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T
he Internet continues to grow into

a global platform for multimedia

content distribution. According to

YouTube, users uploaded a stagger-

ing 72 hours of video to the site every minute

in April 2012. The explosive growth of videos

on the Internet aggravates the proliferation of

near-duplicate copies. Also in April 2012, a

German court ordered Google to install filtering

software on YouTube in the country to prevent

users from uploading copyrighted material.

These developments highlight the necessity of

technical solutions for video copy detection.

Similarly, by detecting near-duplicate copies,

video search engines can return results with

semantically coherent but visually diversified

content.

Technologically, however, copy detection

and localization in a Web-scale video database

is a challenging task. This is mainly because

Web video copies have often undergone vari-

ous complex transformations on the audio

and video components in a video file or stream.

In addition, researchers have discovered that

no single audio-visual feature, or single detector

based on several features, can help detect all

transformations. To address this problem, we

propose a novel video copy-detection and local-

ization approach with scalable cascading of

complementary detectors and multiscale se-

quence matching. In this cascade framework,

a soft threshold learning algorithm is utilized

to estimate the optimal decision thresholds

for detectors, and a multiscale sequence-

matching method is employed to precisely

locate copies using a 2D Hough transform and

multi-granularities similarity evaluation.

Extensive experiments were performed

on the TRECVID Content-Based Copy Detec-

tion (TRECVID-CBCD) 2011 benchmark data-

set. The results show that our approach

achieves the best copy-detection accuracies

and localization precisions for most transfor-

mations on this dataset.

Audio and Video Transformations

Figure 1 and Table 1 show examples of trans-

formations used for the TRECVID-CBCD tasks

organized by the National Institute of Stan-

dards and Technology (NIST). We can see

that compared with audio transformations

that contain relatively few variations (such as

compression, companding, and mixing with

speech), visual transformations are much

more diverse and complicated. Usually, video

content is largely preserved after spatial or

temporal content-preserving operations such

as format conversion, quality reduction (such

as noise addition, resolution change, and re-

encoding), and frame-rate change. In contrast,

video is notably modified after spatial or

temporal content-altering operations such as

cropping, picture-in-picture (PiP), pattern in-

sertion, temporally replacing, or reordering.

After years of practice, researchers have

widely recognized that no single feature, or sin-

gle detector based on several features, can

be both robust and discriminative for copy-

detection tasks under various transformations.

That is, if we utilize a set of audio-visual fea-

tures to construct several detectors, some of

which may be robust against certain types of

transformations but vulnerable to other types,

other detectors may be the other way around.

Thus, it is beneficial to combine several detec-

tors to enhance the robustness and discrimina-

bility of a copy-detection system. (See the

‘‘Related Work in Video Copy Detection’’
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Figure 1. Examples of visual transformations on a Web video. See Table 1 for a description of the

various labels.

Table 1. Transformations used for the TRECVID-CBCD tasks.

Category Label Type

Visual transformation V1 Camcorder

V2 Picture in picture

V3 Pattern insertion

V4 Re-encoding

V5 Gamma change

V6 Quality decrease

V8 Postproduction

V10 Combination of three randomly chosen

transformations

Audio transformation A1 Do nothing

A2 MP3 compression

A3 MP3 compression and multiband companding

A4 Bandwidth limit and single-band companding

A5 Mix with speech

A6 Mix with speech and multiband compression

A7 Bandwidth filter, mix with speech, and compression

Mixed transformation* Mn Vx þ Ay ) M[(x �1) * 7 þ y]

* There were a total of 56 mixed transformations, each of which were generated by applying a combi-
nation of eight visual transformations and seven audio transformations.
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sidebar for more details.) This trend has

also been validated by recent practices in the

TRECVID-CBCD contest,1,2 in which most of

the participating approaches compute several

detection results through individual features

and then fuse them to obtain the final result.

Although such approaches could achieve good

detection accuracy, they have an obvious draw-

back. That is, the processing time will be at least

the sum of the time required by all detectors,

if not optimized with multithread or multi-

process programming.

To address this problem, this article presents

a novel scalable cascading framework to orga-

nize multiple complementary detectors in a

cascade framework. In this framework, a query

video is sequentially processed until one detec-

tor asserts it as a copy. So the number of used

detectors is largely dependent on the transfor-

mations that the query video is subject to. In

this way, the processing time can be signifi-

cantly reduced for most copies because they

can be correctly detected through at most the

first several detectors. Moreover, instead of

manually tuning decision thresholds for detec-

tors, a soft threshold learning algorithm is also

proposed to estimate the optimal decision

thresholds. In this algorithm, none of dataset-

related priors is specified, and thus it exhibits

a good generalization on various databases.

In the frame-based detection paradigm,3

without a proper temporal fusing mechanism

[3B2-9] mmu2013030072.3d 27/7/013 15:46 Page 74

Related Work in Video Copy Detection
Video copy detection mainly involves two key techniques:

feature representation and video matching. According to

their intrinsic characteristics, the features used in existing

work can be classified into two categories: global and local

features. Based on the statistics of the entire frame or the

whole clip, global features such as the spatial or temporal

ordinal signatures1,2 or image/video fingerprints3,4 have

advantages of compactness and low computational com-

plexity and, most importantly, are largely invariant to

content-preserving transformations. However, they cannot

deal well with complex transformations such as postproduc-

tion. Instead, local features are by nature resistant to such

content-altering operations because a part of original

content always remains in the copy.

