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Abstract—The deblocking filtering (DF) in HEVC is only
applied to the boundaries between the coding units, prediction
units, or transform units, which actually exists two issues. On one
hand, the simple DF in HEVC does not fully exploit structure
information in video. On the other hand, DF in HEVC does not
consider the inside areas, which often suffers from quantization
distortion. To alleviate the above issues, in this paper, a non-
local structure-based filter (NLSF) is proposed by simultaneously
enforcing the intrinsic local sparsity and the non-local self-
similarity of each frame in video. NLSF not only deals with
the boundaries, but also deals with the inside areas, which is
able to effectively reduce the artifacts while enhance the quality
of the deblocking frames. Experimental results demonstrate that,
compared with the original HEVC reference encoder implemen-
tation in AI configuration, the proposed NLSF can achieve up to
7.3% BD-rate saving by substituting for DF in HEVC.

Index Terms—HEVC/H.265; deblocking fliter; loop filter; video
coding

I. INTRODUCTION

In April 2010, the ITU-T Video Coding Expert Group
(VCEG) and ISO/IEC Moving Picture Experts Group (MPEG)
formed the Joint Collaborative Team on Video Coding (JCT-
VC) to develop the new coding standard, which is known
as high efficiency video coding (HEVC) or H.265, formally
published in 2013 [1]. Many new coding tools and coding
structures are adopted in HEVC, which enables a major
advance in compression relative to its predecessors.

In the HEVC video coding standard, the in-loop filters play
an important, which are applied in the encoding and decoding
loops, after the inverse quantization but before saving the
picture to the decoded picture buffer. HEVC standard specifies
two in-loop filters, a deblocking filter, which is applied first,
and a sample adaptive offset (SAO), which is applied to
the output of the deblocking filter [2]. The purpose of the
deblocking filter is to attenuate the discontinuities at prediction
and transform block boundaries, while the SAO aims to further
improve the quality of the decoded picture by reducing the
ringing artifacts and changes in the sample intensity of areas
of a reconstructed picture. Due to that the deblocking and SAO
attenuate different artifacts, their benefits are usually additive
when exploited together.

In HEVC, both the motion prediction and transform coding
are block-based. The size of motion predicted blocks varies
from 8×4 and 4×8, to 64×64 luma samples, while the size
of block transforms and intra-predicted blocks varies from

4×4 to 32×32 samples. These blocks are coded relatively
independently from the neighboring blocks and approximate
the original signal with some degree of similarity. Since coded
blocks only approximate the original signal, the difference
between the approximations may cause discontinuities at the
prediction and transform block boundaries [3] [4]. These
discontinuities are attenuated by the deblocking filter.

In HEVC deblocking, the vertical boundaries in a picture
are filtered first, followed by the horizontal boundaries. In a
coding unit, the vertical boundaries between the coding blocks
are processed starting from the left-most boundary towards the
right-hand side. The horizontal boundaries are processed start-
ing from the top-most boundary towards the bottom [4]. Since
the deblocking filtering (DF) is only applied to the boundaries
between the coding units, prediction units, or transform units,
which actually exists two issues. On one hand, the simple DF
in HEVC does not fully exploit structure information in video.
On the other hand, DF in HEVC does not consider the inside
areas, which often suffers from quantization distortion. These
two issues degrade the quality of the deblocking frames.

In the past several years, non-local self-similarity has been
emerging as one of the most properties of natural image and
videos, which depicts the repetitiveness of higher level patterns
(e.g., textures and structures) globally positioned in images and
videos, and has achieved great success in various image/video
restoration applications [5] [6] [7] [8] [9] [10]. In this paper,
to enhance the quality of the deblocking frames, a non-local
structure-based filter (NLSF) is proposed by simultaneously
enforcing the intrinsic local sparsity and the non-local self-
similarity of each frame in video. NLSF not only deals with
the boundaries, but also deals with the inside areas, which is
able to effectively reduce the artifacts while enhance quality
of the deblocking frames. Experimental results demonstrate
that, compared with the original HEVC reference encoder
implementation in AI configuration, the proposed NLSF can
achieve up to 7.3% BD-rate saving by substituting for DF in
HEVC.

The remainder of this paper is organized as follows. Section
II elaborates the proposed non-local structure-based filter
(NLSF). Extensive experimental results are reported in Section
III. In Section IV, we concludes this paper.



Fig. 1: Illustrations for the proposed non-local structured-based filter (NLSF).

II. PROPOSED NON-LOCAL STRUCTURE-BASED FILTER

In our latest work [10], a new sparse representation model
in the unit of group instead of block, named as group-based
sparse representation (GSR), is proposed, which is able to ex-
ploit the local sparsity and the nonlocal self-similarity of nat-
ural images simultaneously in a unified framework. Motivated
by the success of GSR in image inpainting, deblurring and
compressive sensing recovery applications, in this paper, we
propose to design the non-local structure-based filter (NLSF)
on the basis of GSR model [10]. In this paper, different from
GSR [10], the proposed NLSF has the advantages of being
non-iterative and being parameter-free to the QP. The details
are given below.

