red, green, blue (RGB)
image representation, thus makes it possible to use ex-
isting DCNNs pre-trained on image datasets for affective
feature extraction.

2) The proposed DTPM strategy combines temporal pyra-
mid matching and optimal Lp-norm pooling to generate a
discriminative utterance-level feature representation from
segment-level features learned by DCNNs.

3) We find that the DCNN model pre-trained for image ap-
plications performs reasonably good in affective feature
extraction. A further fine-tuning on target speech emotion
recognition tasks substantially promotes the recognition
performance.

The rest of this paper is structured as follows. The re-
lated works are reviewed in Section II. Section III describes
our DCNN model for affective feature extraction. Section IV
presents the details of our DTPM scheme. Section V describes
and analyzes the experimental results. Section VI provides dis-
cussions, followed by the conclusions in Section VII.
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II. RELATED WORK

Generally, feature extraction and emotion classification are
two key steps in speech emotion recognition. In this section, we
first briefly review emotion classifiers and then focus on feature
extraction since it is more relevant to our work.

A. Emotion Classifier

For emotion classification various machine learning algo-
rithms have been utilized to constitute a good classifier to
distinguish the underlying emotion categories. Early emotion
classifiers contain K-Nearest-Neighbor (KNN) [25] and Artifi-
cial Neural Network (ANN) [26]. Then, a number of statisti-
cal pattern recognition approaches, such as Gaussian Mixture
Model (GMM) [27], Hidden Markov Models (HMM) [28], and
SVM [29], are widely adopted for speech emotion recognition.
Recently, some advanced classifiers based on sparse representa-
tion [30], [31] have also been studied. Nevertheless, each clas-
sifier has its own advantages and disadvantages. To integrate
the merits of different classifiers, ensembles of multiple clas-
sifiers have been investigated for speech emotion recognition
[32], [33].

B. Feature Extraction

Affective speech features widely used for emotion recog-
nition can be roughly divided into four categories: 1) acoustic
features [34], [35], 2) language features, such as lexical informa-
tion [36], [37], 3) context information, such as subject, gender,
culture influences [38], [39], 4) hybrid features [36], [40], such
as the integration of two or three features above-mentioned.

Acoustic features, as one of the most popular affective fea-
tures, mainly contain prosody features, voice quality features,
and spectral features [34], [35]. Pitch, loudness, and duration
are commonly used as prosody features [41], since they express
the stress and intonation patterns of spoken language. Voice
quality features, as the characteristic auditory colouring of an
individual voice, have been shown to be discriminative in ex-
pressing positive or negative emotions [42]. The widely used
voice quality features are the first three formants (F1, F2, F3),
spectral energy distribution, harmonics-to-noise-ratio, pitch ir-
regularity (jitter), amplitude irregularity (shimmer), and so on.
Combining prosody features and voice quality features shows
better performance than using prosody features alone [43], [44].
In recent years, glottal features [45] and voice source parameters
[46] have been used as more advanced voice quality features for
speech emotion recognition. The third typical acoustic features
are spectral features, computed from the short-term power spec-
trum of sound, such as Linear Prediction Cepstral Coefficients
(LPCC), Log Frequency Power Coefficients (LFPC) and Mel-
frequency Cepstral Coefficients (MFCC). Among them, MFCC
is the most popular spectral feature, since it is able to model
the human auditory perception system. In recent years, modula-
tion spectral features [47] from an auditory-inspired long-term
spectro-temporal representation, and weighted spectral features
[48] based on local Hu moments, have also been studied. In ad-
dition, the newly-developed Geneva minimalistic acoustic pa-
rameter set (GeMAPS) [5], such as frequency, energy, spectral

related features, has shown promising performance in speech
emotion recognition.

Language features, which are computed based on the verbal
contents of speech, are another important representation con-
veying emotion information. Note that, language features are
usually combined with acoustic features for speech emotion
recognition [36], [37]. In [37], language features are extracted
with the bag of n-gram and character n-gram approaches. Then
the linguistic features are combined with acoustic features to
predict dimensional emotions in a 3-D continuous space. In
[36], by computing the weight of every word, a four-dimensional
emotion lexicon for four emotion classes, i.e., anger, joy, sad-
ness and neutral, are obtained. Then, integrating these feature
representations via early fusion and late fusion is employed for
speech emotion recognition.

Context information has also been investigated in recent lit-
eratures [38], [39] for emotion recognition. In [38], the authors
present a context analysis of subject and text on speech emo-
tion recognition, and find that gender-based context informa-
tion enhances recognition performance. In [39], the influences
of cultural information on speech emotion recognition are ex-
plored. The authors claim that intra-cultural and multi-cultural
emotion recognition paradigms give better performance than
cross-cultural recognition.

Note that, since these hand-designed features mentioned
above are low-level, they may not be discriminative enough
to identify the subjective emotions. To tackle this issue, it may
be feasible to employ deep learning techniques to automatically
learn high-level affective features for speech emotion recogni-
tion.

III. DCNNS FOR AFFECTIVE FEATURE EXTRACTION

To utilize DCNNs in speech emotion recognition, three prob-
lems should be addressed. First, the DCNN input should be
properly computed from 1-D speech signals. Second, DCNN’s
training requires a large amount of labeled data. Third, a feature
pooling strategy is required to generate the global utterance-
level feature representation from the DCNN outputs on local
segments. In this section, we present the details of how the first
two problems are addressed.

Fig. 2 illustrates the framework for affective feature ex-
traction. From the original 1-D utterance, we first extract the
static 2-D log Mel-spectrogram and then reorganize it into
three channels of log Mel-spectrograms (static, delta and
delta-delta). For data augmentation, the log Mel-spectrogram
extracted from an utterance is divided into a certain number
of overlapping segments as the DCNN input. More details
about data augmentation can be found in Section V-B. Then
the AlexNet DCNN model [7] pre-trained on the large-scale
ImageNet dataset is employed to perform fine-tuning tasks for
affective feature extraction. We present more details of the two
steps in the following two sections.

A. Generation of DCNN Input

Because of the limited training data of speech emotion recog-
nition, it is not possible to directly train a robust deep model.
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Fig. 2. The flowchart of our DCNN model for affective feature extraction. Three channels of log Mel-spectrograms with size 64 × 64 × 3 (static, delta and
delta-delta) are firstly produced, and then are resized to 227 × 227 × 3 as the DCNN input. The DCNN model is first initialized with the AlexNet [7], then is
fine-tuned on target emotional datasets. The 4096-D FC7 output is finally used as the segment-level affective features.