Toward this end, local features are mostly based on the

interest-point detection and local-descriptor calculation.5�7

Among them, the scale-invariant feature transform (SIFT)

could be the most suitable local visual feature for copy de-

tection. To accelerate feature matching, the bag-of-words

(BoW) technique is used frequently by building a visual vo-

cabulary for local features and constructing a visual word his-

togram to represent each frame.5 To make use of both visual

and audio features in video copy detection, some audio fea-

tures originally designed for retrieval are also used for copy

detection, such as Mel-frequency cepstral coefficients

(MFCCs), mean energy, normalized spectral sub-band

moments (NSSMs), and audio spectrum flatness (ASF).8

More generally, it is beneficial to combine several differ-

ent features, or several detectors based on some features,

to improve the detection performance. For example, a

multiple-feature hashing algorithm was proposed in earlier

work9 to fuse multiple features for copy detection, by learn-

ing a group of hash functions for video keyframes and

generating a series of binary codes to represent each

video. The combination is formulated as a reranking prob-

lem,8 which recalculates the similarity scores for all the indi-

vidual detection results and then employs four strategies

(such as average, max, multiply, and logistic) to choose

the best match. In another approach,10 detection results

using audio and visual features are fused by selecting

video matches with the highest similarity score. Obviously,

these approaches could achieve better detection accuracy

than a single feature/detector, yet at a cost of much longer

overall processing time. Therefore, this work proposes a scal-

able cascading framework to organize complementary

detectors in a cascade structure, consequently reducing

the processing time for most copies.

Video matching generally refers to the process of similarity

evaluation and copy assertion between two video clips based

on extracted features. Existing matching methods can be

roughly classified into sliding-window-based and frame-

fusion-based categories. Assuming that two videos are

matched directly by frame-to-frame matching, a sliding win-

dow with the same size as the query clip is moved frame by

frame along the reference video, in which the similarity is cal-

culated.1,2 The major drawbacks were high computational

complexity and vulnerability to temporal transformations

such as frame dropping. Thus, a more flexible and widely

used way is to search the reference database, obtain a list

of similar reference frames for each query frame, and then de-

termine whether it is a copy by fusing these reference

frames.11,12 However, without a proper temporal fusing

mechanism, copies are difficult to be precisely located. There-

fore, a spatiotemporal post-filtering method was presented to

keep only the frame matches that are consistent with a spa-

tiotemporal model.5 Another approach applied a 2D Hough
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on frame-level detection results, copies are dif-

ficult to locate precisely. To solve this problem,

a multiscale sequence matching method is pre-

sented to assemble frame-level similarity search

results into video-level matches using a 2D

Hough transform and multigranularities simi-

larity evaluation. As such, video matching is

performed in a pyramid structure, making it

computationally efficient.

Detection with a Scalable

Cascading Framework

Given a query video q and reference videos

R ¼ frig (1 � i � R), the task of copy detection

is to examine whether 9ri 2 R such that C(q, ri)

holds, where C(x, y) means x is a copy of y.

Toward this end, this article proposes a

scalable cascading framework to organize

detectors that complement each other (see

Figure 2a). Inspired by the well-known classi-

fier cascade,4 our cascading framework places

a series of detectors in simple-to-complex

order. Namely, efficient but relatively simple

detectors should be placed in the front, while

effective but complex detectors should be

located in the rear. In an N-stage cascade of

detectors, DN ¼ d1; d2; . . . ; dNh i, a query q is

processed by each detector successively until

one determines it as a copy or all determine

it as a noncopy. That is, q is first processed

by d1, where a set of positive results {r1i} are

returned. Then for each r1i, if its similarity

s
Vð Þ

1i is greater than or equal to a threshold �1,

q will be immediately accepted as a copy
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transform on frame matches to locate the copy segment.10

Following this, we propose a multiscale sequence matching

method using a 2D Hough transform and multigranularities

similarity evaluation to achieve a better trade-off between

high localization preciseness and fast matching speed.

From 2008 to 2011, TRECVID organized a content-based

copy detection (CBCD) task. Given a test collection of videos

and a set of queries, the task is to determine for each query

whether it is a copy and if so, where some part of the query

occurs in the test collection. All submitted results are eval-

uated for two profiles: NOFA, which aims to reduce the

false alarm rate to 0, and BALANCED, which sets an equal

cost for false alarms and misses. The benchmark dataset con-

tains 394 hours of high-quality professional videos from

2008 and 2009 and 425 hours of 11,524 poor-quality

Web videos from 2010 and 2011. Each year, more than

20 teams participated in this contest.13 It is widely recog-

nized that the TRECVID-CBCD 2010/2011 dataset is one of

the largest and most complex benchmarks for Web-scale

video copy detection.
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of r1i. Otherwise, the evaluation of d2 on q will

be triggered and so forth. Only if q is asserted

as a noncopy by all the detectors will it be

accepted as a noncopy. In practice, most cop-

ies can be detected through the first several

detectors, thus saving a great deal of process-

ing time.

Two key issues should be addressed in our

framework: how to set complementary detec-

tors d1, d2, . . ., dN and how to determine the de-

cision threshold �n for dn. Note that if Y ¼ f�1,

�2, . . ., �Ng are set manually, they are called hard

thresholds; otherwise, soft thresholds.

