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Abstract 
In this paper, we describe our system for the surveillance events detection task in TRECVid 2010. We focused on pair-wise 

events (e.g., PeopleMeet, PeopleSplitUp, Embrace) that need to explore the relationship between two active persons. For 
our team had participated in the TRECVid SED task in 2009, we developed the system based on the old one. The 
improvements are three-fold. First, we refined the background subtraction method of last year. Some better background 
frames are automatically selected to train and update the background model and the background reconstruction is 
performed at pixel level instead of frame level. Second, we employed a MPL (Multi-Pose Learning) based method for 
head-shoulder detection, which can effectively improve the detection recall. Third, a structural SVM (SVM-HMM) classifier is 
employed for pair-wise events detection. According to the comparative results in the TRECVid SED formal evaluation, our 
experimental results are promising. 

1. Introduction 
This year we chose four events and focused on pair-wise events (e.g., PeopleMeet, PeopleSplitUp, Embrace) that need to 

explore the relationship between two active persons. As our team had participated in the TRECVid SED task in 2009, we 

developed this year’s system based on the old one (eSur). The improvements are three-fold.  

First, we refined the background subtraction method of last year. Some better background frames with fewer foreground 

objects are automatically selected as training samples to train and update the background model by comparing video frame 

with a Gaussian background model, and the background reconstruction is performed at the pixel level instead of the frame 

level. Experimental results show that the method can detect the foreground objects sensitively with much lower false 

alarms than the classic background modeling methods.  

Second, within the extracted foreground region, we used the cascaded HoG (Histograms of Oriented Gradients) [8] for 

head-shoulder image reorientation, and Multiple Pose Learning-based RealBoost as the classifier. The online Boosting 

method is then used for tracking each detection part. Intermediate experimental results show that our human detection 

and tracking technique, together with background modeling, obtains better performance than last year. 

Third, a structural SVM classifier is employed for pair-wise events classification. As the events videos are inherently 

sequential data, we introduced the Hidden Markov Support Vector Machine (SVM-HMM) to model and classify the 

interactive events by considering the statistical dependencies over adjacent frames. Features like distance between two 

persons are extracted from every frame. Instead of simply concatenating the features into a vector, we treat them as 

sequential data to exploit not only the discrete information from individual frames, but also the sequential correlation 

among frames. The final detections are parsed from raw sequential results generated by SVM-HMM. 

The remainder of this paper is organized as follows. In section 2, we present our system framework briefly. Background 

subtraction is described in section 3. In section 4, we describe our head-shoulder detection and tracking approach. In 

section 5, we present our approach for detecting different events in given surveillance video sequences. Experimental 

results and analysis are given out in section 6. Finally, we conclude this technical report in section 7. 

                                                             
*
 These persons are equally important in the contest. This work is partially supported by grants from the Chinese National Natural Science 

Foundation under contract No. 61035001, No. 60973055, No. 61072095 and No. 61003165, National Basic Research Program of China 
under contract No. 2009CB320906, and Fok Ying Dong Education Foundation under contract No. 122008. 



 

2. The eSur System Framework 
The diagram of our eSur system is shown in Fig.1. The whole system is similar to the one we developed last year and the 

main difference lies in the event detection module. Last year we used classic linear SVM classifiers and automata to classify 

and identify different events in this module. However, this module is completed replaced by SVM-HMM and outlier classifier 

this year. Besides, some significant improvements are achieved in the background subtraction module and the human 

detection and tracking module. 

 
Fig.1. Diagram of our system, eSur 

3.  Background Subtraction 
In our framework, background subtraction is used to extract foreground regions to accelerate the head-shoulder 

detection and the tracking process. At the same time, the detection and tracking false alarms are decreased effectively. 

We proposed a selective eigenbackground method, which is a reformation of the method we used last year. In the 

training stage, the dimensionality of the training samples is reduced to build a Gaussian model G�. Then those training 

samples containing fewer foregrounds are selected to compute the initial eigenbackgrounds according to their similarities to 

the Gaussian model.  

In the subtraction stage, the dimensionality of the input frame vector is reduced to update the Gaussian model G� in a 

running average style as in GMM[1]. If the similarity of the frame to the Gaussian model is sufficiently high, incremental PCA 

is performed to update the eigenbackgrounds. Then the most descriptive eigenbackground is selected for each pixel to 

reconstruct the background, according to the minimum absolute value of the eigenbackground element. This process is 

formulated in Equ. (1), where B(i) is the reconstructed background value of the ith pixel,  ψ�� is the reconstructed 

background frame, u�� is the selected eigenbackground for the ith pixel to reconstruct the background, x is the input frame 

vector and u�(i) is the ith element of the jth eigenbackground. 

B(i) =  ψ��(i)          (1) 

ψ�� = u��u��
� x             (2) 

uκ� = min���u�(i)��              (3) 

At last, adaptively thresholding[2] is applied to the absolute difference image between the input frame and the 

reconstructed background image to get the foreground mask image. 