A. Group Construction

In this subsection, we will show how to exploit non-local
structure within each frame in sequence to construct a group.

The basic idea of GSR is to adaptively sparsify the natural
image in the domain of group. Thus we first show how to
construct a group. In fact, each group is represented by the
form of matrix, which is in fact composed of nonlocal blocks
with similar structures. To be concrete, as illustrated in Fig.
1, first, divide the frame x ∈ RN2

with size N2 into K over-
lapped blocks of size

√
Bs×

√
Bs, and each block is denoted

by the vector xk ∈ RBs , i.e. k = 1, 2, . . . ,K. Then, for each
block xk, denoted by small red square in Fig. 1, within the
Ws×Ws training window (big blue square), search its c best
matched blocks, which comprise the set Sxk

. Here, Euclidean
distance is selected as the similarity criterion between different
blocks. Next, all the blocks in Sxk

are stacked into a matrix of
size Bs × c, denoted by XGk

, which includes every block in
as its columns, i.e. XGk

=[xGk

⊗
1,xGk

⊗
2, . . . ,xGk

⊗
c]. The

matrix XGk
containing all the blocks with similar structures

is named as a group. Note that, each block xk is represented
as a vector, while each group XGk

is represented as a matrix,
as shown in Fig. 1. It is obvious to observe that each block
corresponds to a group.

B. Group-based Filtering

This subsection will give the details about how to conduct
effective filtering based on the group.

Given one frame x ∈ RN2

in the sequence, which
suffers from blocking artifacts, first construct K group-
s according to the above subsection. For each group
XGk

=[xGk

⊗
1,xGk

⊗
2, . . . ,xGk

⊗
c], k = 1, 2, . . . ,K, we

apply singular value decomposition to it, yielding

XGk
= UGk

ΣGk
VT

Gk
=

m∑
i=1

ΥxGk
⊗

i

(
uGk

⊗
iv

T
Gk

⊗
i

)
,

(1)
where ΥxGk

=[ΥxGk
⊗

1
;ΥxGk

⊗
2
; . . . ;ΥxGk

⊗
m
] is a column

vector, ΣGk
=diag(ΥxGk

) is a diagonal matrix with the
elements of ΥxGk

on its main diagonal, and uGk

⊗
i,vGk

⊗
i

are the columns of UGk
and VGk

, separately.
In order to reduce the artifacts and enhance the quality, the

hard thresholding operation is applied to ΥxGk
, i.e.,

αGk
= hard(ΥxGk

, τ), (2)

where hard (x, a) = x� 1 (abs (x)−a) denotes the operator
of hard thresholding and � stands for the element-wise prod-
uct of two vectors. τ denotes the threshold, whose setting is
elaborated in the next subsection.
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Fig. 2: Relationship between quantization step (Qstep) and
quantization parameter (QP).
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Fig. 3: Agreement between the values of σ estimated by Eq.
(5) and the optimal ones (found experimentally), which give
the highest PSNR for the deblocking BasketballDrive and
FourPeople sequences using the proposed NLSF.

After achieving αGk
, then we obtain the deblocking group

X̂Gk
, expressed by

X̂Gk
=

m∑
i=1

αGk

⊗
i

(
uGk

⊗
iv

T
Gk

⊗
i

)
. (3)

This process is applied for all K groups to achieve X̂Gk
,

k = 1, 2, . . . ,K. At last, all X̂Gk
are averaged to get the

deblocking frame x̂.

C. Parameter τ Estimation

From above description, the key for NLSF is the setting
of parameter τ in Eq. (2). This subsection will present the
details to give an adaptive and robust estimate for τ according
to quantization parameter (QP) in video coding.

In this paper, we adopt Gaussian model to characterize
the quantization noise between the original frame and the
compressed frame due to its simplicity and effectiveness.
Therefore, the estimate for τ is transformed to estimating the
variance σ2 of the quantization noise. Here, it is also worth

emphasizing that the estimated noise variance σ2 is not the real
estimate of the variance of the difference between the original
and the compressed images. Under assumption of Gaussian
noise model, it is just the variance of the hypothetical Gaussian
noise, which determines the level of adaptive smoothing that
is able to reduce the artifacts generated by the quantization
process [11].

As we know, similar to H.264/AVC, a QP is used to
determine the quantization step size in HEVC. QP can take 52
values from 0 to 51 for 8-bit video sequences. An increase of 1
in QP means an increase of the quantization step size (Qstep)
by approximately 12%. The resulting relationship between QP
and Qstep for an orthonormal transform is formuated by [1]:

Qstep = 2
(QP−4)

6 , (4)

Fig. 2 also shows how Qstep increases non-linearly with
QP. Since quantization consists of division by a quantization
step size and subsequent rounding while inverse quantization
consists of multiplication by Qstep, we directly study the
relationship between σ and Qstep.