Complementary Detectors

Figure 2b shows one implementation of

the proposed cascading framework. The basic

motivation is to exploit several audio-visual

features that complement each other on differ-

ent transformations. To meet the complemen-

tarity requirement, three features are used in

our implementation, including an audio fea-

ture named weighted audio spectrum flatness

(WASF),5 a global visual feature based on a

discrete cosine transform (DCT), and a local

visual feature of dense-color scale-invariant

feature transform (DC-SIFT).6 The comple-

mentarity of visual and audio features is obvi-

ous. DC-SIFT and DCT are complementary in

that the former can effectively handle spatial

content-altering transformations and the lat-

ter can resist spatial content-preserving but

quality-degrading operations. This can be fur-

ther illustrated by Table 2, which shows the
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.
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}

}

Figure 2. Schematic

illustration of (a) the

proposed cascading

framework and (b) one

of its implementations.
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effectiveness of different features on the audio-

visual transformations. We can see that using

only WASF is enough to deal with audio trans-

formations A1�A4, no matter which visual

transformations exist. However, if the query

video is also subject to one of the V3�V6 visual

transformations, WASF and DCT are needed.

For the remaining cases, three features should

be used. Our experimental results also validate

the complementarity of individual features in

our system.

WASF Detector. As an extension of a MPEG-7

descriptor, we use WASF to cope with audio

transformations such as MP3 compression and

multiband companding. A descriptor with 72D

WASF features is extracted from each 6-second

audio frame, and we adopt Euclidean distance

to measure the dissimilarity between two

descriptors. For reference videos, all the WASF

descriptors are indexed by locality sensitive

hashing (LSH) for efficient feature matching,

where the indexing tables are generated using

16 spherical hashing functions.7

DCT Detector. DCT features are robust in

content-preserving transformations. Moreover,

they are compact and computationally effi-

cient. In our system, a new DCT feature is

designed by utilizing the relationship between

low-frequency DCT coefficients of adjacent

image blocks. It differs from the original DCT

feature in that subband energy is used as an al-

ternative to DCT coefficient. Then the invari-

ance of its relative magnitude can be used to

improve the feature’s robustness.

In this detector, Hamming distance is used

as the distance metric, and LSH is used to

index all the reference DCT features. Here the

binary hashing functions are used, by ran-

domly selecting one dimension in the DCT fea-

ture each time to generate a hashing indexing

table.

DC-SIFT Detector. In our system, DC-SIFT is

adopted to cope with content-altering visual

transformations (such as camcording, PiP, and

postproduction). We use it to replace the SIFT

and speeded up robust feature (SURF) in our

TRECVID-CBCD 2010 system, which can ob-

tain high detection accuracy at the cost of a

long processing time. Furthermore, the bag-of-

words (BoW) technique is applied to convert

each DC-SIFT descriptor into a visual word

(800 words generated from 10 million DC-

SIFT descriptors).

However, BoW representation might lead to

a loss of discriminability for the descriptors.

Therefore, the position, orientation, and scale

information for each keypoint is taken into ac-

count so that only keypoints mapped to the

same visual word and roughly with the same

position, orientation, and scale will be regarded

as matches. In particular, a keyframe’s spatial

region is divided into 2 � 2 cells, so the posi-

tion of each keypoint is quantized into one

integer (0�3). Similarly, the orientation and

scale of each keypoint are quantized into

16 and 2 bins, respectively—thus, actually hav-

ing 800 � 4 � 16 � 2 ¼ 100,000 words in the

extended vocabulary. For all reference videos,

DC-SIFT BoWs are stored into an inverted

index.

Preprocessing

Two preprocessing issues should also be

addressed here. The first is to extract audio

and video frames. In our system, visual key-

frames are obtained by uniformly sampling

the video component at a rate of 3 frames

per second (fps), while 6-second audio frames

are constructed from every 198 audio words

with a 5.4-second overlap between adjacent

frames, where each audio word is a short seg-

ment of 90 ms with a 60-ms overlap between

consecutive words.

The second issue is PiP detection. PiP frames

are detected using a Hough transform that

detects two pairs of parallel lines to locate the

inserted foreground videos. For queries with

PiP, the foreground and non-foreground key-

frames will be processed respectively to check

whether the corresponding videos are a copy.

In addition, queries asserted as noncopies will
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Table 2. The effectiveness of different features on the audio-visual

transformations.

A1 A2 A3 A4 A5 A6 A7

V1
Case 3: WASFþ DCTþ DC-SIFT

V2

V3

V4
Case 1: WASF only Case 2: WASF þ DCT

V5

V6

V8
Case 3: WASFþ DCTþ DC-SIFT

V10
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be flipped and matched again to identify flip

transformations.

Detection Using Frame Fusion

To maintain robustness to various temporal

transformations, all detectors in our system

follow the frame-based copy detection para-

digm,3 where the final result is obtained

by assembling frame-level similarity search

results into video-level matches. Given a

query video q, each detector dn 2 DN picks

up the top K1 similar reference keyframes

(audio frames) for each query keyframe

(audio frame) (K1 ¼ 20 in this work), obtaining

a collection M Fð Þ
n qð Þ of frame-level matches.

