
 
 

 
 

A 3D Auto-Regressive Model for Bi-Directional Prediction 
 

Yongbing Zhang*a, Debin Zhaoa, Siwei Mab, Ronggang Wangc, Wen Gaob 

aDepartment of Computer Science, Harbin Institute of Technology, Harbin, 150001, China 
bInstitute of Digital Media, Peking University, Beijing, 100871, China 

cFrance Telecom R&D, Beijing, Co., Ltd 
e-mail: ybzhang@jdl.ac.cn 

ABSTRACT 

In this paper, a 3D auto-regressive (AR) model is proposed for bi-directional prediction. The prediction is composed of 
two 3D AR models, which are along the forward and backward directions, respectively. Applying the 3D AR model, 
each pixel in the current frame is predicted as a weighted summation of pixels within a spatial neighborhood along the 
forward/backward motions within the forward/backward reference frames. Ultimately, the prediction of each pixel is 
obtained as the combination of predictions generated by the two 3D AR models. To derive accurate AR coefficients, this 
paper proposes a framework that performs simultaneous coefficient estimation and image interpolation. As opposed to 
other methods, the predicted pixels generated by one 3D AR model are further used to predict the pixels in adjacent 
frame along the motion trajectory. Consequently, each pixel in one forward/backward reference frame can be predicted 
as a nonlinear combination of pixels within an enlarged spatial neighborhood along the motion in one backward/forward 
reference frame. An iterative algorithm using a nonlinear least squares method is then devised to compute the optimum 
3D AR coefficients. Various experiments conducted in this paper have confirmed that the proposed method has superior 
performance for bi-directional prediction.  
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1. INTRODUCTION 
Motion compensated prediction (MCP) has a broad application in video compression, since it removes the 

temporal redundancy by estimating the motion vector field between successive frames [1]. MCP has been adopted in 
various video coding standards such as ITU-T Recommendations H. 261 [2] H.263 [3] [4], and H.264/AVC [5] [6]. 
However, MCP does not achieve good results in cases there are intensity variations between successive frames or the 
object shape is not consistent with the block shape. That's due to the reason that MCP is based on the assumption that the 
object is performing translational motion between adjacent images, which is not always hold true for natural videos. By 
extending traditional MCP, overlapped block motion compensation (OBMC) [7] [8] was proposed to further increase the 
performance of linear prediction. OBMC is based on multi-hypothesis and predicts one block as the weighted summation 
of multi blocks, pointed by multiple motion vectors, and thus can reduce the inefficiency brought by MCP when the 
block shape is not consistent with the object shape. However, constant predictor coefficients are used to combine linearly 
hypothesis of a multi-hypothesis in OBMC. Consequently, it may sometimes oversmooth the edges of the image and 
degrade the visual quality of the predicted image. 

Auto-regressive (AR) model [9], which is an efficient, compact description of random process, is able to have 
desirable performance for the linear prediction. AR models have attracted a lot attention of image/video applications. 
Both spatial AR predictor [9] and temporal AR predictors [10] [11] have been proposed to improve the prediction 
accuracy. In [9], predictive pixels were obtained by observed "prior" block of pixels in a block raster scan of the current 
image. In [10], geometric duality was applied to obtain a high resolution sequence based on the low resolution one, and 
in [11] each pixel was predicted as a linear combination of pixels in spatio-temporal neighborhood, and then the resulting 
error was quantized and transmitted to decoder. In this method, the motion information is embedded by the AR 
coefficients and the AR coefficients have to be transmitted to the decoder the match the encoder lossless.  