4. Detection and Tracking 

4.1 Head-Shoulder detection 

Pedestrian Detection is an important step in this system. As there are many occlusions in the TRECVid corpus, parts or 



 

even the whole body of the pedestrians are frequently unseen. For this reason, we apply head-shoulder detection instead of 

human body detection.  

In [2], Dalal and Triggs proved that Histograms of Oriented Gradients are powerful for pedestrian detection. In order to 

speed up, Zhu et al. [3] combined the cascaded rejection approach with HOG feature. They used AdaBoost to select the best 

features and constructed the rejection-based cascade.  

In our system, we use HOG feature to represent head-shoulder samples, piece-wise function to construct weak classifiers, 

and apply Multiple Pose Learning-based RealBoost as the classifier. Multiple Pose Learning [4] is used to deal with large 

intra-class variety within the pedestrian’s samples of TRECVid corpus. The framework is presented in Fig. 2.  

 

Fig.2. Detection module 

The Multiple Pose Learning-based boosting used in this work is described as below. 

Given n samples xi∈X and n corresponding labels yi∈{-1, +1}, we assume, however, that there are K latent variables yi
k∈

{-1, +1} associated with each sample. Each latent variable defines membership to one of the K groups. A sample is 

considered positive if it belongs to at least one of these groups, which can be expressed as yi=maxk{ yi
k }. Our goal is to 

simultaneously split the positive data into K groups and train K classifiers H1,H2,…,HK, one per group, so that 

maxk(H
k
(xi))=yi.The algorithm is summarized as below: 

 
Fig.3. Flowchart of Multiple Pose Learning algorithm. 

Some other cues are used for making the detection process more efficient. With the coarse foreground regions extracted 

by the background subtraction module, candidate sub-windows with sparse foreground can be neglected immediately. We 

can also estimate the reasonable sub-window size of head-shoulder appeared in all positions for each scene. In addition, 

regions those have low possibility of events are pruned in the searching process.  

In practice, we labeled about 5000 head-shoulders as positive training samples, and collected hundreds of images 

without head-shoulders as the source to extract negative training samples.  



 

4.2 Tracking 

In the TRECVid corpus, target appearance always changes significantly. The same as last year, we use an adaptive Online 

Boosting framework for tracking process as described by Helmut Grabner [5].  

In camera 3 and 5, the head-shoulder of pedestrians are mostly small and blur, so we extend the head-shoulder detection 

result proportionally down to use the whole body for tracking instead. Another method is applied to deal with drifting. 

Dominant color similarity between corresponding object in two frames give a score to evaluate the matching. And Online 

Boosting tracking also provides a matching score. We combine these two scores to get the final tracked position of an object 

in each next frame. 

5. Pair-Wise Events detection 
To detect the pair-wise events in this year’s SED task, the interactive events, such as PeopleMeet, PeopleSplitUp, and 

Embrace, are considered as a time-variant holistic pattern, and proper sequential model and structural classifier are 

introduced to serve the detection task.  

It is comprehensible that the discriminative patterns for these three events in video sequences are inherently time 

sequential. However, most pervious activity recognition methods did not handle this properly with only modeling the 

patterns in single frames or simply concatenating them together. In our solution, the event is considered as a whole 

sequence and described by the stochastic sequential model and classified using support vector machines. Specifically, we 

employ the Markov Support Vector Machine proposed in [6]. This method handles dependencies between neighboring 

frames using Viterbi-like decoding and the learning procedure is based on a maximum margin criterion. With the sequential 

learning method, the temporal correlations between different stages of the event are properly considered, and decisions 

based on integrated event sequences are reliable and semantically reasonable. 

As shown in Fig.4, features are extracted based on the motion trajectories generated by human detecting and tracking 

module mentioned in previous sections. According to the locations of every person in a frame, we calculate the absolute 

velocity, the acceleration, the distance between each pair of people and the angular separation of moving directions as the 

raw features. Then the extracted raw features from the same video clips (ground truth event samples for training and test 

samples for detecting) are transformed to structural sequence feature. Some statistics of raw features are also included into 

the reformed features to explicitly employ the information of the temporal dependencies over adjacent frames. 

 

Fig.4. Flowchart of sequential learning based event detection     

With the structural features, an appropriate implementation of Hidden Markov Support Vector Machine, SVM-HMM [7], 

is applied to train events classifiers and make decisions.  It learns a hidden Markov model from training samples for each 

event category and makes sequence decisions for testing samples. As the raw decision is a sequence of binary decisions for 

each frame in a testing sample, we need to parse it into a single decision for the testing sample with the strategy like voting. 