Each match is expressed as

mðFÞ
n ¼ t qð Þ; t rð Þð Þ ¼ q; t qð Þ; r; t rð Þ; s Fð Þ

n

D E
ð1Þ

which means the reference frame of r at time-

stamp t(r) is a match to that of q at timestamp

t(q), with a similarity s
ðFÞ
n . Then through an ap-

propriate sequence-matching method described

in the next section, a set of video-level matches

can be obtained, each denoted by

m Vð Þ
n q; rð Þ¼ q; t Bð ÞðqÞ; t Eð Þ qð Þ; r; t Bð Þ rð Þ; t Eð Þ rð Þ; s Vð Þ

n

D E
ð2Þ

where [t(B)(q), t(E)(q)] and [t(B)(r), t(E)(r)] are

timestamps for the beginning and ending of

the copy segment in Q and r, and s
Vð Þ

n denotes

the video-level similarity calculated by dn.

Soft Threshold Learning

For each detector, it is obvious that artificial

adjustment of a hard threshold is burdensome

and, more importantly, lacks generalization.

Therefore, we design a learning algorithm to

automatically determine the optimal soft

thresholds �� ¼ ��1; �
�
2; . . . ; ��N

� �
.

Problem Formulation

Given a query video q, the detector dn 2 DN

with a threshold �n is assumed to output sev-

eral video-level matches fm Vð Þ
n q; rð Þg. Then

the cost of q, with respect to �n, denoted by

c(q, yn), is calculated as follows:

1. If q is actually a copy and asserted as a copy

by dn

�
s

Vð Þ
n � �n

�
, then if m Vð Þ

n q; rð Þ is the cor-

rect reference—that is, the reference video r

is right and the copy duration [t(B)(r), t(E)(r)]

largely overlaps with the ground truth—

then it is a true positive (TP) and c(q, �n) is

set to zero. However, if m Vð Þ
n q; rð Þ is identi-

fied as a wrong reference clip, then it gener-

ates a false positive (FP) and a false negative

(FN) simultaneously, and c(q, �n) is set to

the sum of cFP and cFN, which represent

the penalty for a FP and a FN, respectively.

2. If q is a copy but asserted as a non-copy

by dn

�
s

Vð Þ
n � �n

�
, then m Vð Þ

n q; rð Þ is a FN

and c(q, �n) is set to cFN.

3. If q is a noncopy but asserted as a copy, then

m
Vð Þ

n q; rð Þ is a FP and c(q, �n) is set to cFP.

4. If q is a noncopy and asserted as a noncopy,

then m Vð Þ
n q; rð Þ is a true negative (TN) and

c(q, �n) is set to zero.

By summarizing the four cases, we can get

c q; �nð Þ ¼

0 if �C qð Þ ^ s
Vð Þ

n � �n ^ T m Vð Þ
n q; rð Þ

� �� �
_ : �C qð Þ ^ s

Vð Þ
n � �n

� �
cFP þ cFN; if �C qð Þ^ s

Vð Þ
n ��n ^:T m Vð Þ

n q; rð Þ
� �� �

cFN; if �C qð Þ ^ s
Vð Þ

n < �n

� �
cFP; if : �C qð Þ ^ s

Vð Þ
n � �n

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3Þ

where �C qð Þ denotes the statement that q is in-

deed a copy in the ground truth (in contrast,

C(q) denotes q is asserted as a copy by the

system), T
�
m

Vð Þ
n q; rð Þ

�
denotes that m Vð Þ

n q; rð Þ
recognizes the correct reference, and the oper-

ator : denotes the logical negation. Often,

<cFP, cFN> can be set empirically. In our

study, it is set to <2, 0.2> because a FP is

much worse than a FN in many applications,

such as copyright protection.

Thus given a training set Q ¼ {q1, q2, . . ., qn},

the error rate of dn with respect to �n can be

defined as the weighted sum of the costs for

all queries:

" Q; �nð Þ ¼
XJ

j¼1

wn;j � c qj; �n

� �
ð4Þ

where Wn ¼ {wn,1, wn,2, . . ., wn,J] is the weight

vector of all training queries for dn. In the cas-

cade, different detectors may correspond to

different training weight vectors. Thus, the ob-

jective of threshold learning is to minimize the
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overall error rate " Q; �nð Þ � for all detectors in

DN over the training set Q.

Learning Algorithm

Ideally, the optimal thresholds �� ¼ ��1; �
�
2; . . . ; �

�
N

� �
should make a good trade-off between FPs

and FNs, consequently leading to the mini-

mum error rate. For dn 2 DN , " Q; �nð Þ should

be calculated at a range of candidate thresh-

olds, sweeping from the minimal video similar-

ity (denoted by s
^ Vð Þ

n ) to the maximal similarity

(denoted by s
_ Vð Þ

n ) so that the similarity score

associated with the minimal error rate "�n is cho-

sen as the optimal threshold ��n. That is,

��n ¼ arg min

�n2 s
^ Vð Þ

n ; s
_ Vð Þ

n

h i " Q; �nð Þ ð5Þ

To ensure posterior detectors only focus on

the queries that are incorrectly detected by

their antecessors, in the training, weights of

those correctly judged queries should be abated

for these posterior detectors. Motivated by the

Adaboost algorithm in object detection,4 this

weight update can be expressed as

wnþ1;j ¼
wn;j

"�n
1�"�n

; if cðqj; �
�
nÞ ¼ 0

wn;j; otherwise

(
ð6Þ

where wn,j and wnþ1;j denote the training

weights of qj for two consecutive detectors dn

and dnþ1. That is, if qj is detected correctly by

dn (that is, c qj; �
�
n

� �
¼ 0), its training weight

should become smaller for dnþ1. Otherwise,

the training weight remains unchanged.