Motivated by the promising performance of available DCNN
models, we propose to first initialize deep models with available
DCNN models like AlexNet [7], then fine-tune it for transfer
learning on target emotional datasets. Because available DCNN
models take 2-D or 3-D images as inputs, we transform the raw
1-D speech spectrogram into 3-D array as the DCNN input.

In recent years, Abdel-Hamid et al., [14] adopt the extracted
log Mel-spectrogram and organize it into a 2-D array as the CNN
input with a shallow 1-layer structure for speech recognition.
Specifically, for each frame with a context window of 15 frames
and 40 Mel-filter banks, they construct 45 (i.e., 15 × 3) 1-D fea-
ture maps with size 40 × 45. Then, the 1-D convolutional kernel
is applied along the frequency axis. However, speech emotion
recognition using DCNNs is different from speech recognition
in [14]. First, 1-D convolution operation along the frequency
axis could not capture the temporal information, which is im-
portant for emotion recognition. Second, the divided segments
with 15 frames (about 165 ms) used for speech recognition, are
too short to distinguish emotions, since it has been found that
only a speech segment length of more than 250 ms presents
sufficient information for identifying emotions [49], [50].

To address these two issues, from the raw 1-D speech sig-
nals we generate the following overlapping Mel-spectrogram
segments (abbreviated as Mel SS) as the DCNN input

Mel SS ∈ RF ×T ×C , (1)

where F is the number of Mel-filter banks, T is the segment
length corresponding to the frame number in a context window,
and C (C = 1, 2, 3) represents the number of channels of Mel-
spectrogram. Note that C = 1 denotes one channel of Mel-
spectrogram, i.e., the original static spectrogram, C = 2 denotes
the static and delta coefficients of Mel-spectrograms, and C = 3
represents three channels of Mel-spectrograms including the
static, delta and delta-delta coefficients of Mel-spectrogram.

As an example described in Fig. 2, we extract Mel SS with
size 64 × 64 × 3 (F = 64, T = 64, C = 3) as the input of
DCNN. This kind of three channels of spectrograms is analo-
gous to the RGB image representation of visual data. In detail,

for an utterance we adopt 64 Mel-filter banks from 20 to 8000 Hz
to obtain the whole log Mel-spectrogram using a 25 ms Ham-
ming window size with 10ms overlapping. Then, a context win-
dow of 64 frames is applied to the whole log Mel-spectrogram
to extract the static 2-D Mel-spectrogram segments with size
64 × 64. A frame shift size of 30 frames is used to produce
such overlapping segments of Mel-spectrogram. Each segment
hence includes a context window of 64 frames and its length is
10 ms × 63 + 25 ms = 655 ms. In this case, the segment length
is about 2.6 times longer than the suggested length of 250 ms in
[49], [50], and conveys sufficient clues for emotion recognition.

Note that we set F as 64 because the input height-width ratio
of our DCNN model is 1:1. Besides, F is usually set to be
relatively large values for the usage of CNNs. For example, F
is set to 40 in speech recognition [14] and 60 in speech emotion
recognition [16], respectively. Therefore, it is reasonable to set
F as 64 in this work.

In speech recognition, the first and second temporal deriva-
tives on the extracted acoustic features such as MFCC, are
widely used as additional features. Similarly, after extracting
the static 2-D Mel-spectrogram, we also calculate the first order
and second order regression coefficients along the time axis as
the delta and delta-delta coefficients of Mel-spectrogram. In this
way, we organize the 1-D speech signals into three channels of
Mel-spectrogram segments, i.e., Mel SS with size 64 × 64 × 3
(three channels: static, delta and delta-delta) as the DCNN input.
Then, 2-D convolution operation along the frequency axis and
time axis can be performed for DCNN’s training on this input.

When using the AlexNet DCNN model [7] for affective fea-
ture extraction, we have to resize the spectrogram 64 × 64 × 3
into 227 × 227 × 3, which is the input size of AlexNet. Since the
extracted three channels of Mel-spectrograms can be regarded as
the RGB image representation, we perform the resize operation
with bilinear interpolation, which is commonly used for image
resizing. Note that, the number of channels of Mel-spectrogram
C and the segment length T may have an important impact on
the learned deep features. Therefore, we will investigate their
effects on the recognition accuracy in experiments.
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B. DCNN Architecture

As shown in Fig. 2, our DCNN model includes five con-
volutional layers, three of which are followed by max-pooling
layers, and two fully-connected layers. The last fully-connected
layer consists of 4096 units, giving a 4096-D feature represen-
tation. It can be observed that this structure is identical to the
one of AlexNet [7], which is trained on the large-scale Ima-
geNet dataset. The initial parameters of this DCNN model can
thus be copied from the AlexNet, making this DCNN model
easier to train on speech emotion recognition tasks. In the
followings, we introduce the computations and principles of
convolutional layer, pooling layer and fully-connected layer,
respectively.

Convolutional layer: A convolutional layer employs a set
of convolutional filters to extract multiple local patterns at each
local region in the input space, and produces many feature maps.
This can be denoted as

(hk )ij = (Wk ⊗ q)ij + bk , (2)

where (hk )ij denotes the (i, j) element of the k-th output feature
map, q represents the input feature maps, Wk and bk denotes
the k-th filter and bias, respectively. The symbol ⊗ represents
2-D spatial convolution operation.

Pooling layer: After each convolutional layer, a pooling layer
may be used. The pooling layer aims to down-sample the ob-
tained feature maps from the previous convolutional layers and
produces a single output from local regions of convolution fea-
ture maps. Two widely used pooling operators are max-pooling
and average-pooling. A max-pooling or average-pooling layer
produces a lower resolution version of convolution layer activa-
tions by taking the maximum or average filter activation from
different positions within a specified window.

Fully-connected layer: This layer integrates the outputs from
previous layers to yield the final feature representations for clas-
sification or regression. The activation function is a sigmoid or
tanh function. The output of fully-connected layers is computed
by

xk =
∑

l
Wklql + bk , (3)

where xk denotes the k-th output neuron, ql denotes the l-th
input neuron, Wkl represents the weight value connecting ql

with xk , and bk denotes the bias term of yk .
Since fully-connected layers can be taken as convolutional

layers with a kernel size of 1 × 1, (3) can be reformulated as

(xk )1,1 = (Wk ⊗ q)1,1 + bk . (4)

For DCNN’s training, Stochastic Gradient Descent (SGD)
is commonly employed with parameters like the batch size of
examples, the momentum value (e.g., 0.9), and the weight decay
value (e.g., 0.0005). In this case, the weight w is updated by

vi+1 = 0.9 · vi − 0.0005 · η · wi − η ·
〈

∂L

∂w
|wi

〉

Di

,

wi+1 ⇐ wi + vi+1 , (5)

where v denotes the momentum variable, η is the learning rate,
i is the iteration number index, and 〈 ∂L

∂w |wi 〉Di
is the mean

of derivatives of the i-th batch Di . The network hence can be
updated by back-prorogation. More details of DCNN’s training
can be found in [7].