Inspired by the superior property of the AR model, in this paper a 3D AR model was proposed to predict the 
current frame based on the observations in the previous and following frames. In the 3D AR model, each pixel in the 
current frame is predicted as a weighted summation of pixels within a spatial neighborhood along the motion trajectory 



 
 

 
 

in the forward/backward reference frame. To avoid transmitting the AR coefficients so as to save the bandwidth in video 
coding, we first predict each pixel in the current block as a weighted summation of corresponding pixels in the 
forward/backward reference frames. Then we propagate the AR interpolation along the motion trajectory, which means 
that we use the predicted pixels in the current block to further predict the pixels in the adjacent backward/forward 
reference frames along the motion trajectory. Consequently, each pixel in the forward/backward reference frame can be 
predicted as a nonlinear combination of pixels within an enlarged spatial neighborhood along the motion in the 
backward/forward reference frame. To tackle such a nonlinear problem, an iterative prediction algorithm using a 
nonlinear least squares method is then devised to compute the optimum AR coefficients. Ultimately, the prediction of 
each pixel is obtained as the combination of predictions generated by the forward and backward 3D AR models.  

The organization of this paper is as follows. Section 2 describes the AR model for linear prediction, followed by an 
iterative algorithm for deriving AR coefficients in Section 3. Experimental results are presented in Section 4. And finally, 
this paper is concluded in Section 5. 

2. AUTO-REGRESSIVE MODEL FOR LINEAR PREDICTION 
The proposed AR model aims to predict the picture data based on the previous and following observation 

history. Let 2 1k+Y be a rectangular block of pixels in the current frame 2 1k + , 2kX  be the similar block in the 

previous frame 2k  along the forward motion trajectory and 2 2k+X  be the similar block in the following frame 2 2k +  

along the backward motion trajectory. 2 1k+Y can be predicted by the proposed linear AR model based on pixels in 

2kX (forward AR model) as well as pixels in 2 2k+X (backward AR model). 
 x

y

t

2k+12k  
Fig. 1 the forward linear AR model  

The forward linear AR model is depicted in Fig. 1,  where for each current pixel in the block 2 1k+Y , as 

indicated by the dashed cross, we first find its corresponding pixel within 2kX , as indicated by the solid cross, pointed 
by the forward motion vector. And then we approximate the current pixel as a linear combination of pixels within a 
spatial neighborhood, centered on the corresponding pixel, as indicated by the solid cross in Fig. 1, in the forward 
reference frame 2k . Due to the piecewise characteristics of natural image, we assume the AR coefficients remain the 
same for all the pixels within current block 2 1k+Y . Similarly, the backward linear AR model, which is shown in Fig. 2, 

is applied in the backward reference frame 2 2k + along the backward motion vector. 
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2k+22k+1  
Fig. 2 the backward linear AR model 

Since the forward and backward 3D AR models are quite similar, we will take the forward AR model for 
example in the following. Denote ( )2 ,kX m n as the pixel value located at ( ),m n  within frame 2k , according to the 

forward AR model, the predicted pixel in block 2 1k+Y can be approximated as 

( )
( )

( ) ( )2 1 2 , 2 1
,

ˆ , , ,k k fx fy i j k
l i j l

Y m n X i m v j n v n m nα+ +
− ≤ ≤

⎢ ⎥ ⎢ ⎥= + + + + • +⎣ ⎦ ⎣ ⎦∑ ,                 (1) 

where ( ),fx fyv v represents the forward motion with fractional pixel accuracy from frame 2 1k +  to 2k , ...⎢ ⎥⎣ ⎦ is the 

floor function, which maps fxv and fyv to the full pixel position, ,i jα is the forward AR coefficient located at ( ),i j , 

and 2 1kn + is the additive Gaussian white noise. Here l is defined to be radius of the AR filter, and thus the size of the 

AR filter is ( ) ( )2 1 2 1l l+ × + . 
If we assume the current block to be predicted is of size W H× , and arrange the pixels in the current block as 

an W H× vector ( ) ( ) ( )( )2 1 2 1 2 1 2 1
ˆ ˆ ˆ ˆ0,0 , 0,1 ,.. 1, 1

t

k k k kY Y Y W H+ + + += − −Y , representing the concatenated and 

lexicographically ordered intensity values in the predicted block within frame 2 1k + , then equation (1) can be rewritten 
as 

( )2 1 2 2 1
ˆ

k k kf+ += +Y X α n ,                                                            (2) 

where ( ) ( ) ( )( )2 2 2 20,0 , 0,1 ,.. 1, 1
t

k k k kX X X W H= − −X is a W H× dimensional vector, representing the 
concatenated and lexicographically ordered intensity values in the block, pointed by the forward motion vector within 
frame 2k , ( )2kf X is a function which transfers 2kX  to a ( ) ( ) ( )( )2 1 2 1W H L L• × + • + dimensional matrix, 

( ), , 1 ,, ,..,
t

L L L L L La a a− − − − +=α is the forward AR coefficient vector, 2 1k+n is the additive Gaussian white noise vector. 