The learning procedure is summarized in

Algorithm 1 (see Figure 3).

Localization Using Multiscale

Sequence Matching

If a query q is asserted as a copy of ri 2 R, then

the task of copy localization is to determine

the precise beginning and ending timestamps

of the copy segments in q and ri—namely,�
t(B)(q), t(E)(q)

	
and

�
t(B)(ri), t(E)(ri)

	
. Instead of

treating copy localization as an additional

computation of copy detection,8 our system

performs in a localization-by-detection man-

ner. That is, given frame-level matches

M Fð Þ
n qð Þ ¼

�
m Fð Þ

n t qð Þð Þ; t rið Þ
�

obtained by detec-

tor dn, our system first identifies a set of

video-level match hypotheses Hn qð Þ, each

with the corresponding precise locations. It

then evaluates the similarity s
Vð Þ

n between the

copy segments q and ri for each hypothesis

and, finally, picks up the video matches with

s
Vð Þ

n � ��n. In this process, copy localization is

performed simultaneously with detection.

One crucial issue is how to achieve high lo-

calization preciseness and fast matching speed

simultaneously. Toward this end, this article

proposes a multiscale sequence matching

method using a 2D Hough transform and

multigranularities similarity evaluation.

Multiscale Sequence Matching

Inspired by spatial pyramid matching,9 which

conducts a pyramid match kernel in 2D image

space, multiscale sequence matching parti-

tions each video into increasingly finer tempo-

ral segments and combines similarities over

multiple granularities in a principled way.

This ‘‘multiscale’’ way offers a certain degree

of freedom in video matching and thus re-

mains robust to the possible temporal

transformations.

Figure 4 shows two typical paradigms of

multiscale sequence matching. In the first para-

digm, dynamic time warping (DTW) methods
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Algorithm 1

Input: A cascade of meta-detectors DN ¼ hd1,d2 . . . ,dNi, a training set Q ¼ {qj }J
,

and a reference database R ¼ {ri }R
.

Output: Optimal thresholds �� ¼ ��1; �
�
2; . . . ; ��N

� �
Procedure:
1. Initialize weights w1,J ¼ 1/J for j ¼ 1, 2, . . . , J.

2. For n ¼ 1, 2,. . . , N

2.1. Normalize the weights:

wn;j  
wn;jPJ
k�1wn;k

for j ¼ 1;2; . . . ; J

so that WN is a probability distribution.

2.2. Evaluate dn on Q, and record the detection results:

M
Vð Þ

n ¼ m
ðvÞ
n ðqj ; ri Þjri 2 R; j ¼ 1;2; . . . ; J

n o
Then calculate the maximal and minimal video similarities:

s
_ Vð Þ

n ¼ Max s
ðvÞ
n jmðvÞn ðqj ; ri Þ 2M

Vð Þ
n

n o� �
s
^ Vð Þ

n ¼ Min s
ðvÞ
n jmðvÞn ðqj ; ri Þ 2M

Vð Þ
n

n o� �
2.3. Find the optimal threshold for dn,

��n ¼ arg min

�n2 s
^ Vð Þ

n ;s
_ Vð Þ

n

h i " Q; �nð Þ

and record the minimum error rate: "�n ¼ "ðQ; ��nÞ:
2.4. Update the weights for dn+1:

3. Return �� ¼ ��1; �
�
2; . . . ; ��N

� �
:

Figure 3. Procedure for learning soft thresholds.
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(such as the Viterbi-based frame fusion algo-

rithm3) are performed on multiple temporal

granularities, with different numbers of frames

in a node. In each granularity, DTW can find

the optimal path that minimizes the accumu-

lated distance between two sequences, in-

dependent of certain nonlinear temporal

variations. After applying a 2D Hough trans-

form to identify a set of video-level match

hypotheses, the second paradigm, temporal

pyramid matching (TPM),2 places a sequence

of increasingly coarser grids on each hypothesis

and takes a weighted sum of the number of

matches that occur at each level. Here two

nodes are said to match if they fall into the

same cell of the grid. Matches found at finer

levels are weighted more highly than matches

found at coarser levels. Compared with DTW,

TPM is computationally more efficient because

it calculates the similarity between two nodes

at each level simply by counting the matches.

TPM Algorithm

For frame-fusion based matching, a key issue is

to define appropriate temporal constraints on

frame-level matches such that two matched

sequences have coherent timestamps (that is,

t(E)(ri) � t(B)(ri) & t(E)(q) � t(B)(q)). However, it

is not easy to define such constraints. Con-

straints that are too strict could effectively

filter out some false alarms (for example, a

noncopy reference video with only several vi-

sually similar frames), meanwhile inevitably

causing some misses because it is hard to

find one-one frame correspondence between

an original and its transformed copies. How-

ever, constraints that are too relaxed may

cause the opposite problem.
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Figure 4. Two typical paradigms of multiscale sequence matching: (a) dynamic time warping (DTW) and (b) temporal pyramid

matching (TPM).