In our DCNN’s training, we first initialize the network with
parameters in the AlexNet, then fine-tune the network in emotion
classification tasks, which uses the Mel SS with size 227 ×
227 × 3 as input and multiple emotion classes as output. Note
that, the number of classes used in the AlexNet model is 1000,
but in our emotion classification tasks, the number of emotion
categories is 6 or 7. Therefore, our used DCNN model differs
from the AlexNet in the last two layers, where our model predicts
6 or 7 emotion categories.

After fine-tuning the AlexNet model, we take the output of
its FC7 layer as the segment-level affective features x. Given
N overlapping Mel-spectrogram segments as the inputs of the
DCNN model, we can obtain a segment-level feature repre-
sentation X = (x1 , x2 , · · · , xN ) ∈ Rd×N with feature dimen-
sionality d = 4096. This representation X hence is used as the
input of the following DTPM algorithm to produce the global
utterance-level features for emotion classification.

IV. DTPM FOR UTTERANCE-LEVEL FEATURE

REPRESENTATION

Because of the unfixed time of duration for speech utterances,
the above-mentioned segment-level features X have a variant
number of segments. This unfixed dimensionality makes such
segment-level features not directly useable for emotion recogni-
tion. Therefore, we proceed to convert the segment-level features
into an utterance-level feature representation with fixed dimen-
sionality. This process, which is also called as feature pooling,
is widely used in computer vision to convert the local features
into the global features for image classification and retrieval.

There are two types of widely-used pooling strategies, i.e.,
average-pooling and max-pooling, which compute the averaged
values and max values on each dimension, respectively. Note
that, different pooling strategies are suited for different types of
features, e.g., max-pooling is suited for sparse features. It is diffi-
cult to decide which pooling strategy is optimal for our segment-
level affective features. Moreover, most of pooling strategies
discard the temporal clues of speech signals, which might be
important to distinguish emotions.

Our DTPM is motivated to simultaneously embed the tem-
poral clues and find the optimal pooling strategy. It is partially
inspired by the Spatial Pyramid Matching (SPM) [51], which
embeds the spatial clues during feature pooling for image classi-
fication. In SPM, an image is first divided into regions at different
scales, then feature pooling is conducted on each region. The
final feature is hence the concatenation of the pooled features at
each scale. Similarly, we also divide the segment-level features
X into non-overlapping sub-blocks along the time axis at differ-
ent scales, then conduct feature pooling on each sub-block. The
final concatenated feature thus integrates the temporal clues at
different scales. The details will be presented in Section IV-A.
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Fig. 3. The framework of discriminant temporal pyramid matching (DTPM).

To acquire the optimal pooling strategy, we formulate the
feature pooling as

fp(X)=

⎛

⎝ 1
N

N∑

j=1

|xj |p
⎞

⎠

1
p

, (6)

where fp(X) denotes the acquired feature after pooling oper-
ation, N is the number of segment features, and p controls the
pooling strategy. E.g., p = 1 corresponds to average-pooling,
whereas p = ∞ corresponds to max-pooling. To testify the ad-
vantages of the optimal pooling strategy, we compare it with
average-pooling and max-pooling in the latter experiments, as
shown in Section VI.

From (6), it can be observed that the parameter p decides the
performance of the pooling. In recent years, it has been found
in [52], [53] that the p value has an important impact on the
image classification accuracy. Therefore, we proceed to acquire
an optimal p for our affective features. More details will be
presented in Section IV-B.

In a word, given the segment-level features X , DTPM
aggregates X to produce the global utterance-level features
vp

L (X) with the optimal pooling parameter p and pyramid level
� = 0, 1, 2, . . . , L. For example, Fig. 3 presents the framework
of DTPM. The original segment-level features X are divided at
three scales with � = 0, 1, 2. The final feature is generated by
concatenating the features at each scale with the optimal pooling
parameter p.

A. Temporal Pyramid Matching

Temporal Pyramid Matching (TPM) first divides the
segment-level features X at multiple levels. Specifically,
X = (x1 , x2 , . . . , xN ) ∈ Rd×N is equally divided into 2� suc-
cessive non-overlapping sub-blocks along the time axis at dif-
ferent levels with � = 0, 1, 2, . . . , L. For the �-th level, this can
be expressed as

X = (X1 ,X2 , . . . , Xm ), (7)

where m = 2� , � = 0, 1, 2, . . . , L.
For a sub-block Xm = (x1 , x2 , . . . , xn ) ∈ Rd×n with n seg-

ments, we use the pooling strategy in (6) to produce fixed-length

d-dimension feature representation fp(Xm ), i.e.,

fp(Xm )=

⎛

⎝ 1
n

n∑

j=1

|xj |p
⎞

⎠

1
p

, (8)

where p = 1 corresponds to average-pooling, whereas p = ∞
corresponds to max-pooling. The optimal p will be computed in
Section IV-B.

The generated feature fp(Xm ) at different scales encodes
different temporal clues. For example, compared with the feature
at 0-th level, the pooled feature at the second level embeds more
refined temporal clues. We thus aggregate the pooling results on
all sub-blocks at different levels into the final global utterance-
level feature representation.

Let Γ�(X) = (fp(X1), fp(X2), . . . , fp(Xm )) denote the
concatenated feature of X at pyramid level �. Then we can
get the global utterance-level features vp

L (X) of TPM by means
of concatenating all Γ�(X) at different pyramid level, i.e.,

vp
L (X) = ( 1

2L Γ0 , 1
2L Γ1 , 1

2L −1 Γ2 , . . . , 1
2 ΓL ), (9)

where Γ�(X) is abbreviated as Γ� . In the final utterance-level
features, we set higher weights for the features on higher levels,
which embeds more refined temporal clues. This is also similar
to the weighting strategy in SPM [51].