First, we observe the optimal values of σ found experimen-
tally for the sequences BasketballDrive and FourPeople com-
pressed with different QPs (QP = 27, 32, 38, 45) corresponding
to different Qsteps calculated by Eq. (4), as illustrated in Fig.
3. It can be inferred that different sequences with the same Qp
or Qstep have similar optimal values of σ, which means that
σ is only related with QP or Qstep. Hence, in this paper, we
propose to estimate the optimal value of σ directly from Qstep
by curve fitting using the following empirical formulation:

σ = 0.13 ∗Qstep+ 0.71. (5)

The red curve in Fig. 3 expresses the relationship between
the estimated σ and Qstep, which is very obvious and clear.
The value τ is also has a linear relationship with σ, expressed
as

τ = σ ∗ (Bs +
√
c). (6)

Finally, combining Eqs. (4) (5) (6), we further obtain the
relationship between the estimated τ and QP below

τ = (0.13 ∗ 2
(QP−4)

6 + 0.71) ∗ (Bs +
√
c). (7)

Extensive experiments in Section III will verify the robust-
ness and effectiveness of the proposed model Eq. (7).

III. EXPERIMENTAL RESULTS

In this section, we will demonstrate the effectiveness of
our proposed non-local structure-based filter (NLSF) over the
deblocking filter (DF) in HEVC. Our comparison scheme
is conducted by substituting NLSF for DF, which are im-
plemented and integrated on HM 12.0 reference software
[12]. The experimental environment is Intel i7-3770 CPU-3.40
GHz, 8 GB of RAM with professional version of Windows
7 OS. During the implementation, no other third-party static
or dynamic library was included. All source code fulfills the
standards of C++ 11 and can be transplanted to other platforms
such as Linux version of HM.
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Fig. 4: The rate-distortion curves for all test sequences.

Test sequences with three different kinds of resolution
has been chosen for evaluation procedure. Resolutions, frame
rates, scene/character movements and other aspects have been
taken into consideration when picking the test sequences

(see Table I). HM is configured in All-Intra (AI) mode with
quantization parameters (QP) of 27, 32, 38, 45. Table II shows
experimental result using Bjontegaard’s method [13] in terms
of BD-rate (Y component).
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Fig. 5: Subjective quality comparisons for the 1st frame of Sequence
Johnny by HEVC anchor and the proposed NLSF. (a) HEVC (bitrates
= 6115.20 kbps, PSNR = 39.65 dB) (b) NLSF (bitrates = 6103.44
kbps, PSNR = 40.07 dB); (c) and (e) are the enlarged parts from (a);
(d) and (f) are the enlarged parts from (b). Obviously, with even less
bitrates, NLSF obtains much better quality than HEVC anchor.

Table II presents the PSNR performance of the proposed
algorithm against HM reference software (Anchor). The table
shows that the average BD-rate reduction is 5.4% for all
six test sequences. Furthermore, it is obvious to see that the
proposed algorithm achieves up to 7.3% BD-rate saving for
Sequence Johnny, which is quite promising.

TABLE I: Properties of Test Sequences

Sequence Format Encoded Numbers Frame Rate
BasketballDrive 1920×1080 10 50

BQTerrace 1920×1080 10 60
Flowervase 832×480 10 30
FourPeople 1280×720 10 60

Johnny 1280×720 10 60
PartyScene 832×480 10 50

TABLE II: Performance

Sequence BD-Rate Saving (Y Component)
BasketballDrive −5.0%

BQTerrace −6.2%
Flowervase −4.6%
FourPeople −6.4%

Johnny −7.3%
PartyScene −2.9%

Average −5.4%

More details performances can be seen in Fig. 4, in which
we list all the rate-distortion performances for six sequences
under four different QPs. All figures indicate that proposed
method can achieve robust and outstanding performances in
different categories of resolution, frame rates and content
movement. Meanwhile, due to the parallelism feature of SVD
algorithm, a accelerated version with parallelism can also
be implemented for accelerating the whole routine. As for
algorithm complexity analysis, experiment results show that
the encoding time of the proposed method is about seven
times as high as anchor HM reference software, which also
means there exists spacious room for extension, acceleration
and algorithm’s optimization.

Fig. 5 shows the subjective quality comparisons for the 1st

frame of Sequence Johnny by HEVC anchor and the proposed
NLSF. One can easily see that, even with less bitrates, the
proposed NLSF achieves up to 0.42 dB PSNR gain over HEVC
anchor. Besides, better visual quality results are obtained by
NLSF (see Figs. 5(b), 5(d), 5(f)), which preserves more details
and exhibits less artifacts than HEVC anchor (see Figs. 5(a),
5(c), 5(e)).

IV. CONCLUSION

In this paper, to improve the deblocking performance, a non-
local structure-based filter (NLSF) is proposed by simultane-
ously enforcing the intrinsic local sparsity and the non-local
self-similarity of each frame in video. NLSF not only deals
with the boundaries, but also deals with the inside areas, which
is able to effectively reduce the artifacts while enhance quality
of the deblocking frames. Experimental results demonstrate
that, compared with the original HEVC reference encoder
implementation in AI configuration, the proposed NLSF can



achieve up to 7.3% BD-rate saving by substituting for DF in
HEVC. Although with high complexity, the proposed NLSF
shed light on the important role of deblocking filter. On
going work is to address the algorithm parallelization and
optimization for accelerating the proposed NLSF to make it
practical.
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