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ABSTRACT
In this paper, we present an efficient side information extrap-
olation scheme with temporal and spatial consistency for low-
delay Wyner-Ziv video coding. Our method is based on the
regularized local linear regression (RLLR) model, in which
each pixel in SI is approximated as a linear weighted com-
bination of samples within a local temporal neighborhood.
The optimal model parameters are estimated by projecting the
transformation function onto the temporal training samples to
exploit motion-related dependency. During this procedure,
moving weights are incorporated into the objective function
to express the relative importance of training samples in esti-
mating parameters of the model. Furthermore, spatial corre-
lation is explored by imposing an additional local smoothness
penalty, which does good to estimate the occluded regions and
complex motion regions. The learned function is smooth and
locally linear, and can be obtained with a closed-form solu-
tion by solving a convex optimization problem. Experimen-
tal results demonstrate that the RLLR method achieves very
competitive SI extrapolation performance compared with the
state-of-the-art methods.

Index Terms— Distributed video coding, side informa-
tion extrapolation, temporal and spatial consistency, regular-
ized local linear regression

1. INTRODUCTION

Emerging as an enabling technology for wireless sensor net-
works, distributed source coding (DSC) has received more
and more attention in recent years. It refers to compress cor-
related signal source captured by different sensors which do
not communicate between themselves. All signals captured
are encoded independently and transmitted to a central base
station, where they are decoded jointly. Slepian-Wolf [1] and
Wyner-Ziv [2] had proved that under certain conditions sep-
arate encoding does not induce any compression efficiency
loss when compared to the joint encoding used in the tradi-
tional predictive coding paradigm. Video coding has been re-
cast into the distributed source coding framework, leading to
distributed video coding (DVC) [3]. Compared to the state-
of-the-art video coding standard, such as H.264 and MPEG-
4, DVC has a lower computation complexity and error re-
silience. Such property is conceptually appealing for some

practical video applications, such as wireless video surveil-
lance and mobile camera phones.

One of crucial factors to influence the performance of
DVC system is the quality of side information (SI). In [4], two
typical SI generation approaches are suggested, which make
use of interpolation and extrapolation. For interpolation, SI
for the current frame is obtained by using the adjacent pre-
viously and subsequently decoded frames. However, in low-
delay application, the temporally subsequent frames cannot
be used as references to generate SI. Therefore, extrapolation
is suitable for low-delay applications.

In the literature, many approaches have been proposed to
improve the performance of SI extrapolation. In [5], a ro-
bust extrapolation module is proposed to generate SI based
on motion field smoothing. S. Borchert et al. [6] introduce a
true motion based extrapolation scheme considering the 3-D
recursive search (3DRS) motion estimation. These methods
are all based on a translational motion model, in which it is
assumed that the motion in the current frame is a continu-
ous extension of the motion in the previous frame. However,
the translation model is not always satisfied, especially for the
video sequences with high motion. Alternatively, Zhang et al.
[7] generalize the corresponding problem in explicit ME into
an adaptive filtering problem, and achieve promising results.
In this scheme, motion information is no longer represented
explicitly as motion vectors but implicitly embedded into the
filter coefficients.

In this paper, we propose a more efficient SI extrapo-
lation method based on regularized local linear regression
(RLLR). Our algorithm simultaneously minimizes the mov-
ing least squares error on the temporal training samples and
preserves the local spatial geometrical structure of the same
frame, therefore achieves wonderful temporal and spatial
consistency. By fully exploiting the spatio-temporal correla-
tion information among the neighboring space, the obtained
transformation functions are smooth and locally linear, and
can keep the local motion information better. Compared to
the work presented in [7], the contribution of our work is
highlighted as follows: (1) the estimation granularity is pixel
level, at which motion information can be represented more
accurately; (2) moving weights are introduced in the objec-
tive function, which can efficiently handle the influence of
statistical outliers and lead to a robust estimator; (3) spatial
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correlation is exploited by incorporating an additional penalty
term, which does good to estimate the occluded regions and
complex motion regions.

The rest of this paper is organized as follows. Section 2
presents the framework of regularized local linear regression.
Section 3 discusses the algorithm details and gives some dis-
cussion about the proposed model. Experimental results are
presented in Section 4. Section 5 concludes the paper.

2. THE FRAMEWORK OF REGULARIZED LOCAL
LINEAR REGRESSION

2.1. Extrapolation Model

Extrapolation is to infer the SI according to previous recon-
structed frames. Supposing xi ∈ <2 is the pixel to estimate
in SI for the WZ frame Ft, the problem is how to determine
its intensity yi with minimum uncertainty from the local cov-
ering called training windowNt−1(xi) in the previous recon-
structed frame Ft−1. Based on geometric constraint of mo-
tion trajectory, estimation along motion orientation is optimal
in the sense of best resolving the uncertainty of yi. However,
motion orientation is hard to precisely describe since it can
take any real number. Alternatively, we utilize the strategy
of linear weighting of pixels in the temporal neighborhood
φ(xi) ∈ <d×1, which is a subset of Xt−1 including the N
nearest temporal neighbors of xi from all surrounding direc-
tions. Specially, we consider a linear transformation function
fi(·; ai, bi) defined as follows:

fi(xi) = aT
i φ(xi) + bi (1)

where ai is a transformation vector; bi is a translation con-
stant; fi(xi) is the estimated intensity value of xi.