IE
E
E

M
u

lt
iM

e
d

ia

80



TPM addresses this contradiction with a 2D

Hough transform and multigranularities simi-

larity evaluation. Its procedure can be described

as follows:

Given frame-level matches MðFÞ
n qð Þ ¼

fm Fð Þ
n t qð Þ; t rið Þð Þg where m Fð Þ

n t qð Þ; t rið Þð Þ ¼

q; t qð Þ; ri; t rið Þ; s Fð Þ

n

�
, a 2D Hough transform is

first conducted on M Fð Þ
n qð Þ to vote in K2 video-

level hypotheses Hn qð Þ (K2 ¼ 10 in this work),

where all frame-level matches in each hypoth-

esis have a similar time shift value �t. For

m Fð Þ
n t qð Þ; t rið Þð Þ, for example, the time shift be-

tween two frames is calculated by �t ¼ t(q) �

t(ri). Then for hn qð Þ 2 Hn qð Þ, the timestamps

of a copy in q and ri—that is,
�
t(B)(q), t(E)(q)

	
and

�
t(B)(ri), t(E)(ri)

	
—are identified by picking

up the first and last frame-level matches that

accord with this hypothesis.

The next step is to evaluate the similarity

between
�
t(B)(q), t(E)(q)

	
and

�
t(B)(ri), t(E)(ri)

	
for each hn qð Þ 2 Hn qð Þ. Toward this end, they

are partitioned into increasingly finer seg-

ments, with a total of G ¼ 2l segments at

level l (l ¼ 0, 1, . . . , L), denoted by (ts0(q), . . . ,

tsG�1(q)) and (ts0(ri), . . . , tsG�1(ri)), respectively.

Then similarity scores of frame-level matches

across the two segments are accumulated to

get the segment similarity, namely,

s
Sð Þ

n;l;g ¼
P

m
Fð Þ

n t qð Þ;t rið Þð Þ2hn qð Þ;
t qð Þ2tsg qð Þ;t rið Þ2tsg rið Þ

s
Fð Þ

n t qð Þ; t rið Þð Þ ð7Þ

Thus, the video-level similarity at level l can

be calculated as follows:

s
Vð Þ

n;l ¼ 1
m

PG�1

g¼0

s
Sð Þ

n;l;g0 ð8Þ

where m is the number of keyframes in
�
t(B)(q),

t(E)(q)
	

and is used to eliminate the influence of

the sequence length. Finally, the overall video-

level similarity score s
Vð Þ

n is calculated by accu-

mulating the weighted similarities from multi-

ple levels:

s
Vð Þ

n ¼ 2�Ls
Vð Þ

n;0 þ
PL
l¼1

2l�L�1s
Vð Þ

n;l ð9Þ

The weight of level l is set to 2�L for l ¼ 0,

and 2l�L�1 for l = 1, . . ., L to penalize matches

in coarser levels. After that, we can obtain a

set of candidate matches for q, denoted by

M Vð Þ
n ¼

�
m Vð Þ

n qj; ri

� �
jri 2 R

�
, where m Vð Þ

n q; rið Þ ¼

q; t Bð Þ qð Þ; t Eð Þ qð Þ; ri; t

Bð Þ rið Þ; t Eð Þ rið Þ; s Vð Þ
n

�
. For each

m Vð Þ
n q; rið Þ 2M Vð Þ

n qð Þ, we can determine whether

it is a copy by comparing s
Vð Þ

n q; rið Þ with the

threshold ��n.

Because only a set of frame-level matches are

needed as its input, TPM is suitable for various

detectors using frame-based visual/audio fea-

tures. It is also computationally efficient: Let

R denote the size of the reference database,

M be the average number of keyframes in

each query video, B be the bin number in the

2D Hough transform, K1 be the number of

similar reference key-frames (audio frames) for

each query keyframe (audio frame), and K2 be

the number of voted video-level hypotheses

by the Hough transform. Then the computa-

tional complexity of TPM for one query can

be approximated as

R � B � log K2 þ M � K1 � K2 � (L þ 1) (10)

Here the left term is related to the 2D Hough

transform and the right one is regarding multi-

granularities similarity evaluation. Because L,

K1, and K2 are small numbers in our study

and M is also not big for most real-world appli-

cations, the overall computational complexity

is mainly determined by the 2D Hough trans-

form over a large reference database.

Experiments

To evaluate the performance of our approach,

experiments were conducted on the TRECVID-

CBCD benchmark dataset used in the 2010 and

2011 contests. In this dataset, the 425-hour-

long reference database contains 11,503 videos

collected from the Internet that are diverse in

content, style, and format and varied in qual-

ity. In addition, two databases of query videos,

each of which is an average of 73 seconds long,

were constructed by applying a combination of

eight visual transformations and seven audio

transformations (for a total of 56 transforma-

tions) to three types of video: reference video

only, reference video embedded into a non-

reference video, and nonreference video

only.1 Among them, we used the first one,

which contains 10,976 videos constructed for

the 2010 contest, as the training dataset for

soft threshold learning, and we used the

other database of 11,256 videos constructed

for the 2011 contest as the test set.