B. Optimal Lp-norm Pooling

To improve the discriminative power of vp
L (X), we employ

the class separability criteria according to the Marginal Fisher
Analysis (MFA) [54] to learn the optimal Lp-norm pooling. Let
up(X) denote the final utterance-level features after optimal
Lp-norm pooling, then we get

up(X) = αT vp
L (X), (10)

where α is a diagonal matrix used to weight vp
L (X), making

vp
L (X) discriminant. In the following, vp

L (X) is abbreviated
as vp , and up(X) is abbreviated as up . Therefore, the task is
acquiring the optimal α and p to make the final feature up as
discriminative as possible.

To optimize both α and p simultaneously, the objective func-
tion should maximize the inter-class separability while minimize
the inner-class separability. This induces our objective function,
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i.e.,

α∗, p∗ = arg max
α,p

Ω(α, p) :=
αT Sb(p)α
αT Sω (p)α

, (11)

where Sb(p) represents the inter-class separability, Sω (p) rep-
resents the inner-class separability. They are computed by

Sb(p) =
∑
i

∑
j∈N −

k (i)
(vp

i − vp
j )(vp

i − vp
j )T ,

Sω (p) =
∑
i

∑

j∈N +
k (i)

(vp
i − vp

j )(vp
i − vp

j )T ,
(12)

where N−
k (i) denotes the index set for k nearest neighbors of

the pooling data vp
i from different classes, and N+

k (i) represents
the k nearest neighbors of the pooling data vp

i from the same
classes.

Eq. (11) can be solved by optimizing α and p alternatively.
When fixing p, this objection function is transformed into the
classical Linear Discriminant Analysis (LDA) [55], [56] prob-
lem. In this case, Sb(p) and Sω (p), represent the between-class
scatter matrix and the within-class scatter matrix, respectively.
Therefore, the optional solution α∗ can be obtained with the
closed-form solution for a fixed p:

lα∗ = arg max λ
α

,

s.t. Sbα = λSω α. (13)

The diagonal vector for the optional solution α∗ is the eigenvec-
tor corresponding to the largest eigenevalue λmax .

When fixing α, the optimizing problem in (11) has no closed-
form solution. Nevertheless, it can be solved with a gradient
descent process in an iterative way. Specifically, with a fixed α,
we can get

∼
Sb(p) = αT Sb(p)α =

∑

i

∑

j∈N −
k (i)

(up
i − up

j )2 ,

∼
Sω (p) = αT Sω (p)α =

∑

i

∑

j∈N +
k (i)

(up
i − up

j )2 . (14)

The partial derivatives of
∼
Sb(p) and

∼
Sω (p) related to p are

then computed by

∂
∼
Sb

∂p
= 2

∑

i

∑

j∈N −
k (i)

(up
i − up

j )αT (βi − βj ),

∂
∼
Sω

∂p
= 2

∑

i

∑

j∈N +
k (i)

(up
i − up

j )αT (βi − βj ), (15)

where β denotes the Hadamard product β = vp ◦ ln v. Then we
can get the partial derivative of (11) with respect to p:

∇p =
∂

∂p
Ω(α, p) =

1
∼
S2

ω

⎛

⎝∂
∼
Sω

∂p

∼
Sb −∂

∼
Sb

∂p

∼
Sω

⎞

⎠ . (16)

The p value can be updated along the gradient direction with
a step size γ, i.e.,

p(t+1) = p(t) + γ · ∇p, (17)

where the superscript t denotes the t-th iteration. In our imple-
mentation, the iteration stops if the number of iterations exceeds
the permitted number Niter . After acquiring the final feature rep-
resentation up(X), we use it for emotional classification with
classifiers like SVM.

Our training strategy divides the utterances into segments.
This enlarges the training set for DCNNs, but is potential to
make emotion recognition on each segment more difficult if the
segment is too short. We have carefully set the length of each
segment to 655 ms, which is about 2.6 times longer than the
suggested 250 ms for emotion recognition in [49], [50]. There-
fore, each segment should preserve sufficient clues for emotion
recognition. To conduct utterance-level emotion recognition, we
generate utterance-level features with the DTPM, which aggre-
gates segment-level features at different scales with Lp-norm
pooling. DTPM is inspired by the Spatial Pyramid Matching
(SPM) [51] commonly used in image classification. SPM ag-
gregates low-level features from image patches to form a global
feature discriminative to high-level semantics. Similar to SPM,
DTPM is potential of learning a discriminative utterance-level
feature from local segment-level features. In the following sec-
tion, we will testy the validity of this training strategy.

V. EXPERIMENTS

A. Datasets

We test the proposed method on four public datasets,
including the Berlin dataset of German emotional speech
(EMO-DB) [21], the RML audio-visual dataset [22], the eN-
TERFACE05 audio-visual dataset [23], and the BAUM-1s
audio-visual dataset [24].

EMO-DB: The acted EMO-DB speech corpus [21] contains
535 emotional utterances with seven different acted emotions:
anger, joy, sadness, neutral, boredom, disgust and fear. Ten pro-
fessional native German-speaking actors (five female and five
male) are asked to simulate these emotions, giving 10 German
utterances (five short and five long sentences) which are able to
be used in everyday communication. These actors are required
to read these predefined sentences in the targeted seven emo-
tions. The recordings in this dataset are taken in an anechoic
chamber with high-quality recording equipment and produced
at a sampling rate of 16 kHz with a 16-bit resolution and mono
channel. The audio files are on average around 3 seconds long.
A human perception test with other 20 subjects is conducted to
evaluate the quality of the recorded data.

RML: The acted RML audio-visual dataset [22], collected
from Ryerson Multimedia Research Lab, Ryerson University,
contains 720 utterances of eight subjects from different gender
and culture, in six different speaking languages. It consists of
six emotions: anger, disgust, fear, joy, sadness, and surprise.
The samples were recorded at a sampling rate of 44,100 Hz
with a 16-bit resolution and mono channel. The audio files are
on average around 5 seconds long. To ensure the context inde-
pendency of speech samples, more than ten reference sentences
for each emotion are presented. At least two participants who
do not know the corresponding language are employed in hu-
man perception test to evaluate whether the correct emotion is
expressed.
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eNTERFACE05: The eNTERFACE05 [23] is an induced
audio-visual emotion dataset with six basic emotions, i.e., anger,
disgust, fear, joy, sadness, and surprise. 42 subjects from 14 dif-
ferent nationalities are included. Each subject is asked to listen
to six successive short stories, each of which is used to induce
a particular emotion. Two experts are employed to evaluate
whether the reaction expresses the intended emotions in an un-
ambiguous way. The speech utterances are pulled from video
files of the subjects speaking in English. The sampling rate is
48 kHz for audio. The audio files are on average around 3 sec-
onds long. Overall, the eNTERFACE05 dataset contains 1290
utterances.