Here each row vector ( )2m kf X , 0,1,..., 1m W H= × − , corresponds to the 3D AR spatial neighborhood, in a 

concatenated and lexicographically order, of the pixel m . The forward 3D AR coefficient vector α  should be chosen to 
be the "best" in some sense. Here we will use the most common measure of performance of a predictor: the mean 
squared error (MSE). Define the resulting MSE as 
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The MSE as a performance criterion can be viewed as a measure of how much the energy of the signal is 

reduced by removing the predictable information based on the observables from it. Since the goal of a predictor is to 
remove this predictable information, a better predictor corresponds to a smaller MSE. However, this method does not 
work for the case when 2 1k+Y is not available, i. e. at decoder side if no coefficients are written in the bit stream. To 
tackle such a problem, an iterative algorithm for deriving more reliable AR coefficient is proposed in the following 
section. 

3. AN ITERATIVE ALGORITHM FOR DERIVING AR COEFFICIENT 
Based on the AR model mentioned in Section 2, we continue the approximation of pixels in the temporal axis 

along the motion trajectory. That is to say, assume we have obtained the predicted pixel values in frame 2 1k + , and 
then we use the same 3D AR coefficients to approximate the pixels within frame 2 2k + along the motion trajectory. 
And this process is illustrated in Fig. 3. 
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Fig. 3 the propagation of 3D AR process in temporal axis along the motion trajectory  

 
The assumption that the 3D AR coefficients, used to approximate pixels within frame 2 2k + , remain the same 

as those used to approximate the pixels within frame 2 1k + is quite reasonable since there is a high redundancy between 
pixels along the motion trajectory from frame 2k  to 2 2k + . Based on such an assumption, pixels in frame 2 2k + can 
be approximated as 

( )2 2 2 1 2 2
ˆ ˆ

k k kf+ + += +X Y α n ,                                                            (4) 

where 2 2
ˆ

k+X is a W H× dimensional vector, representing the concatenated and lexicographically ordered value, which 

corresponds to pixels within the block pointed by the backward motion vector in frame 2 2k + , ( )2 1
ˆ

kf +Y is 

a ( ) ( ) ( )( )2 1 2 1W H l l• × + • + dimensional matrix, whose element is computed according to (2), and α is the same 

with that of (2). Incorporating (2) into (4), we get the approximation of 2 2
ˆ

k+X , where the weight is non-linear with 
respect to AR coefficientα , and the expression can be presented as 

( )( ) ( ) ( )2 2 2 2 2 2
ˆ

k k k kf f g+ += = +X X α α X W α n ,                                             (5) 

where ( )2kg X  is a function which transfers 2kX  to a ( ) ( ) ( )( )4 1 4 1W H L L• × + • +  dimensional matrix, ( )W α  
is the newly weight vector corresponding to the enlarged spatial neighborhood, shown as the circles in Fig. 4, in which 
the weight element is the quadratic of the AR coefficient ,i jα . This process can be interpreted as in Fig. 4, where each 
pixel in the backward reference frame 2 2k + can be interpolated by a combination of pixels in an enlarged spatial 
neighborhood with size of ( ) ( )4 1 4 1L L+ × +  in the forward reference frame 2k , shown as the circles in Fig. 4, after the 
propagation of AR interpolation in temporal axis along the motion trajectory. Consequently, the length of the weight 
vector ( )W α  of the enlarged spatial neighborhood is ( ) ( )4 1 4 1L L+ × + , and ( )2kg X is a ( ) ( ) ( )( )4 1 4 1W H L L• × + • +  



 
 