In our experiments, we adopt the evaluation

metrics used in the TRECVID-CBCD contest.1

The primary metric, the normalized detection
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cost rate (NDCR), is used to measure the

detection accuracy for each individual transfor-

mation. It is calculated as a weighted combina-

tion of the probability of a miss error PMISS and

the false alarm rate RFA:

NDCR ¼ PMISS þ � � RFA

¼ FN

NTgt
þ cFA

cMISS � RTgt
þ FP

TRef � TQry

ð11Þ

where FN and FP stand for false negative (miss)

and false positive (false alarm), respectively.

cFA and cMISS are the costs of an individual

false alarm and an individual miss, respec-

tively (cFA ¼ 1 for BALANCED, cFA ¼ 1,000

for NOFA, and cMISS ¼ 1 for both profiles).

Without loss of generality, we only report

the balanced results. TTgt ¼ 134 is the total

number of copies, and RTgt ¼ 0.005 is the a pri-

ori target rate. TReg ¼ 420 and TQry ¼ 4.4592

are the total length (in hours) of the entire ref-

erence database and that of the queries for a

transformation respectively. Clearly, for a de-

tection system, a smaller NDCR is better.

To measure the localization precision, the

second metric, mean F1, is defined as the har-

monic mean of precision and recall, where pre-

cision is the percentage of the asserted copy

that is an actual copy while recall is the per-

centage of the actual copy that is subsumed

in the asserted copy. Thus, if C(q, ri) holds, F1

represents the extent of the overlap between�
t(B)(ri), t(E)(ri)

	
(the asserted copy) and

�
t0(B)(ri),

t0(E)(ri)
	

(the actual copy). The third measure,

mean processing time (MP-Time), is the mean

time (in seconds) to process a query from

decoding the video files to yielding the result.

All experiments were carried out on a Windows

Server 2008 with a 32-Core 2.00-GHz CPU and

32 Gbytes of memory.

Performance of Individual Detectors

The first experiment was to evaluate the per-

formance of the detectors. Table 3 shows the

results of detectors based on DC-SIFT, DCT,

and WASF.

We can see that the DCT detector performs

well on content-preserving transformations

such as V4 and V6, but it is vulnerable to

content-altering transformations such as V1,

V2, V8, and V10. In particular, it is incapable

of resisting V1 (camcording), which is indicated

by a NDCR of 0.970. Although the NDCR of the

DC-SIFT detector is superior to that of the

DCT detector on most visual transformations,

the copy collections respectively obtained by

them do not fully overlap. Generally speaking,

the DCT detector has the advantages of excel-

lent mean F1 and relatively short MP-Time. In

contrast, the MP-Time of the DC-SIFT detector

takes much longer than that of the DCT or

WASF detectors.

For audio, the WASF detector can handle

simple transformations such as A1�A4 well,

while showing relatively poor performance for

complex transformations such as A5�A7,

which feature mixing-with-speech. Intrinsi-

cally, the WASF feature cannot effectively dis-

tinguish the mixed speech from audio signal.

The experimental results support our conjec-

ture about the complementarity of detectors

based on audio features as well as global and

local visual features. That is, none can resist

all the transformations; whereas a good overall

performance may be achieved by appropriately

combining them.

Comparison of DTW and TPM

The second experiment was to compare the

performance of different multiscale sequence
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Table 3. Comparison of individual detectors.

Metric Detector V1 (A1) V2 (A2) V3 (A3) V4 (A4) V5 (A5) V6 (A6) V8 (A7) V10 Average

NDCR DC-SIFT 0.149 0.075 0.015 0.104 0.030 0.261 0.097 0.202 0.117

DCT 0.970 0.373 0.142 0.097 0.075 0.224 0.522 0.351 0.344

WASF 0.119 0.127 0.127 0.142 0.284 0.276 0.284 � 0.194

Mean F1 DC-SIFT 0.943 0.944 0.962 0.952 0.965 0.960 0.957 0.954 0.955

DCT 0.911 0.956 0.963 0.962 0.962 0.954 0.950 0.956 0.952

WASF 0.952 0.951 0.951 0.950 0.948 0.946 0.946 � 0.949

MP-Time DC-SIFT 217 421 209 207 211 204 311 216 250

DCT 6.36 10.20 4.60 4.77 4.60 4.71 8.50 7.31 6.38

WASF 5.49 5.49 5.48 5.48 5.49 5.48 5.49 � 5.49
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matching methods—that is, DTW using a

Viterbi-based frame fusion algorithm3 and

TPM. For simplicity, this experiment is only

conducted using the DC-SIFT detector. Param-

eter validation experiments show that TPM

with four levels (l ¼ 0, 1 2, 3, thus at most

eight temporal segments) can achieve the

best matching results. Too few levels (for ex-

ample, l ¼ 0) would lead to including many

malposed frame matches, while too many lev-

els (for example, l ¼ 4) would miss some short

copies due to inadequacy of strictly aligned

frame matches.

Table 4 shows that TPM outperforms DTW

in terms of all three metrics. Particularly,

TPM exhibits better localization precision

(with an average mean F1 of 0.955). This is

because DTW utilizes more relaxed constraints

to cope with temporal transformations (such

as frame dropping) and is tolerant to malposed

frame matches to some extent, consequently

leading to more false alarms in detection and

localization. Compared with TPM, DTW is

computationally more expensive because it

employs a Viterbi-like dynamic programming

algorithm on a large amount of frames. The

experimental results confirm the effectiveness

and efficiency of TPM as a video matching

algorithm.