BAUM-1s: The spontaneous BAUM-1s [24] audio-visual
dataset contains eight emotions (joy, anger, sadness, disgust,
fear, surprise, boredom and contempt), and four mental states
(unsure, thinking, concentrating and bothered). It has 1222 ut-
terances collected from 31 Turkish subjects, 17 of which are
female. Emotion elicitation using video clips is employed to get
spontaneous audio-visual expressions. Each utterance is given
an emotion label by using a majority voting over the five an-
notators. The audio files have a sampling rate of 48 kHz, and
the average time of duration is around 3 seconds. As done in
[22], [23], this work aims to identify six basic emotions (joy,
anger, sadness, disgust, fear, surprise), giving 521 utterances
in total for experiments. Note that, BAUM-1s, is a latest audio-
visual emotional data set released in 2016. Moreover, BAUM-1s
records spontaneous emotions rather than acted emotions, thus
defines a more challenging emotion recognition problem than
the aforementioned datasets like EMO-DB and eNTERFACE05.
Therefore, BAUM-1s is a reasonable and challenging testset.

B. Experimental Setup

1) Details of DCNN Training: Each of the four emotional
datasets contains a limited number of samples. It is thus desir-
able to generate more samples for DCNN’s training. To address
this issue, we directly split an utterance into a certain num-
ber of overlapping segments. Each of the segments is labeled
with the utterance emotion category for DCNN’s training. In
this case, the number of training samples is decided by the
overlap length (a frame shift size) between two adjacent seg-
ments, i.e., smaller overlap results in a larger number of train-
ing samples. However, as suggested in [50], the overlap length
should be larger than 250 ms in speech emotion recognition.
Therefore, we set the overlap length as 30 frames, which is
about 10 ms × 29 + 25 ms = 315 ms. As a result, when extract-
ing Mel-spectrogram segments with size 64 × 64 × 3, we can
significantly augment the size of training data, i.e., from 535 ut-
terances to 11,842 segments for the EMO-DB dataset, from 720
utterances to 11,316 segments for the RML dataset, from 1290
utterances to 16,186 segments for the eNTERFACE05 dataset,
and 521 utterances to 6368 segments for the BAUM-1s dataset,
respectively.

Note that, segmenting an utterance into small segments, was
widely used for discrete emotion classification, as in [13], [57],
[58]. Although it is not necessarily true that the emotion labels
in all segments divided from an utterance are equivalent to that

of the whole utterance, we can still employ DCNNs to learn ef-
fective segment-level features from the segment-level emotions,
which can be utilized to predict utterance-level emotions.

The structure of the used DCNN model [7] is presented in
Fig. 2. The DCNN model is trained with mini-batch size of 30,
Stochastic Gradient Descent (SGD) with a momentum of 0.9,
and a learning rate of 0.001. The maximum number of epochs is
set as 300. We perform DCNNs on the MATLAB2014 platform
with the MatConvNet package [59], which is a MATLAB tool-
box implementing CNNs for computer vision applications. One
NVIDIA GTX TITAN X GPU with a 12 GB memory is used
to train DCNNs with a GPU mode. We employ the LIBSVM
package [60] with the linear kernel function and the one-versus-
one strategy for multi-class classification. When implementing
optimal Lp-norm pooling, we set the number of permitted iter-
ation Niter = 50, and the number of nearest neighbors k = 20,
as done in [52].

It is noted that the used DCNN model called AlexNet, is
firstly reported in [7] with input size of 224 × 224 × 3. How-
ever, in many practical implementations such as imagenet-caffe-
alex, available at http://www.vlfeat.org/matconvnet/pretrained/,
researchers commonly use input size 227 × 227 × 3 rather than
224 × 224 × 3.

2) Evaluation Methods: As suggested in [61], test-runs
are implemented by using a speaker-independent Leave-
One-Speaker-Out (LOSO) or Leave-One-Speakers-Group-Out
(LOSGO) cross-validation strategy, which are usually adopted
in most real applications. Specifically, for the EMO-DB and
RML datasets, we employ the LOSO scheme. For the eNTER-
FACE05 and BAUM-1s datasets, we use the LOSGO scheme
with five speakers group, similar to [24]. Note that, we adopt
the speaker-independent test-runs, which is more realistic and
challenging than the speaker-dependent test-runs. Therefore, we
only compare with works also using the same setting and wont
compare with works like [58] that report speaker-dependent re-
sults. The Weighted Average Recall (WAR), also known as the
standard accuracy, is reported to evaluate the performance of
speech emotion recognition. Here, WAR denotes the recogni-
tion rates of individual classes weighted by the class distribution.

We evaluate the performance of two methods, i.e., DCNN-
Average, and DCNN-DTPM. The details of these two methods
are described below.

DCNN-Average also uses DCNNs as feature extractor. Af-
ter extracting features on each Mel-spectrogram segment with
DCNNs, the conventional average-pooling is employed over all
the segments to produce the final fixed-length global utterance-
level features. Then the linear SVM classifier is adopted for
emotion identification. Therefore, we compare our method to
DCNN-Average to show the validity of the proposed DTPM.

DCNN-DTPM is our proposed method described in Fig. 3.

C. Experimental Results and Analysis
We use Mel-spectrogram segments with size Mel SS ∈

RF ×T ×C as the DCNN input, where F is the number of Mel-
filter banks commonly set as 64, T is the number of frames
in each segment, and C represents the number of channels of
Mel-spectrogram. The parameters C and T largely affects the
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TABLE I
SPEAKER-INDEPENDENT ACCURACY (%) COMPARISONS BY SETTING DIFFERENT VALUES OF C USING A SIMPLIFIED DCNN MODEL

Dataset EMO-DB RML eNTERFACE05 BAUM-1s

C 1 2 3 1 2 3 1 2 3 1 2 3
DCNN-Average 73.86 77.44 78.92 59.25 61.84 61.19 62.33 65.01 66.42 36.49 38.21 38.62
DCNN-DTPM (L∗) 77.03 (3) 82.69 (2) 83.53 (3) 61.48 (2) 64.88 (3) 64.21 (3) 65.95 (1) 69.88 (2) 70.25 (2) 38.74 (2) 39.05 (3) 40.57 (2)

The size of the Spectrogram is 64 × 64 × C . L∗ denotes the value of L corresponding to the best performance of DCNN-DTPM.

amount of affective cues DCNNs could perceive. In this part, we
first investigate the effects of C and the validity of our DCNN’s
training strategy. Then we will validate the effects of T on the
recognition accuracy and compare to the state-of-the-arts.