The extrapolation model is illustrated in Fig. 1, where the
temporal neighborhood is 3 × 3 and the training window is
7× 7. The hollow circle represents the pixel to estimate. The
yellow ones are its temporal neighbors centered on the MV
aligned pixel in the forward reference frame. The yellow and
gray circles construct the training window together.

Fig. 1. Extrapolation model.

2.2. Regularized Local Linear Regression

Our goal is to estimate the optimal transformation function
fi using temporal-spatial correlation information contained in
the neighboring space around the pixel xi. Since the func-
tion fi indexed by i is defined for each pixel point but not

shared by all samples globally, we refer to it as local linear
regression. As a consequence, the estimation granularity in
our method is pixel. This is different to that of the work [7],
where all pixels in one block share the same model parame-
ters therefore the granularity level is block.

Let us try to view the SI extrapolation problem un-
der the framework of local linear regression. Suppose we
are given a training window N xi

t−1 = {x1, . . . , xl} in the
previous reconstructed frame Ft−1 with intensity values
Yt−1 = {y1, . . . , yl}. The optimal affine transformation
function fi is found by projecting itself onto samples in
training window and minimizing the following loss function:

J(fi) =
∑

xj∈N
xi
t−1

θij ||yj − fi(xj)||2 + λ||fi||2, (2)

where the regression term is the well-known moving least
squares [8]; the second term is the shrinkage constraint, also
known as the Tikhonov regularizer, which helps to improve
the generalization of the solutions. θij is the moving weight
reflecting the similarity between xi and xj . Moving weights
are incorporated in the loss function in order to express the
relative importance of the image samples in estimation of
model parameters. In the work presented in [7], all points in
the temporal local neighborhood are considered equally im-
portant, therefore motion information may be smoothed and
does not appear as sharp as they should.

The induced loss function defined above only expresses
temporal relationships between two successive frames. It is
more reasonable to further exploit the spatial correlation be-
tween the pixel to interpolate and previously reconstructed
pixels in the current frame. Considering the smoothness of
the mapping functions, an additional regularization term is
imposed onto the objective function. Ultimately, we formu-
late the objective function which exploits both temporal and
spatial dependency as follows:

J(fi) =
∑

xj∈N
xi
t−1

θij ||yj − fi(xj)||2 + λ||fi||2

+ η
∑

xp∈N
xi
t

sip||fi(xi)− fp(xp)||2
(3)

where N xi
t = {x1, · · · , xi−1} with intensity values Yt =

{f1(x1), · · · , fi−1(xi−1)} is the set of reconstructed spatial
examples in the current frame, sip is the weight reflects the
similarity between xi and xp. The parameters λ > 0 and
η > 0 control the relative contribution of two regulariza-
tion terms in the objective function. As a result, the task of
transformation function learning is to minimize the above cost
function:

f∗i = arg min J(fi) (4)

2.3. Optimizing the Objective Functions

In the practical experiments, for the additional regularization
penalty, we do not exploit all reconstructed examples in the
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current frame but only a subset Ct = {xi−[l/2], · · · , xi−1}
before xi, where l is the pixel number in the training window.
And we deal with the bias term bi by appending each instance
with an additional dimension

Φ(xi)T ← [φ(xi)T , 1],aT
i ← [aT

i , bi], (5)

then the loss function J can be rewritten as

J(ai) =
∑

xj∈N
xi
t−1

θij ||yj − aT
i Φ(xj)||2 + λaT

i ai

+ η
∑

xp∈N
xi
t

sip||aT
i Φ(xi)− ŷp||2.

(6)

In order to derive the optimal transformation vector ai,
we take the derivative of the loss function J in Eq.(6) with
respect to ai, and set the derivative to 0, the optimal ai can be
represented by

aT
i =

 ∑
xj∈N

xi
t−1

θijyjΦ(xj)T + η
∑

xp∈N
xi
t

sipŷpΦ(xi)
T


 ∑

xj∈N
xi
t−1

θijΦ(xj)Φ(xj)T + λI+
∑

xp∈N
xi
t

sipΦ(xi)Φ(xi)
T


−1

(7)

where I is the identity matrix.
The main computation burden of the above optimization

process is on the inversion of a matrix in <(d+1)×(d+1). For
simplicity of representation, we denote d = d + 1. Let T(d)
be the complexity of computing the inverse of a matrix <d×d,
we can get T(d) = O(d3) using standard method and T(d) =
O(d2.376) with the method of Coppersmith and Winogard.
Note that in our method we set φ(x) as the 8 nearest neighbor-
ing samples of x, thus d = 9 (with an additional dimension
for appending). As a consequence, the overall computation
complexity of our method is O(T(d)) × N , where N is the
number of samples estimated by RLLR model. In practical
experiments, we manage the computational complexity by re-
ducing the number of samples to estimate. One way is a hy-
brid approach: the proposed RLLR method is only applied to
pixels in blocks with occlusion or high complex motion; for
pixels in blocks with smooth motion we exploit the traditional
motion-compensated extrapolation algorithm [4].