Performance of the Proposed Approach

We used two versions of our implementation

in this experiment: one based on three detec-

tors D
ðSÞ
3 ¼



d

Sð Þ
WASF; d

Sð Þ
DCT; d

Sð Þ
DC-SIFT

�
(which we

call Soft D3) and one based on two detectors

D
Sð Þ

2 ¼


d

Sð Þ
WASF; d

Sð Þ
DCT

�
(which we call Soft D2).

Meanwhile, the hard threshold version

D
Hð Þ

3 ¼


d

Hð Þ
WASF; d

Hð Þ
DCT; d

Hð Þ
DC-SIFT

�
(which we call

Hard D3), also included in this experiment,

achieved the best performance in the TRECVID-

CBCD 2011 contest at the cost of a long time

for manual threshold tuning. Here Soft D2

and Hard D3 can be viewed as two baseline

methods of the proposed implementation

(Soft D3). Moreover, we also included the two

best approaches from 21 other participants in

this contest, CRIM-VISI (which obtained excel-

lent performance using nearest-neighbor

mapping) and INRIA-LEAR (which features

the early fusion of multiple audio-visual fea-

tures), and the median performances on each

transformation among all approaches in this

contest (denoted by ‘‘Median’’).1 Note that

their MP-Times are only used as references

because they were executed on different

platforms.

Table 5 summarizes the average performan-

ces for different methods, and Figure 5 shows

their performance curves over 56 transforma-

tions. From the results, we can see that by

integrating complementary detectors, both

Soft D3 and Hard D3 can dramatically im-

prove detection accuracy, localization preci-

sion, and efficiency (note that their average

MP-Time is even shorter than that of the

DC-SIFT detector). Meanwhile, by utilizing

the soft threshold learning algorithm, SoftD3

can achieve a NDCR (paired t test, p ¼ 0.774)

and mean F1 (p ¼ 0.0476) comparable to
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Table 4. Comparison between TPM and DTW.

Metric Detector V1 (A1) V2 (A2) V3 (A3) V4 (A4) V5 (A5) V6 (A6) V8 (A7) V10 Average

NDCR TPM 0.149 0.075 0.015 0.104 0.030 0.261 0.097 0.202 0.117

DTW 0.172 0.090 0.015 0.112 0.045 0.284 0.112 0.224 0.132

Mean F1 TPM 0.943 0.944 0.962 0.952 0.965 0.960 0.957 0.954 0.955

DTW 0.901 0.916 0.921 0.917 0.920 0.914 0.913 0.919 0.915

MP-Time* TPM 4 4 4 4 4 4 4 4 4

DTW 84 77 73 79 72 91 77 89 80

* MP-Time only includes the time for TPM or DTW, while excluding the time for DC-SIFT feature extraction and searching.

Table 5. Comparison between the proposed approach and results from the

TRECVID-CBCD 2011 evaluation.

Method

Average

NDCR

Average

mean F1

Average

MP-Time

Proposed approach Soft D3 0.054 0.951 163.184

Soft D2 0.178 0.950 9.752

TRECVID-CBCD

2011 Evaluation

Hard D3 0.055 0.950 172.291

CRIM-VISI 0.159 0.715 2,792

INRIA-LEAR 0.271 0.944 2,079

Median 1.050 0.889 191.535
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Hard D3. As Figure 5 shows, despite being statis-

tically insignificant on the overall detection

accuracy, Soft D3 exhibits slightly better

detection accuracy on several transformations.

More importantly, compared with Hard D3,

which utilizes some dataset-related priors to

manually tune the thresholds (for example, to

set a high confidence for the DC-SIFT detector

on V3 and similarly for the DCT detector on

V4 and V6), Soft D3 does not specify such priors
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in the threshold learning process and thus

can have a better generalization on various

databases.

Among all the methods, Soft D3 achieves a

compelling performance; it wins 35 best

NDCR and 35 best mean F1, and its MP-Time

is better than the median ones on most trans-

formations. Comparatively, Hard S3 wins 32

best NDCR (30 tied for first place with Soft

D3) and two best mean F1, while CRIM-VISI

wins 20 best NDCR but has poor localization

precision, with an average mean F1 of 0.715.

By using only two efficient detectors, Soft D2

can also achieve a competitive NDCR and ex-

cellent mean F1 within a relatively short MP-

Time, demonstrating the scalability of the pro-

posed cascading framework. Overall, this excel-

lent performance shows the effectiveness and

efficiency of our approach.

Conclusion

The experimental results show that, on the

TRECVID-CBCD 2011 benchmark dataset,

our approach can achieve the best copy detec-

tion accuracies and excellent localization pre-

cisions for the majority of transformations.

In our approach, all query videos, whichever

transformations they are subjected to, are pro-

cessed by the same chain of detectors with

the identical decision thresholds. However, dif-

ferent transformations (such as V1 versus V4 in

Figure 1a) may exhibit significantly distinct

audio-visual properties. Thus in the future

work, we intend to integrate the transforma-

tion recognition module in the cascading

framework and use different detector chains

for different categories of transformations. It is

expected to achieve better performance and

higher scalability on practical copy-detection

applications. MM
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