 
 

matrix, where each row vector ( )2m kg X , 0,1,..., 1m W H= × − , corresponds to the enlarged AR spatial neighborhood of 

the pixel m.  
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Fig. 4 the AR interpolation between the forward and backward reference frames along the motion trajectory after the pro

pagation of the AR interpolation in the intermediate frame 

 

Given the image model in Eq. (5), the coefficient vector α can be obtained by minimizing the following mean 
squared error  

( ) ( ) ( )( ) ( ) ( )( )

( )

2 2 2 2 2 2

2

1
2
1
2

t
k k k kg g

r

ε + += − −

=

α X X W α X X W α

αv
,                      (6) 

where ( ) ( ) ( )2 2 2k kr g+= −α X X W αv
is defined to be the residual vector. The basic idea behind this method is that   

the original image should satisfy the equation 0ε∂ ∂ =α . However, ( )ε α is not linear with respect toα . To solve   

this problem, we derive a linear form for ( )r αv
. Let Δα represent a small change in the AR coefficient vectorα , and  

then express ( )r + Δα αv
in Tayer series as 
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( ) ( )
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2 2 2

2 2 2
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k k

r

g

g J

r J

+

+

+ Δ

= − + Δ

≈ − − Δ

= − Δ

α α

X X W α α

X X W α α α

α α α

v

v

,                                              (7) 

where ( )J α is the Jacobian of ( ) ( )2kg X W α with respect to α . Therefore the minimization problem in (6) can be    
modified as 

( ) ( )

( ) ( )

2

2

1
2
min

r

J r

ε

Δ

+ Δ = + Δ

= Δ −
α

α α α α

α α α

v

v
 .                                              (8) 



 
 

 
 

By using this method, the original problem for direct estimation of α has been transformed into the minimization proble

m for the increment Δα in (8). The proposed iterative algorithm to estimate the optimum vectorα is summarized in Tab

le 1. 

 

Table 1. Summary of the proposed iterative algorithm 

Step 1. Initialize 0α . 

Step 2. Compute ( )0r αv
and ( )0J α . 

Step 3. At the i-th iteration, compute iΔα according to the following equation. 

( ) ( ) ( ) ( ) ( )t i i i t i iJ J J r⎡ ⎤× Δ =⎣ ⎦α α α α αv                                              (9)

Step 4. Update the estimate of 1i+α with 

1i i i+ = + Δα α α                                                                    (10)

Step 5. Update ( )1ir +αv
and ( )1iJ +α . 

Step 6. Go to Step 3 and update 1i i= + until convergence or a maximum number of iterations is reached.  

 

The similar iterative algorithm can also be applied to derive the backward AR coefficientβ . After that, the final predicte

d pixel value within frame 2 1k + can be computed as 

( ) ( )( )2 1 2 2 2
ˆ / 2k k kf f+ += +Y X α X β .                                                   (11) 

4. EXPERIMENTAL RESULTS 
To demonstrate the superiority of the proposed 3D AR model for the bi-directional prediction, the 3D AR model is 

utilized to replace the traditional direct mode in video coding. That is to say, for each Macroblock (MB) in B picture, the 
traditional direct mode is disabled but in contrary, the 3D AR model is implemented to replace it, and the 3D AR 
coefficients are derived by the proposed iterative method. Since the derivation of the 3D AR coefficients is performed in 
the forward and backward reference frames, there is no mismatch in the decoder, and consequently there is no need to 

transmit the AR coefficients. The initialization of α  is as follows. We first set the initial pixel value ( )0
2 1

ˆ ,kY m n+  as 

the values derived by the direct mode. Then initial 0α can then be computed according to 

( )( ) ( )( ) ( )( ) ( )( )0 0 0 0 0
2 2 1 2 2 1 2 1 2 2 2 1 2 2

ˆ ˆ ˆ ˆmin
tt

k k k k k k k kf f f f+ + + + + +
⎛ ⎞

= − − + − −⎜ ⎟
⎝ ⎠α

α X α Y X α Y Y α X Y α X  .           (12) 