As the detection task is actually transformed to a classification problem by using sliding window method to generate testing 

samples, the original results would be fragmental. So in the post-processing phrase, we merge the preliminary detections 

and introduce some prior knowledge based rules to filter out incredible detections. These rules are usually empirical 

restrictions such as a distance threshold between persons before “PeopleSplitUp” or after “PeopleMeet”. 



 

6. Experiment and results 

Our team submitted four versions of results, which are obtained by using different human detection, tracking and events 

detection modules.  

Figure. 5 and 6 gives the comparison results between the classic eigenbackground method and our proposed method for 

background subtraction. It can be observed the false alarms and the miss detections are significantly lowered by our 

selective eigenbackground method. 

Table 6.1 and 6.2 show the comparison detection and tracking results between the best outputs of our system this year 

and those of last year. It can be seen from the tables that detection result is improved greatly in recall with low or no 

decrease in the precision. Here we introduce Multiple Object Tracking Accuracy (MOTA) and Multiple Object Tracking 

Precision (MOTP)[8], metrics used in PETS 2009, to evaluate overall performance. These ID switches used in MOTA are 

calculated from the number of identity mismatches in a frame, from the mapped objects in its preceding frame. The MOTP 

is calculated from the spatiotemporal overlap between the ground truth tracks and the algorithm’s output tracks. 
Conclusion can be drawn from table 6.2 that our performance is improved greatly. 

 

 

 

 

Table 6.1. Head-shoulder detection results of this year and last year 

Camera1  Recall  Precision  F-score  Camera2  Recall  Precision  F-score  

Last Year  0.335 0.888 0.4734 Last Year  0.243 0.816 0.3745 

This Year  0.539 0.796 0.6429 This Year  0.560 0.773 0.6495 

Camera3  Recall  Precision  F-score  Camera5  Recall  Precision  F-score 

Last Year  0.305 0.728 0.4299 Last Year  0.385 0.662 0.4869 

This Year  0.429 0.667 0.5222 This Year  0.468 0.757 0.5783 

Table 6.2. Tracking results of this year and last year 

Camera1  MOTA  MOTP  Miss  FA  ID Switch  

Last Year  0.09 0.55 0.571 0.322 0.017 

This Year  0.321 0.591 0.51 0.134 0.035 

Camera3  MOTA  MOTP  Miss  FA  ID Switch  

Last Year  -0.152 0.552 0.632 0.505 0.016 

This Year  0.022 0.571 0.652 0.293 0.033 

Camera5  MOTA  MOTP  Miss  FA  ID Switch  

(c) (b) (a) 

Fig.6 ROC analysis. Black line: classic 

eigenbackground; Red line: proposed method 

Fig.5 Background subtraction results. (a) video frame (b)result 

with classic eigenbackground (c)result with proposed method 



 

Last Year  -0.866 0.587 0.498 1.339 0.029 

This Year  -0.002 0.602 0.537 0.44 0.025 

Table 6.3 shows the comparison results between the best outputs of our system this year and those of last year. It can be 

seen from the table that our eSur system is greatly improved by detecting more correct events. The number of correctly 

detected PeopleMeet and PeopleSplitUp events is two times more than last year and that of Embrace are raised 

dramatically. Meanwhile, the false alarms do not rise too much and event dramatically decreased for PeopleSplitUp. This 

year we did not use any prior knowledge like last year, so it is believed that when prior knowledge is used, the performance 

can be further improved. It should be noticed that for the events PeopleSplitUp and Embrace, the NDCRs last year of our 

system are higher than 1.0 but we lowered them below zero this year, which verifies the effectiveness of our improvement 

methods.  

According to the comparative results in the TRECVid SED formal evaluation, our experimental results are promising this 

year, especially for the events PeopleMeet and PeopleSplitUp where the NDCRs are the lowest among all the participants. 

Table 6.4. Comparsion results between the best ourputs of eSur this year and last year 

PeopleMeet #Ref #Sys #CorDet #FA #Miss #F-score Act.DCR 

eSur last year 449 125 7 118 442 0.9031 1.023 

eSur this year 449 156 12 144 437 0.8570 1.02 

PeopleSplitUp #Ref #Sys #CorDet #FA #Miss #F-score Act.DCR 

eSur last year 187 198 7 191 180 0.5864 1.025 

eSur this year 187 167 16 136 171 0.6505 0.959 

Embrace #Ref #Sys #CorDet #FA #Miss #F-score Act.DCR 

eSur last year 175 80 1 79 174 0.7932 1.02 

eSur this year 175 925 6 71 169 0.8024 0.989 

7. Conclusion 

This year we improved our system significantly in background subtraction where selective eigenbackground method is 

proposed, head-shoulder detection where multi-pose learning based method is employed and event detection where 

SVM-HMM classifier is used for pair-wise events detection and a distance-based outlier detection method is employed to 

the single-actor event detection. The promising results of our system this year verify the effectiveness of these 

improvements. However, we believe there are still large improvement spaces for our system in exploring more effective and 

descriptive event models. 
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