1) Effects of the Number of Channels in Mel-Spectrogram:
To investigate the effects of the number of channels, i.e., C,
we use a simplified DCNN model for feature extraction. This
DCNN model contains five layers (Conv1-Pool1-Conv2-Pool2-
Conv3-Conv4-FC5) and finally generates a 600-D feature rep-
resentation. Specifically, the size of the input is 64 × 64 × C,
the first three convolutional layers (Conv1, Conv2, Conv3) have
128 kernels of size 5 × 5 with a stride of 1. The fourth convo-
lution layer (Conv4) has 256 kernels of size 4 × 4 with a stride
of 1. We adopt average-pooling for the pooling layers. Pooling
size of 3 × 3 with a stride of 3 is used for Pool1, and 2 × 2 with
a stride of 2 is used for Pool2. The fully-connected layer in FC5
has 600 neurons, giving a 600-D feature representation. For the
DCNN inputs with different C, we change the number of input
channel of this DCNN model.

Table I presents performance comparisons with different val-
ues of C. Note that, for DCNN-DTPM, we test different pyramid
levels with L = 1, 2, and 3, respectively. We present the best
performance as well as the corresponding L in Table I. From
the results, we can make the following two observations.

First, setting C = 3 shows the best performance at most cases,
and constantly outperforms the case when C = 1. This indi-
cates that the first order and second order derivatives of 2-D
Mel-spectrogram segments preserve helpful cues for emotion
recognition. The fact that, C = 3 slightly outperforms C = 2 in-
dicates that further introducing higher order of derivatives may
not significantly boost the performance. Nevertheless, C = 3
results in an input similar to the RGB image representation.
Accordingly, we set C = 3 in our following experiments.

Second, DCNN-DTPM clearly outperforms DCNN-average
on four datasets. It is also clear that dividing the segment-level
features into multiple levels, i.e., setting L larger than 1, im-
proves the performance of DCNN-DTPM. This demonstrates
the advantages of our DTPM over the conventional average-
pooling strategy when coding the local segment-level features.

2) The Performance of DCNN Pre-Trained on Imagenet:
The above experiment suggests C = 3, corresponding to a
DCNN input similar to the RGB image representation. Such
input can be directly processed by available DCNNs pre-trained
on large-scale image datasets. In this experiment, we first di-
rectly use the original AlexNet [7] to extract affective features.
Then, we fine-tune the AlexNet on the target emotion recog-
nition tasks and test the performance of the fine-tuned model.

TABLE II
SPEAKER-INDEPENDENT RECOGNITION ACCURACY (%) USING THE ALEXNET

WITHOUT FINE-TUNING AS A FEATURE EXTRACTOR

Dataset EMO-DB RML eNTERFACE05 BAUM-1s

DCNN-Average 72.35 59.46 51.33 36.10
DCNN-DTPM (L∗) 76.27 (3) 62.40 (3) 56.08 (2) 38.42 (2)

L∗ denotes the value of L corresponding to the best performance.

TABLE III
SPEAKER-INDEPENDENT RECOGNITION ACCURACY (%) USING THE

FINE-TUNED ALEXNET AS A FEATURE EXTRACTOR

Dataset EMO-DB RML eNTERFACE05 BAUM-1s

DCNN-Average 82.65 66.17 72.80 42.26
DCNN-DTPM (L∗) 87.31 (2) 69.70 (2) 76.56 (2) 44.61 (2)

L∗ denotes the value of L corresponding to the best performance.

Note that, to use the Alexnet we resize 64 × 64 × 3 spectrogram
to 227 × 227 × 3 with bilinear interpolation.

Table II gives the recognition performance obtained by
the AlexNet without fine-tuning. It can be observed that, the
AlexNet shows reasonably good performance, e.g., on the RML
dataset it gives performance close to the results in Table I ob-
tained with the simplified DCNN model. This demonstrates
that, although the AlexNet is trained on an independent image
dataset, it also extracts discriminative affective features from
emotional speech datasets with our DCNN input.

We further show the performance of the fine-tuned AlexNet in
Table III. It is easy to observe that the fine-tuning procedure sig-
nificantly boosts the discriminative power of the extracted fea-
tures. After fine-tuning, the best performance of DCNN-DTPM
comes up to 87.31%, 69.70%, 76.56%, and 44.61%, respectively
on four datasets. Note that the recognition performance on the
spontaneous BAUM-1s dataset is much lower than the obtained
performance on other three emotional datasets. This shows that
the spontaneous emotions are more difficult to be identified well
than the acted and induced emotions. It is also clear that the fine-
tuned AlexNet significantly outperforms the simplified DCNN
in Table I, which is trained directly on the target datasets. This
indicates the advantages of our DCNN’s training strategy, i.e.,
using available models trained on image datasets to initialize
our DCNNs for fine-tuning. Moreover, the experimental results
also show the validity of our generated DCNN input.

The comparisons among Tables I, II, and III clearly show
the advantages of our training strategy, i.e., initialize with the
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Fig. 4. The effects of T on the EMO-DB dataset.

Fig. 5. The effects of T on the RML dataset.

AlexNet, then fine-tune on the target emotional speech datasets.
The reason why the AlexNet helps emotion recognition might
be because we convert the audio signals into an image-like
representation, as well as the deep structure and huge training
data of the AlexNet.

3) Effects of the Segment Length: The segment length T de-
cides the duration of audio signals the DCNN model processes.
It hence may largely affect the discriminative power of the ex-
tracted affective features. We thus show the effects of T on the
emotion recognition performance.

The length of the shortest utterance is 1.23 second long on the
EMO-DB dataset, and 1.12 second long on the eNTERFACE05
dataset. Accordingly, for the EMO-DB dataset and the eNTER-
FACE05 dataset, we test T ranges in [15, 30, 45, 64, 80, 100,
120], where T = 120 corresponds to about 1.22 second, which
is close to the length of the shortest utterance. The length of the
shortest utterance is 3.27 seconds long on the RML dataset. We
thus test T ranges in [15, 30, 45, 64, 80, 100, 120, 140, · · · ,
320] on the RML dataset. On the BAUM-1s dataset, we test T
ranges in [15, 30, 45, 64, 80], since the length of the shortest
utterance is 0.768 seconds long. For some certain utterances
shorter than T , we simply repeat the first frame and last frame
in an utterance so that the length of this utterance equals to T .
Note that for T = 15, as a benchmark used in speech recog-
nition, the overlap length of Mel-spectrogram segments is 15
frames, whereas for T ≥ 30 the overlap length is 30 frames. All
spectrograms with different T are resized to be 227 × 227 × 3
with bilinear interpolation as the input of DCNN. Figs. 4, 5, 6,

Fig. 6. The effects of T on the eNTERFACE05 dataset.