3. ALGORITHM DETAILS AND DISCUSSION

In the following, let us consider a key issue in our model:
the design of moving weights θ and S. And we give some
discussion about the proposed RLLR model.

3.1. The Design of Moving Weights

In one frame, the image local structure is represented as a set
of spatial neighboring pixels at different intensity levels. In

order to preserve the edge structure well in SI extrapolation,
we should consider the local structure similarity in the mov-
ing weights design. In this paper, we model a pixel and its
nearest spatial neighbors in a similarity window as a vector
and perform comparison on the vector instead of the single
pixel. This is motivated by the idea of non-local-means in
image processing community [9]. Note that for the current
pixel to estimate its some neighbors may not be available. In
practical experiments, we use the local structure of the cor-
responding MV aligned pixel in frame Ft−1 as that of the
current pixel.

Assuming the similarity window is sized of K ×K, there
are totally M = (L −K + 1)2 blocks in the L × L training
window. We denote by −→yi the column vector containing the
intensity values of pixels in central K ×K blocks and denote
by −→yj , j = 1, . . . ,M − 1, the intensity vectors corresponding
to the other blocks. The similarity error can be easily calcu-
lated as

dij =
1
m

m∑
k=1

(−→yi (k)−−→yj (k))2G(k) (8)

where m = K ×K is the pixel number in the similarity win-
dow, G(k) is the kernel function controlling the contribution
of each pixel, which is defined as G(k) = e−|k−

m
2 |.

With the similarity error dij , the weight is calculated as

θij =
1

C(i)
e−

dij
h (9)

whereC(i) is the normalizing constant withC(i) =
∑
j

e−
dij
h .

The weights sip can also be obtained in the same way.

3.2. Discussion

The major features of RLLR are highlighted as follows:
(1) high-level temporal and spatial consistency; (2) better
preserving temporal motion information and spatial high fre-
quency features; (3) learning with a local linear and global
nonlinear manner; (4) easy implementation with a closed-
form solution.

4. EXPERIMENTAL RESULTS

In this section, extensive experiment results are presented to
evaluate the proposed SI extrapolation scheme in comparison
with some state-of-the-art work in the literature. The com-
parison group includes three other SI extrapolation methods:
conventional motion-compensated extrapolation (MCE)[4],
MCE with motion vector filtering (MCE+MVF) [5] and two
AR model based method [7].

In the experiments, we choose two representative video
sequences to demonstrate the efficiency of our method:
Foreman featuring moving close-up object and panning
background, and Paris featuring fast moving object. In each
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sequence, 100 frames are selected where Key frames are
encoded in H.264 intra mode with three QP values: 20, 24,
28, and WZ frames are encoded with the well-known TDWZ
codec [3]. The radius of neighborhood is set to 1 and the
radius of training window is 8.

Fig. 2 illustrates the objective quality comparison of SI
for Foreman and Paris. As depicted in Fig. 2, our method
achieves the best SI generation quality compared with the
other three methods. The same results are also shown in the
overall performance of DVC system, as illustrated in Fig. 3.
For Foreman and Paris, the gains, compared with the two
AR model based method, is up to 0.3dB and 0.8dB, respec-
tively. This is because that in the two video sequences there
are heavy irregular and fast motion which can not be well rep-
resented using block-based methods. The granularity of our
method is pixel level, at which the complex motion can be de-
scribed more accurately. At the same time, spatial correlation
information is also exploited in our scheme, which can bring
some advantages for estimating occluded regions.

Fig. 2. Comparison of the SI for Foreman and Paris sequence

5. CONCLUSION

In this paper, we present a novel side information extrapola-
tion scheme for low-delay Wyner-Ziv video coding. Our algo-
rithm is based on a regularized local linear regression model
which simultaneously minimizes the moving least squares er-
ror on the temporal training samples and preserves the lo-
cal spatial geometrical structure of the same frame, therefore
achieves wonderful temporal and spatial consistency. By fully
exploiting the correlation information among spatio-temporal
neighboring space, the obtained transformation functions are
smooth and locally linear, and can keep the local motion in-
formation wonderfully. Experimental results demonstrate the
superior performance of our method in comparison with the
state-of-the-art methods.

Fig. 3. Comparison of the overall performance for Foreman
and Paris sequence
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