The maximum iteration number is set to be 5, and the criterion for converging is to judge whether the distortion of the 
interpolated blocks between two successive iterations is smaller than a threshold. In the experiment, the threshold is set 
to be 50. 
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Fig. 5 Rate-distortion curves for sequences Mobile, Bus and Foreman  

The proposed method is implemented based on H.264/AVC reference software JM98. The test sequences include 
Foreman, Mobile, and Bus in the QCIF format with 30fps, and 200 frames of each test sequence are encoded. The spatial 
direct mode (SDM) is chosen as the anchor to compare the performance by the proposed 3D AR model and the encoding 
structure is IBPBP…… To evaluate the average PSNR vs bit-rate, the method described in [5], which is widely used 
during H.264/AVC development, is employed. 
        The overall RD performances (include I, P, B pictures) are shown in Fig. 5. It’s easy to observe that the coding 
performance is improved by the proposed 3D AR model, compared with the SDM, from low to high bit rates for all the 
test sequences. The ratio of the direct mode, by the proposed method and the anchor is presented in Table 2. Here if one 
MB is finally predicted by the 3D AR model after the RDO selection, it is also considered to be direct mode since there 
is no need to transmit motion vector difference in 3D AR model. From Table 2, it can be seen that the ratio of the MBs 
encoded with the direct mode by the proposed 3D AR model is always higher than that of the SDM except for the Bus 
sequence. In other words, it further verifies the proposed 3D AR model is able to bi-directionally predict the frame with 
higher accuracy. That’s because when applying the proposed 3D AR model, higher accuracy prediction is able to be 
achieved while the overhead does not increase, and thus more MBs will be encoded by the 3D AR model when RDO is 
enabled. Table 3 presents the detailed experimental results on all the test sequences. It reveals that the performance of the 
proposed 3D AR model outperforms the SDM in H.264. The maximum PSNR gain can be up to 1.227 dB in terms of B 
frames and 0.28 dB for total frames. The maximum bit rate saving is up to 39.942% in terms of B frames and 5.696% for 
the total frames. The excellent performance is largely attributed to the high accuracy of the proposed 3D AR model for 
bi-directional prediction. Furthermore, since the RDO is enabled, many MBs which do not select the direct mode as the 
optimum one when applying the traditional SDM now prefers the direct mode because of the better prediction 
performance provided by the proposed 3D AR model. Consequently, it further reduces the bits which would be used to 
describe the mode, motion vector as well as residual information if other mode is selected. 

Table 2 Ratio of MBs with direct mode 

Foreman Mobile Bus QP 
Anchor AR Anchor AR Anchor AR 

26 50.258% 58.132 60.997% 73.367% 31.375% 32.654% 
28 57.349% 68.295% 64.770% 81.138% 36.383% 34.694% 
30 63.410% 78.108% 67.697% 86.806% 41.662% 38.364% 
32 69.058% 85.282% 67.760% 87.611% 45.496% 42.177% 

 

Table 3 Performance comparison between the proposed 3D AR model and SDM 

Video Sequences Foreman Mobile Bus 
Average PSNR Gain 0.156 0.28 0.07 All pictures 
Average Bits Saving 3.772% 5.696% 1.383% 
Average PSNR Gain 0.756 1.227 0.226 B pictures Average Bits Saving 22.542% 39.942% 4.836% 

 



 
 

 
 

5. CONCLUSION 
This paper proposes a 3D AR model for bi-directional prediction in video coding. Applying the 3D AR model, 

each pixel is predicted as a weighted summation of corresponding pixels along the motion trajectories within the 
reference frame. The ultimate prediction of one pixel is obtained by the combination of pixels generated by the 3D AR 
models in both the forward and backward reference frames. To derive more accurate AR coefficients, an iterative 
algorithm using a nonlinear least squares method is proposed. In contrary to other methods that treat the AR coefficients 
estimation and AR interpolation as disjoint processes, the proposed iterative method enables the AR coefficients 
estimation and AR interpolation to be performed simultaneously. Experimental results show that the proposed method 
has a superior performance in video coding. 
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