Fig. 7. The effects of T on the BAUM-1s dataset.

TABLE IV
THE BEST RECOGNITION ACCURACY (%) AND CORRESPONDING T USING THE

FINE-TUNED ALEXNET ON FOUR DATASETS

Fine-tuning EMO-DB RML eNTERFACE05 BAUM-1s

Segment length T = 64 T = 220 T = 80 T = 64
DCNN-DTPM (L∗) 87.31 (2) 75.34 (3) 79.25 (2) 44.61 (2)

L∗ denotes the value of L corresponding to the best performance.

and 7 show the effects of T on four datasets. Table IV presents
the best performance and the optimal T on four datasets. From
the experimental results, we can draw two conclusions.

First, it can be observed that larger T is helpful for better
performance. However, too large T does not constantly improve
the performance. Table IV shows that the best performance
on four datasets are 87.31%, 75.34%, 79.25%, and 44.61%,
respectively. The corresponding optimal T on four datasets are
64, 220, 80, and 64, respectively. This may be because setting
larger T decreases the number of generated training samples for
DCNNs. Therefore, DCNN-DTPM does not always improve
the performance with the increase of the segment length.

Second, the four curves shows that the recognition perfor-
mance of DCNN-DTPM remains stable when T is larger than
64. Setting T = 64 generally gives promising performance on
four datasets. This might be because the DTPM also considers
the temporal clues, thus makes the algorithm more robust to T .
It is also interesting to observe that segment length of 15 frames,
i.e., T = 15, widely used for speech recognition [14], does not
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Fig. 8. Confusion matrix of DCNN-DTPM with an average accuracy of
87.31% on the EMO-DB dataset.

Fig. 9. Confusion matrix of DCNN-DTPM with an average accuracy of
75.34% on the RML dataset.

get promising emotion recognition performance. This might be
because T = 15 is too short to provide sufficient temporal cues
for distinguishing emotions.

To further investigate the recognition accuracy, we present
the confusion matrix corresponding to the results of DCNN-
DTPM in Table IV. Fig. 8 shows that on the EMO-DB dataset,
“neutral” is identified with the highest accuracy of 93.15%, and
the other six emotions are classified with accuracies higher than
80%. Fig. 9 indicates that only two emotions, i.e., “anger” and
“surprise”, are distinguished with accuracies higher than 82% on
the RML dataset. On the eNTERFACE05 dataset, “anger”, “joy”
and “surprise” can be recognized with accuracies of 87.50%,
81.31%, 84.66%, respectively, as shown in Fig. 10. Fig. 11
indicates that on the BAUM-1s dataset “joy” and “sadness”,
are classified with accuracies of 50.67%, 41.74%, respectively,
whereas the other four emotions are identified with accuracies
lower than 40%. The low recognition accuracies on the BAUM-
1s dataset demonstrate the difficulty in recognizing spontaneous
emotions.

4) Comparisons with the State-of-the-Art Results: We com-
pare our method with some previous works on four public
datasets in Table V. We compare with these works because
they also use the speaker-independent LOSO or LOSGO test-
runs, which are more reasonable than the speaker-dependent
test-runs used in [22]. Note that some pervious works [5], [62]
also employ Unweighted Averaged recall (UAR), which is used

Fig. 10. Confusion matrix of DCNN-DTPM with an average accuracy of
79.25% on the eNTERFACE05 dataset.

Fig. 11. Confusion matrix of DCNN-DTPM with an average accuracy of
44.61% on the BAUM-1s dataset.

TABLE V
COMPARISONS OF RECOGNITION ACCURACY (%) WITH

STATE-OF-THE-ART WORKS

Datasets Refs. Features WAR UAR

EMO-DB [61] Prosody, MFCC 85.60 84.60
[12] Prosody, MFCC 81.90 79.10
[5] ComParE set N/A 86.00
[62] AVEC-2013 set N/A 86.10

Ours DCNNs 87.31 86.30

RML [63] Prosody 51.04 N/A
[64] PNCC 58.33 N/A

Ours DCNNs 75.34 75.20

eNTERFACE05 [61] Prosody, MFCC 72.40 72.50
[12] Prosody, MFCC 61.10 61.10
[24] MFCC, RASTA-PLP 72.95 N/A
[62] ComParE set N/A 80.50

Ours DCNNs 79.25 79.40

BAUM-1s [24] MFCC,RASTA-PLP 29.41 N/A
Ours DCNNs 44.61 44.03

Here, “Features” denotes the used typical affective features in those works.

to better reflect unbalance among classes, as the evaluate mea-
sures of recognition performance, although we have presented
the common WAR for performance evaluation. Accordingly,
we present both WAR and UAR on these four datasets for a fair
comparison.
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From Table V, we can see that our method is very compet-
itive to the state-of-the-art results. Specially, on the EMO-DB
dataset our method performs best, compared with [5], [12], [61],
[62]. On the RML dataset, our method gives much better per-
formance than [63], [64]. On the eNTERFACE05 dataset, our
method obviously outperforms [12], [24], [61], and presents a
little lower performance than [62]. On the BAUM-1s dataset,
our method also clearly outperforms [24], i.e., our 44.61% vs.
29.41% of [24] in term of WAR. Therefore, although the BAUM-
1s is a relatively small dataset, it defines a challenging emotion
recognition problem and also validates the advantages of the
proposed algorithm. Note that in [61], the authors employ 6552
LLD acoustic features such as prosody and MFCC for emo-
tion classification. This shows the advantages of our learned
affective features using DCNNs. [12] also uses a DNN to learn
discriminative features. Different from our work, [12] learns
features from 6552 LLD acoustic features, rather than from the
raw speech signals or the spectrogram. This thus clearly shows
the advantages of our DCNN model, i.e., using three channels
of spectrograms as input and coding raw DCNN features with
DTPM to get the final feature representation. [62] reports the
best performance of by using the large AVEC-2013 feature set
[65] on the EMO-DB dataset, and the large ComParE feature
set [66] on the eNTERFACE05 dataset.

Our experimental results show that our method gets impres-
sive recognition accuracies in comparison with the state-of-the-
art works. For example, we report an UAR accuracy of 86.30%
on the EMO-DB dataset, on which outperforms all the three
compared works, i.e., 79.1% by [12], 84.6% by [61], 86.0% by
[5] and 86.1% by [62]. As far as we know, this is an early work
using DCNNs pre-trained on image domain for emotion recog-
nition. The success of this work guarantees further investigation
in this direction. These distinctive characteristics distinguish our
work from existing efforts on speech emotion recognition.

VI. DISCUSSIONS

The pyramid level L controls the number of levels in DTPM,
thus may affect the recognition performance. In our experi-
ments, we investigate the effects of L with a value range be-
tween 1 and 3. We do not use L ≥ 4, since the resulted feature
dimensionality is too large. As shown in the above experimen-
tal results, L = 2 or L = 3 generally gets the optimal results.
This indicates that dividing the Mel-spectrogram into multiple
levels, i.e., L ≥ 2, helps to improve the performance. It also can
be inferred that our algorithm is not quite sensitive to L, and
setting L = 2 or L = 3 is a reasonable option at most cases.

To verify the effectiveness of our Lp-norm pooling, we com-
pare it with two commonly used pooling methods, i.e., average-
pooling and max-pooling, in Table VI. This is conducted by
modifying the value of p in DTPM, e.g., p = 1 corresponds to
average-pooling, whereas p = ∞ corresponds to max-pooling.
It can be seen from Table VI that our Lp-norm pooling performs
better than the other two pooling methods. It also can be seen
that, it is hard to decide which pooling strategy performs better
for a specific task with experience. E.g., max-pooling performs
better than average-pooling on the RML and eNTERFACE05
datasets, but average-pooling performs better on the EMO-DB

TABLE VI
RECOGNITION ACCURACY (%) COMPARISON OF THREE POOLING METHODS IN

DTPM USING 64 × 64 × 3 MEL-SPECTROGRAM AND L = 2 ON THREE

DATASETS.p∗ DENOTES THE MEAN OPTIMAL VALUES OF p IN LOSO OR

LOSGO TEST-RUNS

Feature pooling EMO-DB RML eNTERFACE05 BAUM-1s

Average 83.28 60.73 71.08 41.94
Max 82.64 63.48 72.75 40.26
Ours (p∗) 87.31(1.12) 69.70(1.50) 76.56(1.58) 44.61(0.21)

and BAUM-1s datasets. This thus shows the necessarily of pool-
ing strategy learning.

Since the Mel-spectrogram domain is represented as a 2-D
matrix, it is natural to utilize CNNs to learn emotion informa-
tion. To this end, it is straightforward to train a deep model
on 64 × 64 spectrogram data. However, Tables I and IV indi-
cate that directly using 64 × 64 features to train a deep model
obtains lower performance than our fine-tuned AlexNet. The
reason might be the limited training data of speech emotion
recognition. This motivates us to use the pre-trained AlexNet,
which is already trained with millions of images and shows
reasonably good performance in emotion feature extraction as
shown in Table II. Therefore, we initialize a deep model with
the same structure and parameters of the AlexNet and fine-tune
it on target emotional datasets. Experimental results in Tables II
and IV have shown the effectiveness of the pre-trained AlexNet
as well as our fine-tuned deep model.

It is a challenging problem to collect and annotate large num-
bers of utterances for emotion classification due to the difficulty
of emotion annotation. At present, on existing small emotional
speech datasets, it is a good choice to fine-tune pre-trained deep
models. As shown in our experiments, fine-tuned the AlexNet
pre-trained on the ImageNet works well on speech emotion
recognition tasks. The reason why the AlexNet helps emotion
recognition might be because we convert the audio signals into
an image-like representation as well as the strong feature learn-
ing ability of the AlexNet, e.g., higher-level convolutions gradu-
ally deduce semantics from larger receptive fields. The extracted
three channels of Mel-spectrograms are analogous to the RGB
image representation. This representation makes it feasible to
first generate meaningful low-level time-frequency features with
low-level 2-D convolutions, then deduce more discriminative
features with higher-levels of convolutions. Besides, three chan-
nels of Mel-spectrograms may characterize emotions as certain
shapes and structures, which are thus able to be effectively per-
ceived by the AlexNet pre-trained on the image domain.

The proposed method is based on the AlexNet. Similar to the
AlexNet for ImageNet large-scale classification, our method
is capable of learning on million-scale training data with the
commonly used GPU, e.g., NVIDIA TITAN X. It is thus also
interesting to retrain deep models on larger emotional speech
datasets than the used EMO-DB, eNTERFACE05, and BAUM-
1s in our future work.

VII. CONCLUSIONS AND FUTURE WORK

This paper is motivated by how to employ DCNNs for au-
tomatic feature learning on speech emotion recognition tasks.
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We present a new method combining DCNNs with DTPM for
automatic affective feature learning. A DCNN is used to learn
discriminative segment-level features from three channels of
log Mel-spectrograms similar to the RGB image representation.
DTPM is designed to aggregate the learned segment-level fea-
tures into the global utterance-level feature representation for
emotion recognition. Extensive experiments on four data sets
show that our method can yield promising performance in com-
parison with the state-of-the-arts. In addition, we also find that
with our generated DCNN input, DCNN models pre-trained on
the large-scale ImageNet data could be leveraged in speech af-
fective feature extraction. This makes DCNN’s training with a
limited amount of annotated speech data easier. The success of
this work warranties further investigation on using deep learning
in speech emotion recognition.

Although this paper focuses on discrete emotion recognition,
it is interesting to explore the effectiveness of deep features in
continuous dimension emotion recognition on datasets like SE-
MAINE [67], RECOLA [68] and JESTKOD [69]. Note that this
work focuses on global utterance-level emotion classification
and proposes the algorithm accordingly, i.e., first uses DCNNs
to extract segment-level feature, then aggregates segment-level
features with DTPM to form a global feature, and finally per-
forms emotion classification with the linear SVM. Therefore,
this algorithm is still not capable to deal with continuous dimen-
sional emotion recognition. To tackle this problem, one possible
way is to consider extra temporal cues and combine CNN and
LSTM [17], which is commonly used to select and accumulate
frame-level features for video categorization. This will be one
of our future works. Moreover, there are many open issues that
still need to be further studied to make emotion recognition
work well in real-life settings. For example, as show in Table V,
it is more difficult for our model to recognize the spontaneous
emotions. It is also necessary to take the personality into con-
sideration because different persons may have different ways
to express emotions. Additionally, it is also interesting to apply
our proposed method for affective analysis of music video [70].
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